发光元件、发光装置、电子设备及照明装置的制作方法

文档序号:21699173发布日期:2020-07-31 22:58阅读:339来源:国知局
发光元件、发光装置、电子设备及照明装置的制作方法

本发明的一个方式是一种新颖的包括电子注入层的发光元件。此外,本发明的一个方式是一种包括该发光元件的显示装置、电子设备以及照明装置。

注意,本发明的一个方式不局限于上述技术领域。本说明书等所公开的发明的一个方式的技术领域涉及一种物体、方法或制造方法。另外,本发明的一个方式涉及一种工序(process)、机器(machine)、产品(manufacture)或组合物(compositionofmatter)。因此,具体而言,作为本说明书所公开的本发明的一个方式的技术领域的例子可以举出半导体装置、显示装置、液晶显示装置、发光装置、照明装置、蓄电装置、存储装置、这些装置的驱动方法和这些装置的制造方法。



背景技术:

近年来,对利用电致发光(electroluminescence:el)的发光元件的研究开发日益火热。这些发光元件的基本结构是在一对电极间夹有包含发光物质的层(el层)的结构。通过将电压施加到该元件的电极间,可以获得来自发光物质的发光。

由于上述发光元件是自发光型发光元件,所以使用该发光元件的显示装置具有良好的可见度、不需要背光源及功耗低等优点。而且,该显示装置还具有如下优点:能够被制造得薄且轻;以及响应速度快等。

一般而言,在el元件中,为了降低驱动电压,在阴极与发光层之间设置电子注入层。为了减少阴极与el层之间的电子的注入势垒,作为该电子注入层,使用以锂(li)或钙(ca)为代表的碱金属或碱土金属等功函数小的金属或这些金属的化合物(例如专利文献1)。

[先行技术文献]

[专利文献]

[专利文献1]日本专利申请公开第2001-102175号公报



技术实现要素:

发明所要解决的技术问题

功函数小的金属或这些金属的化合物与氧或水的反应性高,而不容易处理。此外,在将该金属或该金属化合物用于发光元件时受到氧或水的影响,有时会发生发光元件的发光效率的下降、驱动电压的上升或可靠性的降低等。因此,需要开发一种不容易受氧或水的影响且阴极与el层之间的电子的注入势垒小的电子注入层。

鉴于上述问题,本发明的一个方式的目的是提供一种驱动电压低的发光元件。本发明的一个方式的目的是提供一种抗湿性高的发光元件。本发明的一个方式的目的是提供一种抗氧性高的发光元件。本发明的一个方式的目的是提供一种功耗得到降低的发光元件。本发明的一个方式的目的是提供一种可靠性高的发光元件。本发明的一个方式的目的是提供一种新颖的发光元件。本发明的一个方式的目的是提供一种新颖的半导体装置。本发明的一个方式的目的是提供一种可用于抗湿性高的发光元件的有机化合物。

本发明的一个方式的目的是提供一种使用上述发光元件的具有高抗湿性的电子设备及照明装置。本发明的一个方式的目的是提供一种使用上述发光元件的功耗得到降低的发光装置。本发明的一个方式的目的是提供一种使用上述发光元件的使用寿命长的发光装置。

注意,上述目的的记载不妨碍其他目的的存在。本发明的一个方式并不一定需要实现所有上述目的。此外,可以从说明书等的记载得知并抽取上述目的以外的目的。

解决技术问题的手段

如上所述,被要求抗湿性及电子注入特性都高的发光元件的开发。因此,被要求不使用功函数小的金属的发光元件的开发。

因此,本发明的一个方式是一种发光元件,包括阳极与阴极之间的发光层以及发光层与阴极之间的第一层,第一层包含第一有机化合物及金属,金属属于周期表中的第3族至第13族中的任一个,第一有机化合物包括取代或未取代的碳原子数为1以上且30以下的杂芳环,杂芳环包含氮,第一有机化合物中的氮具有在3齿或4齿与金属相互作用的功能,第一有机化合物与金属形成somo(单占据分子轨道:singleoccupiedmolecularorbital)。

本发明的另一个方式是一种发光元件,包括阳极与阴极之间的第一发光单元及第二发光单元、以及第一发光单元与第二发光单元之间的第一层,第一层包含第一有机化合物及金属,金属属于周期表中的第3族至第13族中的任一个,第一有机化合物包括取代或未取代的碳原子数为1以上且30以下的杂芳环,杂芳环包含氮,第一有机化合物中的氮具有在3齿或4齿与金属相互作用的功能,第一有机化合物与金属形成somo。

在上述结构中,第一有机化合物优选为以通式(g0)表示的有机化合物。

[化学式1]

在通式(g0)中,a1、a2及a3分别独立地表示取代或未取代的碳原子数为1以上且30以下的杂芳环,a1、a2及a3也可以彼此形成稠环。

在上述结构中,第一有机化合物优选为以通式(g1)表示的有机化合物。

[化学式2]

在通式(g1)中,x1至x6分别独立地表示碳(c)或氮(n),碳包括氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,r1至r4分别独立地表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,ar表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、碳原子数为6以上且60以下的芳烃基或者碳原子数为2以上且60以下的杂芳烃基。

在上述结构中,第一有机化合物优选为以通式(g2)表示的有机化合物。

[化学式3]

在通式(g2)中,x1及x2分别独立地表示碳(c)或氮(n),碳包括氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,r1至r8分别独立地表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,ar表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、碳原子数为6以上且60以下的芳烃基或者碳原子数为2以上且60以下的杂芳烃基。

在上述结构中,第一有机化合物优选为以通式(g3-1)至(g3-3)中的任一个表示的有机化合物。

[化学式4]

在通式(g3-1)至(g3-3)中,r1至r8分别独立地表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,ar表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、碳原子数为6以上且60以下的芳烃基或者碳原子数为2以上且60以下的杂芳烃基。

在上述结构中,第一有机化合物优选为以通式(g4-1)至(g4-3)中的任一个表示的有机化合物。

[化学式5]

在通式(g4-1)至通式(g4-3)中,ar表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、碳原子数为2以上且60以下的芳烃基或者碳原子数为2以上且60以下的杂芳烃基。

在上述结构中,第一有机化合物优选为以下述结构式(100)至(103)中的任一个表示的有机化合物。

[化学式6]

在上述结构中,金属的功函数优选为4.0ev以上且5.3ev以下。

在上述结构中,第一有机化合物所具有的lumo(最低空分子轨道:lowestunoccupiedmolecularorbital)能级优选为-3.6ev以上且-2.3ev以下。

在上述结构中,金属优选是过渡金属,更优选是属于第5族、第7族、第9族和第11族中的任一个的金属,进一步优选是属于第11族的过渡金属,更进一步优选是ag或cu。

在上述结构中,杂芳环优选包括取代或未取代的缺电子型杂芳环,更优选包括吡啶环、二嗪环及三嗪环中的任一个。

在上述结构中,优选的是还包括阴极与第一层之间的第二层,第二层包含包括缺电子型杂芳环的第二有机化合物。

在上述结构中,第二有机化合物所具有的lumo能级优选低于somo所具有的能级。

在上述结构中,第一层优选为不包含碱金属及碱土金属。

在上述结构中,第一层中的金属的相对于第一有机化合物的摩尔比优选为0.2以上且0.8以下。

在上述结构中,阴极优选包含与第一层相同的金属。

本发明的另一个方式是以结构式(200)至(203)表示的有机化合物。

[化学式7]

