安装结构体的制造方法及其中使用的片材与流程

文档序号:21091575发布日期:2020-06-12 17:15阅读:165来源:国知局
安装结构体的制造方法及其中使用的片材与流程
本发明涉及在内部具有空间的安装结构体的制造方法,详细地说,涉及使用片材密封的安装结构体的制造方法、及其中使用的片材。
背景技术
:在装载于电路基板的电子零件(电路部件)中,有时在电子零件与电路基板之间需要留有空间(内部空间)。例如,用于去除手机等的噪声的saw芯片为了利用在压电基板(压电体)上传播的表面波来过滤所希望的频率,在压电体上的电极与装载saw芯片的电路基板之间需要留有内部空间。例如,通过将saw芯片等电路部件经由凸起而装载于电路基板,以容纳电路部件的功能面的方式而形成内部空间。对于需要这样的内部空间的电路部件的密封,有时会使用树脂片(例如,专利文献1)。现有技术文献专利文献专利文献1:日本特开2015-65368号公报技术实现要素:发明所要解决的课题在制造安装结构体时,密封材料(已固化的树脂片)可因热而膨胀。于是,密合于密封材料的电路部件会朝密封材料膨胀的方向被拉伸。另一方面,若密封材料被冷却,则电路部件会朝密封材料收缩的方向被拉伸。由于电路部件本身不易变形,因此,施加于电路部件的拉伸应力会作用于被配置于内部空间中的凸起,使凸起欲从电路基板剥离。凸起由焊料形成时,通过该应力,凸起有时会从电路基板剥离。另外,在实际使用安装结构体时,伴随着由外部环境或自发热等带来的温度变化,会有反复进行密封材料的热膨胀及收缩的情况。此时,焊料凸起也会朝密封材料膨胀和/或收缩的方向被反复拉伸,从而容易受损伤。用于解决课题的手段鉴于上述情况,本发明的一个方面涉及一种安装结构体的制造方法,该方法具有以下工序:准备安装部件的工序,该安装部件具有:第1电路部件和经由凸起装载于所述第1电路部件上的多个第2电路部件,并且在所述第1电路部件与所述第2电路部件之间形成有空间;准备片材的工序,该片材具有空间维持层;配置工序,以所述空间维持层与所述第2电路部件相对的方式,将所述片材配置于所述安装部件;及密封工序,向所述第1电路部件按压所述片材,同时加热所述片材,从而在维持所述空间的同时密封所述第2电路部件,并使所述片材固化,所述凸起为焊料凸起,固化后的所述空间维持层的玻璃化转变温度大于125℃,且在125℃以下的线膨胀系数为20ppm/k以下。本发明的另一个方面涉及一种片材,其用于密封安装部件,该安装部件具有:第1电路部件和经由焊料凸起装载于所述第1电路部件上的多个第2电路部件,并且在所述第1电路部件与所述第2电路部件之间形成有空间,所述片材具有空间维持层,固化后的所述空间维持层的玻璃化转变温度大于125℃,且在125℃以下的线膨胀系数为20ppm/k以下。发明效果根据本发明,在具有第1电路部件及第2电路部件、且在第1电路部件与第2电路部件之间具有空间的安装结构体中,可提升第1电路部件与装载于其的第2电路部件的连接可靠性。附图说明图1为示意性地表示本发明的一种实施方式涉及的安装结构体的截面图。图2为示意性地表示本发明的一种实施方式涉及的片材的截面图。图3为通过安装部件或安装结构体的截面来示意性表示本发明的一种实施方式涉及的制造方法的说明图。具体实施方式图1中表示通过本实施方式涉及的方法制造的安装结构体的一个例子。图1为示意性地表示安装结构体10的截面图。安装结构体10具有:第1电路部件1;多个第2电路部件2,其经由焊料凸起3而装载于第1电路部件1上;及密封材料4,其用于密封第2电路部件2。在第1电路部件1与第2电路部件2之间形成有空间(内部空间s)。密封材料4为片材4p(参照图2)的固化物。本发明包含该片材4p。[片材]片材4p为在维持内部空间s的同时密封第2电路部件2的部件。如图2所示,片材4p至少具有空间维持层41p。