本发明的其他方式是一种电子设备,包括:上述各结构的显示装置;以及外壳和触摸传感器中的至少一个。本发明的其他方式是一种照明装置,包括:上述各结构的发光元件;以及外壳和触摸传感器中的至少一个。另外,本发明的一个方式在其范畴内不仅包括具有发光元件的发光装置,还包括具有发光装置的电器设备。因此,本说明书中的发光装置是指图像显示装置或光源(包括照明装置)。另外,如下显示模块也是本发明的一个方式:在发光元件中安装有连接器诸如fpc(flexibleprintedcircuit:柔性电路板)或tcp(tapecarrierpackage:载带封装)的显示模块;在tcp的端部设置有印刷线路板的显示模块;或者ic(集成电路)通过cog(chiponglass:玻璃上芯片)方式直接安装在发光元件上的显示模块。

发明效果

根据本发明的一个方式,可以提供一种驱动电压低的发光元件。根据本发明的一个方式,可以提供一种抗湿性高的发光元件。根据本发明的一个方式,可以提供一种抗氧性高的发光元件。根据本发明的一个方式,可以提供一种功耗得到降低的发光元件。根据本发明的一个方式,可以提供一种可靠性高的发光元件。根据本发明的一个方式,可以提供一种新颖的发光元件。根据本发明的一个方式,可以提供一种新颖的半导体装置。根据本发明的一个方式,可以提供一种可用于抗湿性高的发光元件的有机化合物。

根据本发明的一个方式,可以提供一种使用上述发光元件的具有高抗湿性的电子设备及照明装置。根据本发明的一个方式,可以提供一种适用上述发光元件的功耗得到降低的发光装置。根据本发明的一个方式,可以提供一种使用上述发光元件的使用寿命长的发光装置。

注意,这些效果的记载不妨碍其他效果的存在。本发明的一个方式并不需要具有所有上述效果。另外,可以从说明书、附图、权利要求书等的记载得知并抽取上述效果以外的效果。

附图简要说明

[图1]说明本发明的一个方式的发光元件的截面示意图及电子注入层的能级相关的图。

[图2]说明本发明的一个方式的发光元件的截面示意图。

[图3]说明本发明的一个方式的发光元件的截面示意图。

[图4]说明本发明的一个方式的发光元件的截面示意图。

[图5]说明本发明的一个方式的显示装置的俯视图及截面示意图。

[图6]说明本发明的一个方式的显示装置的截面示意图。

[图7]说明本发明的一个方式的显示装置的截面示意图。

[图8]说明本发明的一个方式的电子设备的图。

[图9]说明本发明的一个方式的电子设备的图。

[图10]说明本发明的一个方式的电子设备的图。

[图11]说明本发明的一个方式的照明装置的图。

[图12]说明实施例的发光元件的电流效率-亮度特性的图。

[图13]说明实施例的发光元件的电流-电压特性的图。

[图14]说明实施例的发光元件的外部量子效率-亮度特性的图。

[图15]说明实施例的发光元件的电场发射光谱的图。

[图16]说明实施例的发光元件的可靠性测试结果的图。

[图17]说明实施例的发光元件的电流效率-亮度特性的图。

[图18]说明实施例的发光元件的电流-电压特性的图。

[图19]说明实施例的发光元件的外部量子效率-亮度特性的图。

[图20]说明实施例的发光元件的电场发射光谱的图。

[图21]说明实施例的发光元件的可靠性测试结果的图。

[图22]说明实施例的发光元件的电流效率-亮度特性的图。

[图23]说明实施例的发光元件的电流-电压特性的图。

[图24]说明实施例的发光元件的外部量子效率-亮度特性的图。

[图25]说明实施例的发光元件的电场发射光谱的图。

[图26]说明实施例的化合物的nmr光谱的图。

[图27]说明实施例的化合物的nmr光谱的图。

[图28]说明实施例的化合物的nmr光谱的图。

[图29]说明实施例的化合物的nmr光谱的图。

[图30]说明实施例的化合物的nmr光谱的图。

[图31]说明本发明的一个方式的发光元件的截面示意图。

[图32]说明实施例的发光元件的电流效率-亮度特性的图。

[图33]说明实施例的发光元件的电流-电压特性的图。

[图34]说明实施例的发光元件的功率效率-亮度特性的图。

[图35]说明实施例的发光元件的外部量子效率-亮度特性的图。

[图36]说明实施例的发光元件的电场发射光谱的图。

[图37]说明实施例的发光元件的电流效率-亮度特性的图。

[图38]说明实施例的发光元件的电流-电压特性的图。

[图39]说明实施例的发光元件的功率效率-亮度特性的图。

[图40]说明实施例的发光元件的外部量子效率-亮度特性的图。

[图41]说明实施例的发光元件的电场发射光谱的图。

[图42]说明实施例的发光元件的电流效率-亮度特性的图。

[图43]说明实施例的发光元件的电流-电压特性的图。

[图44]说明实施例的发光元件的功率效率-亮度特性的图。

[图45]说明实施例的发光元件的外部量子效率-亮度特性的图。

[图46]说明实施例的发光元件的电场发射光谱的图。

[图47]说明实施例的发光元件的电流效率-亮度特性的图。

[图48]说明实施例的发光元件的电流-电压特性的图。

[图49]说明实施例的发光元件的功率效率-亮度特性的图。

[图50]说明实施例的发光元件的外部量子效率-亮度特性的图。

[图51]说明实施例的发光元件的电场发射光谱的图。

[图52]说明实施例的发光元件的可靠性测试结果的图。

实施发明的方式

以下,参照附图详细地说明本发明的实施方式。注意,本发明不局限于以下说明,其方式及详细内容在不脱离本发明的宗旨及其范围的情况下可以被变换为各种各样的形式。因此,本发明不应该被解释为仅局限在以下所示的实施方式所记载的内容中。

另外,为了便于理解,有时在附图等中示出的各结构的位置、大小及范围等并不表示其实际的位置、大小及范围等。因此,所公开的发明不一定局限于附图等所公开的位置、大小及范围等。

此外,在本说明书等中,为了方便起见,附加了第一、第二等序数词,而其有时并不表示工序顺序或叠层顺序。因此,例如可以将“第一”适当地替换为“第二”或“第三”等来进行说明。此外,本说明书等所记载的序数词与用于指定本发明的一个方式的序数词有时不一致。

注意,在本说明书等中,当利用附图说明发明的结构时,在不同的附图中共同使用表示相同的部分的符号。

外,在本说明书等中,可以将“膜”和“层”相互调换。例如,有时可以将“导电层”变换为“导电膜”。此外,例如,有时可以将“绝缘膜”变换为“绝缘层”。

(实施方式1)

在本实施方式中,参照图1说明本发明的一个方式的发光元件。

<发光元件的结构例子1>

图1a是本发明的一个方式的发光元件150的截面示意图。

发光元件150包括一对电极(电极101及电极102)以及该一对电极间的el层100。el层100至少包括发光层140及电子注入层130。

此外,图1a所示的el层100除了发光层140及电子注入层130以外还包括空穴注入层111、空穴传输层112及电子传输层118等功能层。

注意,虽然在本实施方式中以一对电极中的电极101为阳极且以电极102为阴极来进行说明,但是发光元件150的结构并不局限于此。也就是说,也可以将电极101用作阴极且将电极102用作阳极,倒序地层叠该电极间的各层。换言之,从阳极一侧依次层叠空穴注入层111、空穴传输层112、发光层140、电子传输层118及电子注入层130即可。

el层100的结构不局限于图1a所示的结构,其至少包括发光层140及电子注入层130,可以包括空穴注入层111、空穴传输层112及电子传输层118也可以不包括这些层。

在一对电极间的el层中,形成根据所需要的功能的层即可,不局限于上述层。就是说,一对电极间的el层也可以包括具有如下功能的层:减少空穴或电子的注入势垒;提高空穴或电子的传输性;阻碍空穴或电子的传输性;或者抑制因电极导致的猝灭现象等。

发光层140优选包括主体材料及客体材料(发光材料)。

作为主体材料,优选使用具有传输空穴的功能(空穴传输性)的材料(空穴传输性材料)和具有传输电子的功能(电子传输性)的材料(电子传输性材料)中的一方或双方,也可以使用具有空穴传输性及电子传输性的材料。

当主体材料是电子传输性材料与空穴传输性材料的组合(混合主体)时,能够通过调整其混合比而容易地控制载流子平衡。具体而言,优选电子传输性材料与空穴传输性材料的重量比为1:9至9:1。另外,通过采用该结构,可以容易地控制载流子平衡,由此也可以容易地对载流子再结合区域进行控制。

作为客体材料,使用发光化合物即可,作为该发光化合物,优选使用能够发射荧光的物质(下面,也称为荧光性化合物)或者能够发射磷光的物质(下面,也称为磷光性化合物)。

为了降低发光元件的驱动电压,需要减小发光层140与电极102间的电子注入势垒。因此,优选在发光层140与电极102之间设置电子注入层130。在现有的发光元件中,电子注入层130使用功函数小的具有碱金属或碱土金属的金属材料。但是,由于功函数小的金属材料与氧及水的反应性高,所以当在发光元件中与氧或水起反应而电子注入性下降时,成为发光效率的降低、驱动电压的上升、元件寿命的降低、收缩(发光部端部的非发光区域)的发生等的原因,有时导致发光元件的特性降低或可靠性的降低。换言之,功函数小的金属材料成为元件劣化的原因。因此,为了抑制发光元件的特性降低或可靠性的降低,发光元件优选不具有碱金属及碱土金属。

另一方面,虽然功函数大的金属与氧及水的反应性低,但是当将功函数大的金属用于电子注入层130时,由于发光层140与电极102之间的电子注入势垒变大,所以有发光元件的驱动电压的上升及发光效率的降低等的问题。

这里,本发明人等发现通过使具有在3齿或4齿与金属相互作用的功能的有机化合物与过渡金属相互作用形成somo并将形成该somo的组合的有机化合物及金属的复合材料用于电子注入层,可以降低从阴极到发光层的电子注入势垒,并可以得到抗湿性高的发光元件。就是说,本发明人等发现即便不使用碱金属及碱土金属也可以制造电子注入层130。

因此,本发明的一个方式的发光元件是将具有在3齿或4齿与金属相互作用的功能的有机化合物与金属的复合材料用于电子注入层的发光元件。

通过该有机化合物与金属相互作用形成somo。该somo是来源于金属所具有的不成对电子的轨道,也分布于有机化合物的轨道上。由此,可知金属的电子轨道与有机化合物的电子轨道相互作用。此外,为了高效地使有机化合物与金属相互作用,有机化合物优选包含相互作用的很多原子。因为包含相互作用的很多原子的有机化合物容易与金属相互作用,所以通过混合该有机化合物与金属,可以容易形成somo。因此,用于本发明的一个方式的发光元件的有机化合物优选具有在3齿或4齿与金属相互作用的功能。此外,在包含相互作用的很多原子的有机化合物和金属形成somo时,somo能级容易变高,从阴极到发光层的电子注入特性得到提高。另外,也可以与具有功函数大的金属相互作用来形成somo。因此,用于本发明的一个方式的发光元件的有机化合物优选具有在3齿或4齿与金属相互作用的功能。

作为与该金属相互作用的原子,可以举出在有机化合物中具有非共用电子对的杂原子。例如,可以举出氧(o)、氮(n)、硫(s)、磷(p),其中优选为氮。氮的电负性较高,容易与金属相互作用。另外,因为本发明的一个方式的发光元件中的具有在3齿或4齿与金属相互作用的功能的有机化合物被用于电子注入层,所以优选具有电子传输性。因此,该有机化合物优选为共轭在整个分子上扩伸的有机化合物。在此,氮能够在有机化合物中形成共轭键,由此,通过将氮用于分子中尤其用于杂芳环中,有机化合物可以具有高载流子传输性。因此,相互作用的原子优选为氮,更优选的是有机化合物中的氮包括在杂芳环中。通过具有该结构,有机化合物可以具有与金属相互作用的功能及高载流子传输性。此外,更优选该杂芳环为6元环或8元环等偶数环。在该结构中,氮上的非共用电子对与共轭无关,所以容易与金属相互作用。

为了使具有在3齿或4齿与金属相互作用的功能的有机化合物与金属相互作用形成somo,该有机化合物及金属的电子数的总和优选为奇数。因此,当该有机化合物的电子数为偶数时,该金属优选为周期表中的奇数的族。此外,当该有机化合物的电子数为奇数时,该金属优选为周期表中的偶数的族。

作为具有在3齿或4齿与金属相互作用的功能的有机化合物,优选使用具有传输电子的功能的有机化合物。此外,优选使用能够用作该金属的电子受体的有机化合物。

此外,因为用于本发明的一个方式的有机化合物在3齿或4齿与该金属相互作用,所以与金属相互作用的功能很高。因此,除了3至11族的过渡金属之外,具有闭壳层的d轨道的12族或13族的金属也可以用于本发明的一个方式。此外,可以使用功函数非常大的金(au)或钴(co)等金属。

由于属于第3族至第13族的金属等功函数大的金属与水及氧的反应性低,所以当将其用于发光元件时,使用功函数小的金属时因水及氧导致的元件劣化的担忧较少。具体而言,金属的功函数优选为4.0ev以上且5.3ev以下,更优选为4.2ev以上且5.0ev以下,进一步优选为4.5ev以上且5.0ev以下,更进一步优选为4.7ev以上且5.0ev以下。通过具有该结构,本发明的一个方式可以提供抗湿性及抗氧性优异的发光元件。

图1b示出本发明的一个方式的发光元件中的电子注入层130的示意图。电子注入层130包括化合物131及金属132。化合物131具有在3齿或4齿与金属132相互作用的功能。

图1c示出本发明的一个方式的发光元件中的电子注入层130的能量图。当混合金属132和化合物131时,化合物131与金属132的原子相互作用,由此形成somo。此时,化合物131与金属132的原子相互作用形成的homo(highestoccupiedmolecularorbital:最高占据分子轨道)能级优选与原来的化合物131所具有的homo能级相同。当作为化合物131使用具有传输电子的功能的有机化合物时,化合物131所具有的homo能级低,不容易向化合物131注入空穴。因此,当化合物131与金属132相互作用形成的homo能级与原来的化合物131所具有的homo能级相等时,电子注入层130与电极102之间的空穴注入势垒变大,空穴不容易从电子注入层130传到电极102而能够提高发光元件中的载流子平衡,所以是优选的。注意,在本说明书等中,homo是指被电子占据的能量最高的分子轨道。

由于somo是只有一个电子的轨道,所以在对发光元件150施加电压时,somo中的电子成为发光元件中的载流子,并被传输到电子传输层118及发光层140。此外,能够使电子容易地从电极102注入到电子注入层130,并且能够使电子容易地从电子注入层130经过电子传输层118注入到发光层140。换言之,由于电子注入层130具有形成somo的组合的材料,能够使电子容易地从电极102注入到发光层140中。此外,somo能级优选比化合物131所具有的lumo能级低。因此,化合物131的lumo能级优选较高。具体而言,化合物131的lumo能级优选为-3.6ev以上且-2.3ev以下。当将具有这种lumo能级的有机化合物和金属混合时,通过相互作用形成的somo能级成为适合于电子注入的能级,由此可以降低从电极102到发光层140的电子注入势垒。

有机化合物的homo能级及lumo能级通常利用cv(循环伏安法)、光电子能谱法(photoelectronspectroscopy)、吸收光谱法(opticalabsorptionspectroscopy)、逆光电子能谱法等估算。当对不同化合物间的值进行比较时,优选使用通过相同的测定估算出的值。

这里上述金属优选属于第3族、第5族、第7族、第9族、第11族和第13族中的任一种。这些奇数族的金属在最外层的轨道中具有一个电子(不成对电子),因此容易与化合物131形成somo,所以是尤其优选的。