图2为示意性地表示片材4p的截面图。(空间维持层)空间维持层41p为在配置工序中以与第2电路部件2相对的方式配置的、密合于第2电路部件2、并且在密封工序中维持内部空间s的层。固化后的空间维持层(以下,固化空间维持层41)的玻璃化转变温度大于125℃。而且,固化空间维持层41在125℃以下的线膨胀系数为20ppm/k以下。线膨胀系数可根据jisk7197,利用热机械分析装置进行测定。线膨胀系数通过下述方法进行测定:例如,对于2mm×5mm×20mm的试验片,使用热机械分析装置(例如,hitachihigh-techscience株式会社,tma7100),在压缩模式、升温速度为2.5℃/分钟、负载49mn的条件下进行测定。对于安装结构体10,有设想实际使用、要求在热循环试验中在-55℃~125℃等的宽的温度范围内的耐久性的情况。此时,也通过使固化空间维持层41的玻璃化转变温度及线膨胀系数满足上述范围,从而抑制固化空间维持层41的变形或膨胀。由此,利用固化空间维持层41,可抑制内部空间s的膨胀,并抑制焊料凸起3伴随着内部空间s的膨胀而从第1电路部件1剥离。而且,固化空间维持层41在125℃以下的线膨胀系数为20ppm/k以下,因此,在热循环试验中固化空间维持层41的膨胀与焊料凸起3的膨胀为相同程度、或者比焊料凸起3的膨胀小。因此,可抑制焊料凸起3的变形,并抑制焊料凸起3的损伤。特别是在-55℃~125℃中,固化空间维持层41的线膨胀系数优选为20ppm/k以下。上述固化空间维持层41的线膨胀系数为-55℃~125℃下的平均线膨胀系数。另外,当内部空间中存在水分时,水会因热而形成水蒸气,使得内部空间膨胀。若凸起变得无法承受内部空间的膨胀,则凸起会产生裂纹(所谓的爆米花现象)。特别是在使用焊料凸起时容易产生上述裂纹。然而,根据本实施方式,可抑制内部空间s的膨胀,因此,也可抑制焊料凸起3的上述裂纹的产生。第2电路部件2被密封时的温度t下的空间维持层41p的损耗角正切tanδ1t优选为1以下,更优选为0.9以下,特别优选为0.7以下。损耗角正切tanδ1t的下限没有特别限定,例如为0.1。具有这样的损耗角正切tanδ1t的空间维持层41p单独使用就能维持内部空间s、且能密封第2电路部件2。因此,即使片材4p具有损耗角正切tanδt较大(粘性高)的其他层,也可维持内部空间s。所谓“第2电路部件2被密封时的温度t”是在维持内部空间s的状态下通过片材4p覆盖第2电路部件2的表面时的片材4p的温度。片材4p的温度可替代成密封工序中对片材4p的加热手段的设定温度。片材4p的加热手段为冲压机时,加热手段的温度为冲压机的设定温度。当片材4p的加热手段为加热第1电路部件1的加热机时,加热手段的温度为第1电路部件1的加热机的设定温度。温度t可根据片材4p的材质等变化,例如,为从室温+15℃(40℃)至200℃之间。具体地,温度t例如为50~180℃。密封第2电路部件2时,片材4p可以为未固化状态,也可以为半固化状态。损耗角正切tanδ1t为温度t下的空间维持层41p的损耗剪切模量(g1”)相对于储能剪切模量g1’的比:g1”/g1’。储能剪切模量g1’及损耗剪切模量g1”通过下述方法进行测定:例如,对于直径8mm×1mm的试验片,使用粘弹性测定装置(例如tainstruments公司制造,ares-ls2),在频率为1hz、升温速度为10℃/分钟的条件下进行测定。后述的储能剪切模量g2’及损耗角正切tanδ2也同样地而求得。对于粘弹性测定装置,可以使用根据jisk7244的装置。温度t下的储能剪切模量g1’优选为1.0×107pa以下,更优选为1.0×106pa以下。储能剪切模量g1’的下限没有特别限定,例如为1.0×104pa。