<通过量子化学计算估算金属132与化合物131的相互作用的somo能级>

在本发明的一个方式的发光元件中,化合物131和金属132形成somo,但是在somo能级显著低的情况下,不适于电子注入层。于是,通过量子化学计算估算化合物131与金属原子相互作用时形成的somo能级。表1示出其结果。作为具有在3齿或4齿与金属相互作用的功能的有机化合物,使用4’,4””-(1,4-亚苯基)双(2,2’:6’,2“-三联吡啶)(简称:tpy2p)、4’,4””-(9,10-蒽基)双(2,2’:6’,2“-三联吡啶)(简称:tpy2a)、2,2’-(吡啶-2,6-二基)双(4-苯基苯并[h]喹唑啉)(简称:2,6(p-bqn)2py)、2,2’-(2,2’-联吡啶-6,6’-二基)双(4-苯基苯并[h]喹唑啉)(简称:6,6’(p-bqn)2bpy)、2,4,6-三(2-吡啶基)-1,3,5-三嗪(简称:2py3tzn)及2,4,6-三(5-苯基嘧啶-2-基)-1,3,5-三嗪(简称:ppm3tzn)。

[化学式8]

[表1]

通过循环伏安法(cv)算出表1中的有机化合物的lumo能级。

作为测定装置,使用电化学分析仪(bas株式会社(basinc.)制造的als型号600a或600c)。以如下方法调制用于cv测定的溶液:作为溶剂,使用脱水二甲基甲酰胺(dmf)(株式会社aldrich制造,99.8%,目录号码:22705-6),使作为支持电解质的高氯酸四正丁铵(n-bu4nclo4)(东京化成工业株式会社(tokyochemicalindustryco.,ltd.)制造,目录号码:t0836)以100mmol/l的浓度溶解,且使测定对象以2mmol/l的浓度溶解而调制。另外,作为工作电极使用铂电极(bas株式会社(basinc.)制,pte铂电极),作为辅助电极使用铂电极(bas株式会社(basinc.)制,vc-3用pt对电极(5cm)),作为参比电极使用ag/ag+电极(bas株式会社(basinc.)制,re7非水溶剂型参比电极)。另外,测定在室温(20℃以上且25℃以下)进行。将cv测定时的扫描速度统一为0.1v/sec,测量出相对于参考电极的氧化电位ea[v]及还原电位ec[v]。ea为氧化-还原波之间的中间电位,ec为还原-氧化波之间的中间电位。在此,已知在本实施例中使用的参考电极的相对于真空能级的势能为-4.94[ev],因此利用homo能级[ev]=-4.94-ea、lumo能级[ev]=-4.94-ec这两个算式分别求得homo能级及lumo能级。

作为量子化学计算程序,使用gaussian09。使用高性能计算机(sgi株式会社制造,icex)进行计算。首先,利用密度泛函理论(dft)计算出有机化合物的基态、金属的基态以及有机化合物与金属的复合材料的基态下的最稳定结构。作为基底函数使用6-311g(d,p)及lanl2dz。作为泛函数使用b3lyp。接着,从有机化合物与金属的复合材料的总能量中减去有机化合物的总能量与金属的总能量的总和算出稳定能。换言之,(稳定能)=(有机化合物与金属的复合材料的总能量)-(有机化合物的总能量)-(金属的总能量)。以势能、电子间静电能、电子的运动能、包括所有的复杂的电子间的相互作用的交换相关能的总和表示dft的所有的能量。在dft中,由于使用以电子密度表示的单电子势的泛函(函数的函数之意)来近似交换相关作用,所以计算精度高。

表1示出对第7族的过渡金属的锰(mn)、第9族的过渡金属的钴(co)、第11族的过渡金属的铜(cu)、银(ag)和金(au)、以及第13族的金属的铝(al)和铟(in)算出由各有机化合物和各金属形成的somo能级的结果。此外,还算出作为电子注入层材料广泛使用的锂(li)和各有机化合物形成的somo能级。通过计算得到如下结果:表1所示的有机化合物和金属的组合都在有机化合物所包括的杂芳环中的氮附近有机化合物与金属相互作用并稳定化,并且稳定化能量为负值。就是说,当混合这些有机化合物与金属时,与有机化合物不与金属相互作用的情况相比,有机化合物与金属相互作用的情况下的能量更稳定。如此,通过具有在3齿或4齿与金属相互作用的功能的有机化合物与金属相互作用,可以得到稳定的复合材料。此外,如表1所示,具有在3齿或4齿与金属相互作用的功能的有机化合物与各金属形成的somo能级和各有机化合物与li形成的somo能级大致相等。由此可知,具有在3齿或4齿与金属相互作用的功能的有机化合物和该金属的复合材料具有高电子注入性。尤其是,使用第11族元素的cu、ag、au或第9族元素的co的复合材料示出高somo能级,由此可知,具有在3齿或4齿与金属相互作用的功能的有机化合物和属于第9族或第11族的金属的复合材料具有高电子注入特性。

此外,由表1可知,具有在3齿或4齿与金属相互作用的功能的有机化合物和各金属形成的somo能级与各金属所具有的功函数相比容易受到该有机化合物的lumo能级的影响。因此,通过使用lumo能级高的有机化合物,可以制造somo能级及电子注入特性都高的有机化合物和金属的复合材料。如上所述,该有机化合物的lumo能级优选为-3.6ev以上且-2.3ev以下。

另一方面,在考虑发光元件的制造工序时,一般而言,发光元件的el层,尤其是电子注入层及阴极通过真空蒸镀法形成。此时,优选使用能够简单地进行真空蒸镀的材料,即熔点、沸点或升华点低的材料,并且优选使用真空蒸镀时的成为蒸气压的温度低的材料。这里,第11族元素或第13族元素的熔点比第7族或第9族元素低,因此第11族元素或第13族元素适合用于真空蒸镀。尤其是,ag或al等第11族元素或第13族元素具有低熔点,因此通过使用真空蒸镀法,可以简单地将金属原子和有机化合物混合,所以是优选的。

ag、cu、au、al及in也可以被用作阴极材料。通过作为电子注入层130及电极102使用相同的材料,可以简单地制造发光元件,所以是优选的。此外,通过作为电子注入层130及电极102使用相同的材料,可以提高电子注入层130与电极102的密接性,因此可以提高发光元件的可靠性。此外,可以降低发光元件的制造成本。

另外,在本发明的一个方式的发光元件中,可以将功函数大的金属用于电子注入层130。因此,可以将具有电极102所包含的金属的功函数以上的功函数的金属用于电子注入层130。在本发明的一个方式的发光元件中,即便使用功函数大的金属也可以降低电极102与电子注入层130之间的电子注入势垒,由此可以减少驱动电压。

优选的是,在化合物131与金属132相互作用时,金属132为电子供体,化合物131为电子受体。此时,化合物131优选具有多个缺电子型杂芳环。在采用这种结构时,由于化合物131容易接收电子,所以在与金属132的原子相互作用时容易形成somo。此外,由于具有缺电子型杂芳环的化合物的电子传输性优异,所以在用于电子注入层时,可以降低发光元件的驱动电压,因此作为化合物131优选使用具有缺电子型杂芳环的化合物。

该缺电子型杂芳环优选为含氮杂芳环,优选具有吡啶环、二嗪环(嘧啶环、吡嗪环、哒嗪环)和三嗪环中的至少一个。由于这些环的电化学稳定性优异,所以可以提供可靠性高的发光元件。此外,由于电子传输性优异,所以可以提供驱动电压得到降低的发光元件。此外,作为具有该缺电子型杂芳环的化合物,也可以使用金属配合物。

当作为化合物131使用有机化合物时碳原子数优选为25以上且100以下。通过采用这种碳原子数可以实现升华性良好的有机化合物,由此可以抑制真空蒸镀中的有机化合物的热分解,从而可以得到材料的良好的使用效率。再者,玻璃化转变点(tg)优选为100℃以上。通过将具有这种tg的有机化合物用于el层,可以实现耐热性优异的发光元件。