若温度t下的储能剪切模量g1’在该范围内,则变得容易抑制空间维持层41p在密封工序中向内部空间s侵入,同时变得容易以可密合于第2电路部件2的表面及第2电路部件2彼此之间的第1电路部件1的表面的程度流动。从绝缘性的观点考虑,空间维持层41p的体积电阻率优选为1×108ω·cm以上,更优选为1×1010ω·cm以上。空间维持层41p的厚度t1没有特别限定。厚度t1可以为120μm以下,也可以为100μm以下,也可以为80μm以下。由此,可变得薄型化。另一方面,从变得容易抑制内部空间s的膨胀的方面考虑,优选为1μm以上,更优选为10μm以上。空间维持层41p的厚度t1为空间维持层41p的主面间的距离。主面间的距离可通过将任意10处的距离平均化而求得。空间维持层41p例如由含有热固性树脂及固化剂的树脂组合物(以下称作第1树脂组合物)构成。作为热固性树脂,没有特别限定,可举出:环氧树脂、(甲基)丙烯酸树脂、酚醛树脂、三聚氰胺树脂、硅酮树脂、尿素树脂、聚氨酯树脂、乙烯酯树脂、不饱和聚酯树脂、邻苯二甲酸二烯丙酯树脂、聚酰亚胺树脂等。这些热固性树脂可以单独使用1种,也可以组合2种以上使用。其中,优选环氧树脂。密封前的热固性树脂可以为未固化状态,也可以为半固化状态。所谓的“半固化状态”为热固性树脂含有单体和/或低聚物的状态,称作热固性树脂的三维交联结构未充分发展的状态。半固化状态的热固性树脂处于在室温(25℃)下不溶解于溶剂、或者包含不会溶解的成分、但固化不完全的状态,即所谓的b阶段。环氧树脂没有特别限定,可以使用例如:双酚a型环氧树脂、双酚f型环氧树脂、双酚ad型环氧树脂、氢化双酚a型环氧树脂、氢化双酚f型环氧树脂、苯酚酚醛型环氧树脂、萘型环氧树脂、脂环式脂肪族环氧树脂、有机羧酸类的缩水甘油醚等。这些环氧树脂可以单独使用,也可以组合2种以上使用。环氧树脂可以为预聚物,也可以为如聚醚改性环氧树脂、硅酮改性环氧树脂这样的环氧树脂与其他聚合物的共聚物。其中,优选双酚ad型环氧树脂、萘型环氧树脂、双酚a型环氧树脂和/或双酚f型环氧树脂。从耐热性及耐水性优异、且廉价的方面考虑,特别优选双酚a型环氧树脂、双酚f型环氧树脂。为了调节树脂组合物的粘度,相对于环氧树脂整体,环氧树脂可以含有0.1~30质量%左右的在分子中具有1个环氧基的单官能环氧树脂。作为这样的单官能环氧树脂,可以使用:苯基缩水甘油醚、2-乙基己基缩水甘油醚、乙基二乙二醇缩水甘油醚、二环戊二烯缩水甘油醚、2-羟乙基缩水甘油醚等。这些单官能环氧树脂可以单独使用,也可以组合2种以上使用。树脂组合物含有热固性树脂的固化剂。固化剂没有特别限定,可以使用例如:酚系固化剂(酚醛树脂等)、二氰二胺系固化剂(二氰二胺等)、尿素系固化剂、有机酸酰肼系固化剂、多胺盐系固化剂、胺加合物系固化剂、酸酐系固化剂、咪唑系固化剂等。这些固化物可以单独使用,也可以组合2种以上使用。固化剂的种类可以根据热固性树脂而适当地选择。其中,从固化时的低排气性、耐湿性、耐热循环性等的方面考虑,优选使用酚系固化剂。固化剂的量因固化剂的种类而异。在使用环氧树脂时,例如,优选使用相对于1当量环氧基,固化剂的官能团的当量数为0.001~2当量、更优选当量数为0.005~1.5当量的量的固化剂。此外,二氰二胺系固化剂、尿素系固化剂、有机酸酰肼系固化剂、多胺盐系固化剂、胺加合物系固化剂为潜伏性固化剂。潜伏性固化剂的活性温度优选为60℃以上,更优选为80℃以上。另外,活性温度优选为250℃以下,更优选为180℃以下。由此,能够得到在活性温度以上迅速固化的树脂组合物。树脂组合物也可以含有除上述成分以外的第三成分。作为第三成分,可举出:热塑性树脂、无机填充剂、固化促进剂、聚合引发剂、离子捕捉剂、阻燃剂、颜料、硅烷偶联剂、触变性赋予剂等。可掺合热塑性树脂作为片材化剂。通过使树脂组合物片材化,变得容易提升密封工序中的处理性,并且变得容易抑制树脂组合物的下垂等,从而变得容易维持内部空间s。作为热塑性树脂的种类,可举出例如:丙烯酸树脂、苯氧基树脂、聚烯烃、聚氨酯、嵌段异氰酸酯、聚醚、聚酯、聚酰亚胺、聚乙烯醇、丁醛树脂、聚酰胺、氯乙烯、纤维素、热塑性环氧树脂、热塑性酚醛树脂等。其中,从作为片材化剂的功能优异的方面考虑,优选丙烯酸树脂。相对于100质量份热固性树脂,热塑性树脂的量优选为5~200质量份,特别优选为10~100质量份。添加于树脂组合物时的热塑性树脂的形态没有特别限定。热塑性树脂可以为例如重量平均粒径为0.01~200μm、优选为0.01~100μm的粒子。上述粒子也可以具有核壳结构。此时,核心例如可以为含有来自选自由(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯及(甲基)丙烯酸叔丁酯组成的组中的至少一种单体的单元的聚合物,也可以为含有来自其它(甲基)丙烯酸酯的单元的聚合物。壳层例如也可以为(甲基)丙烯酸甲酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯或(甲基)丙烯酸叔丁酯、(甲基)丙烯酸等单官能单体与1,6-己二醇二丙烯酸酯等多官能单体的共聚物。另外,也可以将分散或溶解于溶剂中的高纯度热塑性树脂添加于树脂组合物中。作为树脂组合物中可含的无机填充剂,可举出例如:熔融二氧化硅等二氧化硅、滑石、碳酸钙、钛白、氧化铁红、碳化硅、氮化硼(bn)等。其中,从廉价方面考虑,优选熔融二氧化硅。无机填充剂的平均粒径例如为0.01~100μm。相对于100质量份的热固性树脂,无机填充剂的量优选为1~5000质量份,更优选为10~3000质量份。平均粒径为体积粒度分布中累积体积为50%时的粒径(d50,以下相同)。固化促进剂没有特别限定,可举出:改性咪唑系固化促进剂、改性脂肪族多胺系促进剂、改性多胺系促进剂等。固化促进剂优选用作与环氧树脂等树脂的反应产物(加合物)。这些固化促进剂可以单独使用,也可以组合2种以上使用。从保存稳定性的方面考虑,固化促进剂的活性温度优选为60℃以上,更优选为80℃以上。另外,活性温度优选为250℃以下,更优选为180℃以下。在此,所谓的“活性温度”为通过潜伏性固化剂和/或固化促进剂的作用,使热固性树脂的固化急速加速的温度。固化促进剂的量因固化促进剂的种类而异。通常,相对于100质量份的环氧树脂,固化促进剂的量优选为0.1~20质量份,更优选为1~10质量份。此外,将固化促进剂用作加合物时,固化促进剂的量是指除去除固化促进剂以外的成分(环氧树脂等)后的、固化促进剂的净重的量。聚合引发剂通过光照射和/或加热而显现固化性。作为聚合引发剂,可以使用自由基产生剂、产酸剂、产碱剂等。具体地,可以使用二苯甲酮系化合物、羟基酮系化合物、偶氮化合物、有机过氧化物、芳香族锍盐、脂肪族锍盐等锍盐等。相对于100质量份的环氧树脂,聚合引发剂的量优选为0.1~20质量份,更优选为1~10质量份。(应力缓和层)片材4p进一步优选具有应力缓和层42p。通过已固化的应力缓和层(以下称作固化应力缓和层42),可缓和在制造工序等中施加于安装结构体10的应力(内部应力),并抑制安装结构体10的翘曲等。特别是安装结构体10通过具有固化空间维持层41的密封材料4而被密封,因此容易产生翘曲。另外,当第1电路部件1包含陶瓷基板时,难以矫正翘曲。因此,优选设置固化应力缓和层42,从而缓和固化空间维持层41或陶瓷基板的内部应力。关于固化应力缓和层42的损耗角正切tanδ2,在玻璃化转变温度以下的温度范围内,优选在40℃以上为0.02以上,优选在35℃以上也为0.02以上,优选在25℃以上也为0.02以上。由此,在制造后安装结构体被冷却至常温(20~30℃)时,上述应力被缓和,从而变得容易消除翘曲。