注意,在用于本计算的有机化合物中,作为配位原子的n存在于杂环上并具有隔着多个杂环按n-c-c-n的顺序排列的共轭双键。这是因为可以在化合物131与过渡金属132相互作用时形成螯合环(化合物131与金属132相互作用形成环结构)。可以形成螯合环的化合物131与金属132的组合容易相互作用而形成somo,所以是优选的。

因此,能够适合用于本发明的一个方式的发光元件的具有在3齿或4齿与金属相互作用的功能的有机化合物具有以下述通式(g0)表示的结构。

[化学式9]

在通式(g0)中,a1、a2及a3分别独立地表示取代或未取代的碳原子数为1以上且30以下的杂芳环,a1、a2及a3也可以彼此形成稠环。

以通式(g0)表示的有机化合物具有杂芳环上的n按n-c-c-n的顺序排列的共轭双键,并具有在3齿以上与金属相互作用的功能。如上所述,具有这种结构的有机化合物在与金属混合时容易形成somo,可以将该有机化合物适合用于本发明的一个方式的发光元件。

在上述通式(g0)中,作为以a1、a2及a3表示的取代或未取代的碳原子数为1以上且30以下的杂芳环,例如可以举出吡啶环、二嗪环(嘧啶环、吡嗪环、哒嗪环)、三嗪环、喹啉环、喹喔啉环、喹唑啉环、苯并喹唑啉环、菲罗啉环、氮杂荧蒽环、咪唑环、噁唑环及噁二唑环等。具体而言,可以举出以下述(a-1)至(a-16)表示的杂芳环。注意,以a1、a2及a3表示的取代或未取代的碳原子数为1以上且30以下的杂芳环不局限于此。a1、a2及a3也可以彼此形成稠环。例如,a1与a2也可以彼此键合而形成菲罗啉环。

[化学式10]

此外,能够适合用于本发明的一个方式的发光元件的具有在3齿或4齿与金属相互作用的功能的有机化合物具有以下述通式(g1)表示的结构。

[化学式11]

在通式(g1)中,x1至x6分别独立地表示碳(c)或氮(n),碳包括氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,r1至r4分别独立地表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,ar表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、碳原子数为6以上且60以下的芳烃基或者碳原子数为2以上且60以下的杂芳烃基。

如以通式(g1)表示的有机化合物那样的具有在3齿或4齿与金属相互作用的功能的有机化合物优选具有吡啶环、二嗪环(嘧啶环、吡嗪环、哒嗪环)和三嗪环中的至少一个。由于这些环的电化学稳定性优异,所以可以提供可靠性高的发光元件。此外,由于电子传输性优异,所以可以提供驱动电压得到降低的发光元件。

此外,能够适合用于本发明的一个方式的发光元件的具有在3齿或4齿与金属相互作用的功能的有机化合物具有以下述通式(g2)表示的结构。

[化学式12]

在通式(g2)中,x1及x2分别独立地表示碳(c)或氮(n),碳包括氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,r1至r8分别独立地表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,ar表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、碳原子数为6以上且60以下的芳烃基或者碳原子数为3以上且60以下的杂芳烃基。

具有吡啶骨架的有机化合物有具有高lumo能级的倾向。因此,当混合以通式(g2)表示的具有吡啶骨架的有机化合物与金属时,可以制造具有高somo能级的复合材料。就是说,通过混合包括吡啶环且具有在3齿或4齿与金属相互作用的功能的有机化合物与金属,可以制造具有高电子注入性的复合材料。

此外,能够适合用于本发明的一个方式的发光元件的具有在3齿或4齿与金属相互作用的功能的有机化合物以下述通式(g3-1)至(g3-3)中的任一个表示。

[化学式13]

在通式(g3-1)至(g3-3)中,r1至r8分别独立地表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基,ar表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、碳原子数为6以上且60以下的芳烃基或者碳原子数为2以上且60以下的杂芳烃基。

此外,能够适合用于本发明的一个方式的发光元件的具有在3齿或4齿与金属相互作用的功能的有机化合物以下述通式(g4-1)至(g4-3)中的任一个表示。

[化学式14]

在通式(g4-1)至通式(g4-3)中,ar表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、碳原子数为2以上且60以下的芳烃基或者碳原子数为2以上且60以下的杂芳烃基。

<取代基的例子>

在通式(g0)至(g3)中,作为以r1至r8表示的取代基或c所包括的取代基,可以举出氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、取代或未取代的碳原子数为6以上且25以下的芳烃基或者取代或未取代的碳原子数为3以上且30以下的杂芳烃基。作为上述烷基,具体而言,例如可以举出甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、正己基等,作为上述环烷基,例如可以举出环丙基、环丁基、环戊基、环己基等,作为上述芳基,可以举出苯基、萘基、联苯基、芴基、螺芴基等。更具体而言,例如可以举出以下述结构式(r-1)至(r-56)表示的基。注意,以r1至r8表示的取代基或c所包括的取代基不局限于此。

[化学式15]

另外,在通式(g0)至(g3)中,ar表示氢、碳原子数为1至4的烷基、取代或未取代的碳原子数为3至7的环烷基、碳原子数为6以上且60以下的芳烃基或者碳原子数为3以上且60以下的杂芳烃基。作为上述烷基,具体而言,例如可以举出甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、正己基等,作为上述环烷基,例如可以举出环丙基、环丁基、环戊基、环己基等,作为上述芳基,可以举出苯基、萘基、联苯基、芴基、螺芴基等。更具体而言,例如可以举出以下述结构式(ar-1)至(ar-48)表示的基。注意,以ar表示的基不局限于此,也可以具有取代基。

[化学式16]

<化合物的具体例子>

作为以通式(g0)至(g3)表示的化合物的具体结构,可以举出以下述结构式(100)至(111)及结构式(200)至(211)表示的有机化合物等。注意,以通式(g0)至(g3)表示的有机化合物不局限于以下例子。

[化学式17]

[化学式18]

金属132的相对于化合物131的摩尔比优选为0.1以上且10以下,更优选为0.2以上且2以下,进一步优选为0.2以上且0.8以下。通过以这种比例混合金属132和化合物131,可以提供具有优异的电子注入性的发光元件。当与上述比例相比金属132的相对于化合物131的摩尔比过低时,与金属132相互作用形成somo的化合物131的量较少,因此有时导致电子注入性下降。此外,当与上述比例相比金属132的相对于化合物131的摩尔比过高时,电子注入层130的透过率降低,因此有时导致发光元件的发光效率下降。

电子传输层118所包含的有机化合物的lumo能级优选比电子注入层130中形成的somo能级低。通过采用这种结构,可以降低电子注入层130与电子传输层118间的电子注入势垒,由此可以减少驱动电压。另外,由于电子传输层118所包含的有机化合物被要求电子传输性,所以优选包括缺电子型杂芳环。

电子注入层130的厚度优选为3nm以上,更优选为5nm以上。通过采用该结构,有利于混合有金属132和化合物131的复合材料更好的发挥作用。此外,电子注入层130的厚度优选为50nm以下,更优选为20nm以下,进一步优选为10nm以下。通过采用该结构,可以减少电子注入层130的光吸收,并可以提供具有高发光效率的发光元件。

<发光元件的结构例子2>

下面,参照图2a对与图1所示的发光元件150不同的结构例子进行说明。

图2a是示出本发明的一个方式的发光装置的截面示意图。此外,在图2a中,有时以相同的阴影表示与图1所示的附图标记具有相同功能的部分而省略其附图标记。此外,有时使用相同的附图标记表示具有相同功能的部分而省略其详细说明。