关于固化应力缓和层42的损耗角正切tanδ2,在玻璃化转变温度以下的温度范围内,在40℃以上也可以为0.05以上,在35℃以上也可以为0.05以上,在25℃以上也可以为0.05以上。固化应力缓和层42在40℃以上且玻璃化转变温度以下的温度范围内的损耗角正切tanδ2例如为3以下,可以为1.5以下,也可以为0.5以下。另外,例如,在25℃以上且玻璃化转变温度以下的温度范围内,固化应力缓和层42的损耗角正切tanδ2也可以大于固化空间维持层41的损耗角正切tanδ1。另一方面,固化应力缓和层42的玻璃化转变温度没有特别限定。其中,固化应力缓和层42的玻璃化转变温度优选为125℃以下。此时,在125℃以下的温度下的损耗角正切tanδ2容易变大。应力缓和层42p在温度t下的损耗角正切tanδ2t优选大于0.3,也优选大于0.4。损耗角正切tanδ2t的上限没有特别限定,例如为8。另外,应力缓和层42p的损耗角正切tanδ2t也可以大于空间维持层41p的损耗角正切tanδ1t。温度t下的应力缓和层42p的储能剪切模量g2’优选为1×103pa以上,更优选为1×104pa以上。由此,在第2电路部件2被密封后,变得容易缓和第1电路部件1或第2电路部件2、进而固化空间维持层41内在的应力(内部应力)。储能剪切模量g2’的上限没有特别限定,例如为1×107pa,优选为1×106pa。应力缓和层42p由含有热固性树脂及固化剂的树脂组合物(以下称作第2树脂组合物)构成。第2树脂组合物的构成没有特别限定,也可以为与第1树脂组合物相同的构成。其中,从蠕动变形变大的方面考虑,优选包含含橡胶成分等的环氧树脂(例如橡胶改性环氧树脂)等。粘弹性(即损耗角正切tanδ)可以通过例如空间维持层41p和/或应力缓和层42p的原料来调节。例如,通过改变作为片材化剂的热塑性树脂的量或种类,可改变损耗角正切tanδ。其中,若使用苯氧基树脂,可容易地减小储能剪切模量g2’并增大tanδ2。相对于100质量份热固性树脂,第2树脂组合物中所含的热塑性树脂的量优选为5~200质量份,更优选为10~100质量份。从应力缓和的观点考虑,应力缓和层42p的厚度t2优选为10μm以上,更优选为50μm以上。此时,变得容易使安装结构体10的密封面平坦化,且变得容易将安装结构体10进行切割。另一方面,从薄型化的观点考虑,应力缓和层42p的厚度t2优选为1400μm以下,更优选为420μm以下。应力缓和层42p的体积电阻率没有特别限定,例如可以为与空间维持层41p相同的程度,也可以小于空间维持层41p。片材4p整体的厚度t没有特别限定,从容易密合于第2电路部件2的表面的方面考虑,优选为11~1500μm,更优选为20~1000μm,特别优选为20~500μm。片材4p也可以进一步具有另外的第3层。其中,将空间维持层41p配置于一侧的最外侧。应力缓和层42p的配置没有特别限定,优选与空间维持层41p相邻而配置。即,当具有第3层时,应力缓和层42p优选配置于内部。第3层可以为单层,也可以为多层的层叠体。[安装结构体的制造方法]参照图3,说明本实施方式涉及的制造方法。图3为通过安装部件或安装结构体10的截面来示意性表示本实施方式涉及的制造方法的说明图。安装结构体10通过下述的方法来制造,该方法包括以下工序:准备安装部件的第1准备工序,该安装部件具有:第1电路部件1和经由焊料凸起3装载于第1电路部件1上的多个第2电路部件2,并且在第1电路部件1与第2电路部件2之间形成有内部空间s;准备片材4p的第2准备工序;配置工序,以片材4p的空间维持层41p与第2电路部件2相对的方式,将片材4p配置于安装部件上;及密封工序,向第1电路部件1按压片材4p,同时加热片材4p,从而在维持内部空间s的同时密封第2电路部件2,并使片材4p固化。而且,也可以进行将所得到的安装结构体10按每个第2电路部件2进行切割的单片化工序。(第1准备工序)准备安装部件,该安装部件具有第1电路部件1和经由焊料凸起3而装载于第1电路部件1上的多个第2电路部件2,同时在第1电路部件1与第2电路部件2之间形成有内部空间s(图3(a))。第1电路部件1例如为选自由半导体元件、半导体封装、玻璃基板、树脂基板、陶瓷基板及硅基板组成的组中的至少1种。这些第1电路部件也可以为在其表面形成如acf(各向异性导电膜)或acp(各向异性导电膏糊)的导电材料层而成的电路部件。树脂基板可以为刚性树脂基板,也可以为柔性树脂基板,可举出例如:环氧树脂基板(例如,玻璃环氧基板)、双马来酰亚胺三嗪基板、聚酰亚胺树脂基板、氟树脂基板等。第1电路部件1也可以为在内部具有半导体芯片等的零件内置基板。第2电路部件2经由焊料凸起3而装载于第1电路部件1上。由此,在第1电路部件1与第2电路部件2之间形成内部空间s。第2电路部件2为需要在维持该内部空间s的状态下被密封(中空密封)的电子零件。作为第2电路部件2,可举出例如:rfic、saw、传感器芯片(加速度传感器等)、压电振动器芯片、晶体振动器芯片、mems装置等。即,安装部件可以具有:各种在第1电路部件1上装载有第2电路部件2的板上芯片(chiponboard、cob)结构(包括:晶圆上芯片(chiponwafer、cow)、膜上芯片(chiponfilm、cof)、玻璃上芯片(chiponglass、cog))、芯片上芯片(chiponchip,coc)结构、封装上芯片(chiponpackage、cop)结构及堆叠封装(packageonpackage、pop)结构。安装部件也可以为在装载有第2电路部件2的第1电路部件1上进一步层叠第1电路部件1和/或第2电路部件2而成的多层安装部件。焊料凸起3具有导电性,第1电路部件1与第2电路部件2经由焊料凸起3而被电连接。焊料凸起3的高度没有特别限定,例如可以为10~150μm,也可以为40~70μm。焊料凸起3的组成也没有特别限定。例如,可以为含有铅作为主要成分的焊料,也可以为含有锡作为主要成分的无铅焊料。焊料凸起3除了可以含有铅、锡以外,还可以含有例如锌、锑、铟、银、铋、铜、铝等。焊料凸起3的材料具体可举出:铅-锡、锡-银-铜、锡-锌-铝、锡-铋-银等合金。(第2准备工序)准备片材4p,该片材4p具有空间维持层41p、及根据需要的应力缓和层42p(图3(a))。当片材4p具有多层时,其制造方法没有特别限定。片材4p可以在分别作成各层后,通过层叠(层压法)而形成,也可以通过依次涂布各层的材料(涂布法)而形成。在层压法中,各层例如通过下述方法形成,该方法包括以下工序:分别调制含有上述树脂组合物的溶剂膏糊或无溶剂膏糊(以下,仅统称为膏糊)的工序、及由上述膏糊形成各层的工序(形成工序)。通过该方法,分别形成空间维持层41p及应力缓和层42p后,依次层叠。膏糊含有预凝胶化剂时,在形成工序时会进行凝胶化。凝胶化通过以下方法进行:将膏糊薄膜化后,以低于热固性树脂的固化温度的温度(例如70~150℃)将薄膜加热1~10分钟。另一方面,在涂布法中,通过上述方法,例如形成空间维持层41p后,在该空间维持层41p的表面涂布含有第2树脂组合物的膏糊,形成应力缓和层42p。此时,也可以在形成工序时进行凝胶化。凝胶化可以在由各膏糊分别形成薄膜后依次实施,也可以在形成薄膜的层叠体后实施。各层(薄膜)例如通过模具、辊涂布机、刮片等形成。此时,优选将膏糊的粘度调节为10~10000mpa·s。当使用溶剂膏糊时,之后也可以在70~150℃下干燥1~10分钟,以除去溶剂。上述凝胶化与溶剂的除去可同时实施。(配置工序)以使空间维持层41p与第2电路部件2相对的方式,将片材4p配置于安装部件(图3(a))。