发光元件152包括一对电极(电极101及电极102)以及该一对电极间的el层100。el层100至少包括发光层140及电子注入层130。el层100还包括缓冲层127。缓冲层127设置于电子注入层130与电极102之间。

图2a所示的el层100除了发光层140以外还包括空穴注入层111、空穴传输层112及电子传输层118等功能层。

在本发明的一个方式中电子注入层130使用上述化合物131和金属132的复合材料,缓冲层127使用具有缺电子型杂芳环的化合物133。由于缺电子型杂芳环的电子传输性优异,所以可以降低发光元件的驱动电压。

通过在电子注入层130与电极102之间夹持缓冲层127,可以降低电极102与电子注入层130的电子注入势垒,所以是优选的。缓冲层127的厚度优选为1nm以上且20nm以下。通过采用这种结构,可以在保持高电子传输性的同时降低电子注入势垒。

化合物133的lumo能级优选比电子注入层130中形成的somo能级低。通过采用这种结构,可以降低电子注入层130与电极102间的电子注入势垒,所以是优选的。

<发光元件的结构例子3>

下面,参照图2b对与图1a所示的发光元件150及图2a所示的发光元件152不同的结构例子进行说明。

图2b是示出本发明的一个方式的发光元件的截面示意图。此外,在图2b中,有时以相同的阴影表示与图1所示的附图标记具有相同功能的部分而省略其附图标记。此外,有时使用相同的附图标记表示具有相同功能的部分而省略其详细说明。

发光元件154包括一对电极(电极101及电极102)以及该一对电极间的el层100。el层100至少包括发光层140及电子注入层130。el层100还包括电荷产生层129。电荷产生层129设置在电子注入层130与电极102之间。

图2b所示的el层100除了发光层140以外还包括空穴注入层111、空穴传输层112及电子传输层118等功能层。

如图2b所示,通过在电极102与电子注入层130之间设置电荷产生层129,可以减少电子注入层130与氧或水分接触的概率,由此可以进一步提高发光元件的抗湿性及抗氧化性。

电荷产生层129既可以是对空穴传输性材料添加有电子接收性材料的结构,又可以是对电子传输性材料添加有电子供体性材料的结构。另外,也可以层叠这两种结构,但是对空穴传输性材料添加有电子接收性材料的结构具有高抗湿性且叠层数少,所以是优选的。

如上所述,在电荷产生层129具有空穴传输性材料及电子接收性材料的情况下,当作为电子注入层130使用功函数小的具有碱金属或稀土金属的金属材料时,由于电荷产生层129的电子接收性材料从用于电子注入层130的材料抽出电子,因此在电荷产生层129及电子注入层130的界面附近形成耗尽层。因此,有时导致驱动电压上升。为了防止形成该耗尽层,需要在电子注入层130与电荷产生层129之间设置具有传送电子的功能的层。

另一方面,在本发明的一个方式的发光元件中,通过使电子注入层130包含过渡金属和具有在3齿或4齿与金属相互作用的功能的有机化合物的复合材料,可以在不形成上述耗尽层的情况下设置电荷产生层129,由此可以制造叠层数少且驱动电压低的发光元件。

对电荷产生层129的厚度没有特别的限制,可以适当地调整厚度。例如,通过调整发光层140至电极102的厚度,可以将从发光层140发射的光高效地提取到发光元件的外部。换言之,通过调整电荷产生层129的厚度,可以提高光提取效率。

电荷产生层129与电极102优选以彼此接触的方式设置。通过采用该结构,可以降低电极102与el层100之间的电子注入势垒,由此可以降低发光元件的驱动电压。再者,更优选的是,电荷产生层129与电子注入层130接触。在本发明的一个方式中,即使电荷产生层129与电子注入层130接触也可以制造驱动电压低的发光元件,因此,通过采用该结构,可以减少el层100的叠层数。

过渡金属氧化物适合用于电荷产生层129所包含的电子接收性材料。作为该过渡金属氧化物,例如可以举出钛氧化物、钒氧化物、钽氧化物、钼氧化物、钨氧化物、铼氧化物、钌氧化物、铬氧化物、锆氧化物、铪氧化物以及银氧化物。尤其优选使用钼氧化物,因为其在大气中稳定、吸湿性低且廉价。通过使用该过渡金属氧化物,可以降低电极102与电荷产生层129之间的电子注入势垒,所以是优选的。因此,本发明的一个方式是电子注入层130包含过渡金属元素且电荷产生层129包含过渡金属元素的发光元件。注意,电荷产生层129所包含的电子接收性材料不局限于上述化合物。

作为电荷产生层129所包含的空穴传输性材料优选使用包含吡咯骨架、噻吩骨架、呋喃骨架和芳香胺骨架中的一个的有机化合物。由于具有该骨架的有机化合物的空穴传输性高,所以通过将该有机化合物用于电荷产生层129可以降低发光元件的驱动电压。电荷产生层129所包含的空穴传输性材料不局限于上述化合物。

上述金属132和具有在3齿或4齿与金属相互作用的功能的化合物131的复合材料可以用于薄膜太阳能电池。更具体而言,上述复合材料也适用于薄膜太阳能电池的电子注入层。

<发光元件的构成要素>

下面,对图1及图2所示的发光元件的构成要素的详细内容进行说明。

《电子注入层》

电子注入层130是包含电子注入性高的物质的层,上述金属和具有在3齿或4齿与金属相互作用的功能的有机化合物的复合材料适合用于这些层。作为该具有在3齿或4齿与金属相互作用的功能的有机化合物,可以使用以通式(g0)至(g4-3)表示的有机化合物,具体地可以使用以结构式(100)至(111)及结构式(200)至(211)表示的有机化合物。具有二嗪(嘧啶或吡嗪)骨架及三嗪骨架的杂环化合物具有高电子传输性,还有助于降低驱动电压,所以尤其是优选的。另外,金属和具有在3齿或4齿与金属相互作用的功能的有机化合物优选具有1×10-6cm2/vs以上的电子迁移率。另外,只要是电子传输性比空穴传输性高的物质,就可以将上述物质之外的物质用于电子注入层130。

《空穴注入层》

空穴注入层111及电荷产生层129具有降低来自一对电极中的一个(电极101或电极102)的空穴的注入势垒促进空穴注入的功能,例如可以使用过渡金属氧化物、酞菁衍生物或芳香胺等形成。作为过渡金属氧化物可以举出钼氧化物、钒氧化物、钌氧化物、钨氧化物、锰氧化物等。作为酞菁衍生物,可以举出酞菁或金属酞菁等。作为芳香胺,可以举出联苯胺衍生物或亚苯基二胺衍生物等。另外,也可以使用聚噻吩或聚苯胺等高分子衍生物,典型的是:作为被自掺杂的聚噻吩的聚(乙基二氧噻吩)/聚(苯乙烯磺酸)等。

空穴注入层111及电荷产生层129也可以包含空穴传输性材料和对该空穴传输性材料呈现电子接收性的材料的复合材料。或者,也可以使用包含呈现电子接收性的材料的层与包含空穴传输性材料的层的叠层。在定态或者在存在有电场的状态下,电荷的授受可以在这些材料之间进行。作为呈现电子接收性的材料,可以举出醌二甲烷衍生物、四氯苯醌衍生物、六氮杂三亚苯衍生物等有机受体。具体而言,可以举出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(简称:f4-tcnq)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮杂三亚苯(简称:hat-cn)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(简称:f6-tcnnq)等具有吸电子基团(尤其是如氟基等卤基、氰基)的化合物。尤其是,吸电子基团键合于具有多个杂原子的稠合芳香环的化合物诸如hat-cn等热稳定,所以是优选的。另外,包括吸电子基团(尤其是如氟基等卤基、氰基)的[3]轴烯衍生物的电子接收性非常高所以特别优选的,具体而言,可以举出:α,α’,α”-1,2,3-环烷三亚基(ylidene)三[4-氰-2,3,5,6-四氟苯乙腈]、α,α’,α”-1,2,3-环丙三亚基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α”-1,2,3-环烷三亚基三[2,3,4,5,6-五氟苯乙腈]等。此外,也可以使用过渡金属氧化物、例如第4族至第8族金属的氧化物。具体而言,可以使用氧化钒、氧化铌、氧化钽、氧化铬、氧化钼、氧化钨、氧化锰、氧化铼等。特别优选使用氧化钼,因为其在大气中也稳定,吸湿性低,并且容易处理。