此时,也可以用一片片材4p覆盖多个第2电路部件2。由此,能够将片材4p整体地以与多个第2电路部件2的表面及第2电路部件2彼此之间的第1电路部件1的表面相对的方式配置。(密封工序)向第1电路部件1按压片材4p(图3(b)),同时加热片材4p而使其固化(图3(c))。由此,可在维持内部空间s的同时密封第2电路部件2。片材4p向第1电路部件1的按压例如在将片材4p以低于片材4p中所含的热固性树脂的固化温度的温度加热的同时进行(热压)。由此,片材4p变得容易密合于第2电路部件2的表面,并且变得容易伸展至到达第2电路部件2彼此之间的第1电路部件1的表面为止,能够提高第2电路部件2的密封的可靠性。热压可以在大气压下进行,也可以在减压气氛(例如50pa以上且50,000pa以下,优选50pa以上且3,000pa以下)下进行。按压时的加热条件没有特别限定,根据按压方法或热固性树脂的种类适当地设定即可。上述加热例如在40~200℃(优选50~180℃)下进行1秒~300分钟(优选3秒~300分钟)。若以上述固化温度加热片材4p而使热固性树脂固化,则可形成密封材料4。由此,可密封第2电路部件2。片材4p的加热(热固性树脂的固化)的条件根据热固性树脂的种类适当地设定即可。热固性树脂的固化例如在50~200℃(优选120~180℃)下进行1秒~300分钟(优选60分钟~300分钟)。热压与热固性树脂的固化可以分别实施,也可以同时实施。例如,也可以在减压气氛下,以低于片材4p中所含的热固性树脂的固化温度的温度进行热压后,解除减压,在大气压下进一步以高温加热,使热固性树脂固化。或者,也可以在大气压下,以低于片材4p中所含的热固性树脂的固化温度的温度进行热压后,再以高温加热而使热固性树脂固化。另外,也可以通过在减压气氛下,以固化温度进行热压,从而在减压中使热固性树脂固化。(单片化工序)也可以进行将所得到的安装结构体10按每个第2电路部件2进行切割的单片化工序(图3(d))。由此,可得到芯片等级的安装结构体(安装芯片20)。[实施例]接着,基于实施例,更具体地说明本发明。不过,以下实施例并非用于限制本发明。[实施例1](1)树脂组合物的调制使用下述材料,调制具有表1中所记载的组成的树脂组合物a~h。表示表中的组成的数值为质量份。<热固性树脂>ep:环氧树脂(环氧当量183g/eq)<固化剂>hd-a:苯酚酚醛树脂a(羟基当量173g/eq)hd-b:苯酚酚醛树脂b(环氧当量105g/eq)hd-c:苯酚酚醛树脂c(环氧当量143g/eq)<热塑性树脂>acr:丙烯酸树脂phr:苯氧基树脂<固化促进剂>imz:咪唑<无机填充剂>s-sil:熔融球状二氧化硅[表1]组成abcdefghed100100100100100100100100hd-a8080------hd-b--6060-606560hd-c----75---acr5030105060-4020phr-----35--imz44324333s-sil3253251000750300500250500[评价1]<储能剪切模量与tanδt>将树脂组合物a~h分别涂覆于pet膜,并以100℃加热5分钟,制作出厚度为1mm的未固化的片材。从所得到的未固化的片材制作直径8mm×1mm的试验片,并根据jisk7244,求出第2电路部件2被密封时的温度t(80℃或100℃)下的储能剪切模量g’及损耗剪切模量g”,并求出温度t下的损耗角正切tanδt(g”/g’)。此外,对于粘弹性测定装置,使用ares-ls2(tainstruments公司制造),在频率为1hz、升温速度为10℃/分钟的条件下进行测定。将结果表示在表2中。<玻璃化转变温度(tg)>将树脂组合物a~h分别涂覆于pet膜,并以150℃加热180分钟而使热固性树脂固化,得到厚度为1mm的固化片。