作为空穴传输性材料,可以使用空穴传输性比电子传输性高的材料,优选使用具有1×10-6cm2/vs以上的空穴迁移率的材料。具体而言,可以使用作为能够用于发光层140的空穴传输性材料而举出的芳香胺、咔唑衍生物、芳烃、二苯乙烯衍生物等,优选具有碳原子数为1至20的杂芳骨架。尤其优选具有含氮五元杂芳环骨架。上述空穴传输性材料也可以是高分子化合物。

另外,作为空穴传输性材料还可以举出芳烃,例如,可以举出2-叔丁基-9,10-二(2-萘基)蒽(简称:t-budna)、2-叔丁基-9,10-二(1-萘基)蒽、9,10-双(3,5-二苯基苯基)蒽(简称:dppa)、2-叔丁基-9,10-双(4-苯基苯基)蒽(简称:t-budba)、9,10-二(2-萘基)蒽(简称:dna)、9,10-二苯基蒽(简称:dpanth)、2-叔丁基蒽(简称:t-buanth)、9,10-双(4-甲基-1-萘基)蒽(简称:dmna)、2-叔丁基-9,10-双[2-(1-萘基)苯基]蒽、9,10-双[2-(1-萘基)苯基]蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9’-联蒽、10,10’-二苯基-9,9’-联蒽、10,10’-双(2-苯基苯基)-9,9’-联蒽、10,10’-双[(2,3,4,5,6-五苯基)苯基]-9,9’-联蒽、蒽、并四苯、红荧烯、二萘嵌苯、2,5,8,11-四(叔丁基)二萘嵌苯等。此外,还可以使用并五苯、晕苯等。如此,更优选使用具有1×10-6cm2/vs以上的空穴迁移率且碳原子数为14至42的芳烃。

另外,芳烃可以具有乙烯基骨架。作为具有乙烯基的芳烃,例如,可以举出4,4’-双(2,2-二苯基乙烯基)联苯(简称:dpvbi)、9,10-双[4-(2,2-二苯基乙烯基)苯基]蒽(简称:dpvpa)等。

另外,可以使用4-{3-[3-(9-苯基-9h-芴-9-基)苯基]苯基}二苯并呋喃(简称:mmdbfflbi-ii)、4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:dbf3p-ii)、1,3,5-三(二苯并噻吩-4-基)苯(简称:dbt3p-ii)、2,8-二苯基-4-[4-(9-苯基-9h-芴-9-基)苯基]二苯并噻吩(简称:dbtflp-iii)、4-[4-(9-苯基-9h-芴-9-基)苯基]-6-苯基二苯并噻吩(简称:dbtflp-iv)、4-[3-(三亚苯-2-基)苯基]二苯并噻吩(简称:mdbtptp-ii)等的噻吩化合物、呋喃化合物、芴化合物、三亚苯化合物、菲化合物等。其中,具有吡咯骨架、呋喃骨架、噻吩骨架、芳香胺骨架的化合物稳定且可靠性良好,所以是优选的。具有上述骨架的化合物具有高空穴传输性,也有助于驱动电压的降低。

《空穴传输层》

空穴传输层112是包含空穴传输性材料的层,可以使用作为空穴注入层111的材料例示出的材料。空穴传输层112具有将从空穴注入层111注入的空穴传输至发光层140的功能。

此外,优选将具有空穴注入层111所包含的受体材料的lumo能级与发光层140所包含的材料的homo能级之间的homo能级的空穴传输性材料用于空穴传输层112。此外,空穴传输层112不限于单层,也可以是两层以上的层叠。此时,优选以homo能级从空穴注入层111一侧向发光层140一侧依次降低的方式层叠空穴传输性材料。当空穴传输层112具有两层以上的叠层时,为了顺利地传输空穴,各空穴传输性材料的homo能级的差优选为0ev以上且0.5ev以下,更优选为0ev以上且0.3ev以下,进一步优选为0ev以上且0.2ev以下。

作为具有空穴传输性的材料,例如可以举出:4,4’-双[n-(1-萘基)-n-苯基氨基]联苯(简称:npb)、n,n’-双(3-甲基苯基)-n,n’-二苯基-[1,1’-联苯]-4,4’-二胺(简称:tpd)、4,4’-双[n-(螺-9,9’-二芴-2-基)-n-苯基氨基]联苯(简称:bspb)、4-苯基-4’-(9-苯基芴-9-基)三苯胺(简称:bpaflp)、4-苯基-3’-(9-苯基芴-9-基)三苯胺(简称:mbpaflp)、4-苯基-4’-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcba1bp)、4,4’-二苯基-4”-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcbbi1bp)、4-(1-萘基)-4’-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcbanb)、4,4’-二(1-萘基)-4”-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcbnbb)、9,9-二甲基-n-苯基-n-[4-(9-苯基-9h-咔唑-3-基)苯基]芴-2-胺(简称:pcbaf)、n-苯基-n-[4-(9-苯基-9h-咔唑-3-基)苯基]螺-9,9’-二芴-2-胺(简称:pcbasf)等具有芳香胺骨架的化合物;1,3-双(n-咔唑基)苯(简称:mcp)、4,4’-二(n-咔唑基)联苯(简称:cbp)、3,6-双(3,5-二苯基苯基)-9-苯基咔唑(简称:cztp)、3,3’-双(9-苯基-9h-咔唑)(简称:pccp)等具有咔唑骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:dbt3p-ii)、2,8-二苯基-4-[4-(9-苯基-9h-芴-9-基)苯基]二苯并噻吩(简称:dbtflp-iii)、4-[4-(9-苯基-9h-芴-9-基)苯基]-6-苯基二苯并噻吩(简称:dbtflp-iv)等具有噻吩骨架的化合物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:dbf3p-ii)、4-{3-[3-(9-苯基-9h-芴-9-基)苯基]苯基}二苯并呋喃(简称:mmdbfflbi-ii)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物以及具有咔唑骨架的化合物具有高可靠性和高空穴传输性,也有助于降低驱动电压,所以是优选的。另外,除了上述空穴传输性材料以外,也可以从各种物质中选择空穴传输性材料来使用。