从所得到的固化片作成直径8mm×1mm的试验片,并在与上述评价1相同的条件下,求出从-55℃至125℃下的储能剪切模量g’及损耗剪切模量g”,并求出损耗角正切tanδ(g”/g’)显示最大值的温度作为玻璃化转变温度。将结果表示在表2中。<tanδ2>针对用作应力缓和层的树脂组合物的固化片,求出在40℃以上且tg以下的温度范围内的损耗角正切tanδ2的最小值。将结果表示在表2中。<线膨胀系数>将树脂组合物a~h以150℃加热180分钟,得到块状的热固性树脂的固化物。由块状固化物作成2mm×5mm×20mm的试验片,并根据jisk7197,求出-55℃至125℃下的线膨胀系数的平均值。对于热机械分析装置,使用tma7100(hitachihigh-techscience株式会社制造),并在压缩模式、升温速度为2.5℃/分钟、负载49mn的条件下进行测定。将结果表示在表2中。(2)片材4p的制作使用树脂组合物a~h,并以表2中记载的空间维持层(41p)与应力缓和层(42p)的组合,分别利用涂布法形成实施例中涉及的片材4p-x1、4p-x2、4p-x3及4p-x4与比较例中涉及的4p-r1及4p-r2。空间维持层(41p)的厚度设为100μm,应力缓和层(42p)的厚度设为200μm。[表2](3)安装结构体的制作在玻璃基板(第1电路部件、50mm四方、厚度为0.2mm)上经由金凸起(直径为100μm、高度为20μm)并列装载3个同型号的saw芯片(第2电路部件、1.1mm×1.1mm、高度为0.2mm),由此得到安装部件。saw芯片间的间隔距离设为0.4mm。利用片材4p密封所得到的安装部件,得到安装结构体。具体地,以空间维持层41p与saw芯片相对的方式将片材4p配置于安装部件后,在减压气氛下(400pa)向玻璃基板按压片材4p,同时将片材4p以规定的密封温度(t)加热1分钟,之后,在150℃、约10,000pa(1atm)下加热180分钟。将密封温度表示在表2中。[评价2]<密封性>利用激光显微镜,从玻璃基板侧观察所得到的安装结构体,并依据以下的评价法进行评价。将以下情况表示在表2中。在所有的saw芯片与玻璃基板之间形成有充分的内部空间,且在saw芯片之间无间隙地填充有密封材料:最良在所有的saw芯片与玻璃基板之间形成有充分的内部空间,且在saw芯片之间无间隙地填充有密封材料,但在一部分的内部空间中可确认有较大的树脂侵入:良在所有的saw芯片与玻璃基板之间形成有充分的内部空间,且在saw芯片之间无间隙地填充有密封材料,但可确认有特别大的树脂侵入等,可确认各内部空间的尺寸(向中空部的树脂侵入量)的参差不齐:可<热循环试验>将安装结构体在-55℃与+125℃的环境下交替放置各15分钟,每当将这样的循环重复250次,利用光学显微镜及sat(超声波影像装置),从玻璃基板侧观察有无不良(裂纹及剥离),求出直到产生不良为止的循环数。将以下结果表示在表2中。直到800次循环为止未确认不良:最良在500次循环以上~小于800次循环的情况下产生不良:良在小于500次的情况下产生不良:不良产业上的可利用性本发明的安装结构体的制造方法由于使用能维持第1电路部件与第2电路部件之间的空间、且能抑制内部空间的膨胀的片材,因此作为使用焊料凸起的安装结构体的制造方法是有用的。另外,使用于该方法的本发明涉及的片材也适合于使用焊料凸起的各种安装结构体的制造。符号说明10:安装结构体1:第1电路部件2:第2电路部件3:焊料凸起4p:片材41p:空间维持层42p:应力缓和层4:密封材料(片材的固化物)41:固化空间维持层42:固化应力缓和层20:安装芯片当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1