再者,作为空穴传输性高的物质,例如可以举出3-[4-(1-萘基)-苯基]-9-苯基-9h-咔唑(简称:pcpn)、3-[4-(9-菲基)-苯基]-9-苯基-9h-咔唑(简称:pcppn)、4-苯基-4’-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcba1bp)、4,4'-二(1-萘基)-4”-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcbnbb)、4-苯基二苯基-(9-苯基-9h-咔唑-3-基)胺(简称:pca1bp)、3,3'-双(9-苯基-9h-咔唑)(简称:pccp)、n-[4-(9h-咔唑-9-基)苯基]-n-(4-苯基)苯基苯胺(简称:yga1bp)、1,3,5-三(二苯并噻吩-4-基)-苯(简称:dbt3p-ii)、4,4',4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:dbf3p-ii)、4-苯基-4’-(9-苯基芴-9-基)三苯胺(简称:bpaflp)、4-[3-(三亚苯-2-基)苯基]二苯并噻吩(简称:mdbtptp-ii)、4,4’-双[n-(1-萘基)-n-苯基氨基]联苯(简称:npb或α-npd)、n,n’-双(3-甲基苯基)-n,n’-二苯基-[1,1’-联苯]-4,4’-二胺(简称:tpd)、4,4’,4”-三(咔唑-9-基)三苯胺(简称:tcta)、4,4’,4”-三(n,n-二苯基氨基)三苯胺(简称:tdata)、4,4’,4”-三[n-(3-甲基苯基)-n-苯基氨基]三苯胺(简称:mtdata)、4,4’-双[n-(螺-9,9’-二芴-2-基)-n-苯基氨基]联苯(简称:bspb)等具有芳香胺骨架的化合物、3-[n-(9-苯基咔唑-3-基)-n-苯基氨基]-9-苯基咔唑(简称:pczpca1)、3,6-双[n-(9-苯基咔唑-3-基)-n-苯基氨基]-9-苯基咔唑(简称:pczpca2)、3-[n-(1-萘基)-n-(9-苯基咔唑-3-基)氨基]-9-苯基咔唑(简称:pczpcn1)等。除此以外,可以使用4,4’-二(n-咔唑基)联苯(简称:cbp)、1,3,5-三[4-(n-咔唑基)苯基]苯(简称:tcpb)等咔唑化合物、胺化合物、二苯并噻吩化合物、二苯并呋喃化合物、芴化合物、三亚苯化合物或菲化合物等。在此所述的物质主要是空穴迁移率为1×10-6cm2/vs以上的物质。但是,只要是其空穴传输性高于电子传输性的物质,就可以使用这些以外的物质。

此外,也可以将这些能够用于空穴传输层的化合物用于空穴注入层。另外,也可以适合用于电荷产生层129中的空穴传输材料。

《发光层》

发光层140包含具有发射紫色、蓝色、蓝绿色、绿色、黄绿色、黄色、橙色和红色中的至少一个的光的功能的发光材料。此外,发光层140除了发光材料以外还包含用作主体材料的电子传输性材料及/或空穴传输性材料。

作为发光材料,可以使用将单重激发态能转换成发光的发光性物质或将三重激发态能转换成发光的发光性物质。作为上述发光物质,可以举出如下材料。

作为将单重激发能转换为发光的发光性物质,例如可以举出发射荧光的物质(荧光性化合物)。对荧光性化合物没有特别的限制,优选使用蒽衍生物、并四苯衍生物、(chrysene)衍生物、菲衍生物、芘衍生物、二萘嵌苯衍生物、二苯乙烯衍生物、吖啶酮衍生物、香豆素衍生物、吩恶嗪衍生物、吩噻嗪衍生物等,例如可以使用如下物质。

具体而言,作为该材料,可以举出5,6-双[4-(10-苯基-9-蒽基)苯基]-2,2'-联吡啶(简称:pap2bpy)、5,6-双[4'-(10-苯基-9-蒽基)联苯-4-基]-2,2'-联吡啶(简称:papp2bpy)、n,n'-二苯基-n,n'-双[4-(9-苯基-9h-芴-9-基)苯基]芘-1,6-二胺(简称:1,6flpaprn)、n,n’-双(3-甲基苯基)-n,n’-双[3-(9-苯基-9h-芴-9-基)苯基]芘-1,6-二胺(简称:1,6mmemflpaprn)、n,n’-双[4-(9-苯基-9h-芴-9-基)苯基]-n,n’-双(4-叔丁苯基)芘-1,6-二胺(简称:1,6tbu-flpaprn)、n,n’-二苯基-n,n’-双[4-(9-苯基-9h-芴-9-基)苯基]-3,8-二环己基芘-1,6-二胺(简称:ch-1,6flpaprn)、n,n’-(芘-1,6-二基)双[(6,n-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](简称:1,6bnfaprn-03)、n,n'-双[4-(9h-咔唑-9-基)苯基]-n,n'-二苯基二苯乙烯-4,4'-二胺(简称:yga2s)、4-(9h-咔唑-9-基)-4'-(10-苯基-9-蒽基)三苯胺(简称:ygapa)、4-(9h-咔唑-9-基)-4'-(9,10-二苯基-2-蒽基)三苯胺(简称:2ygappa)、n,9-二苯基-n-[4-(10-苯基-9-蒽基)苯基]-9h-咔唑-3-胺(简称:pcapa)、苝、2,5,8,11-四(叔丁基)苝(简称:tbp)、4-(10-苯基-9-蒽基)-4'-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcbapa)、n,n”-(2-叔丁基蒽-9,10-二基二-4,1-亚苯基)双[n,n',n'-三苯基-1,4-苯二胺](简称:dpabpa)、n,9-二苯基-n-[4-(9,10-二苯基-2-蒽基)苯基]-9h-咔唑-3-胺(简称:2pcappa)、n-[4-(9,10-二苯基-2-蒽基)苯基]-n,n',n'-三苯基-1,4-苯二胺(简称:2dpappa)、n,n,n',n',n”,n”,n”',n”'-八苯基二苯并[g,p]-2,7,10,15-四胺(简称:dbc1)、香豆素30、n-(9,10-二苯基-2-蒽基)-n,9-二苯基-9h-咔唑-3-胺(简称:2pcapa)、n-[9,10-双(1,1'-联苯-2-基)-2-蒽基]-n,9-二苯基-9h-咔唑-3-胺(简称:2pcabpha)、n-(9,10-二苯基-2-蒽基)-n,n',n'-三苯基-1,4-苯二胺(简称:2dpapa)、n-[9,10-双(1,1'-联苯-2-基)-2-蒽基]-n,n',n'-三苯基-1,4-苯二胺(简称:2dpabpha)、9,10-双(1,1'-联苯-2-基)-n-[4-(9h-咔唑-9-基)苯基]-n-苯基蒽-2-胺(简称:2ygabpha)、n,n,9-三苯基蒽-9-胺(简称:dphapha)、香豆素6、香豆素545t、n,n'-二苯基喹吖酮(简称:dpqd)、红荧烯、2,8-二-叔丁基-5,11-双(4-叔丁苯基)-6,12-二苯基并四苯(简称:tbrb)、尼罗红、5,12-双(1,1'-联苯-4-基)-6,11-二苯基并四苯(简称:bpt)、2-(2-{2-[4-(二甲氨基)苯基]乙烯基}-6-甲基-4h-吡喃-4-亚基)丙二腈(简称:dcm1)、2-{2-甲基-6-[2-(2,3,6,7-四氢-1h,5h-苯并[ij]喹嗪-9-基)乙烯基]-4h-吡喃-4-亚基}丙二腈(简称:dcm2)、n,n,n',n'-四(4-甲基苯基)并四苯-5,11-二胺(简称:p-mphtd)、7,14-二苯基-n,n,n',n'-四(4-甲基苯基)苊并[1,2-a]荧蒽-3,10-二胺(简称:p-mphafd)、2-{2-异丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1h,5h-苯并[ij]喹嗪-9-基)乙烯基]-4h-吡喃-4-亚基}丙二腈(简称:dcjti)、2-{2-叔丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1h,5h-苯并[ij]喹嗪-9-基)乙烯基]-4h-吡喃-4-亚基}丙二腈(简称:dcjtb)、2-(2,6-双{2-[4-(二甲氨基)苯基]乙烯基}-4h-吡喃-4-亚基)丙二腈(简称:bisdcm)、2-{2,6-双[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氢-1h,5h-苯并[ij]喹嗪-9-基)乙烯基]-4h-吡喃-4-亚基}丙二腈(简称:bisdcjtm)、5,10,15,20-四苯基双苯并(tetraphenylbisbenzo)[5,6]茚并[1,2,3-cd:1',2',3'-lm]苝等。

作为将三重激发能转换为发光的发光性物质,例如可以举出发射磷光的物质(磷光性化合物)。另外,作为磷光性化合物,可以举出铱、铑、铂类有机金属配合物或金属配合物。另外,可以举出具有卟啉配体的铂配合物或有机铱配合物,其中尤其优选使用有机铱配合物,例如,铱类邻位金属配合物。作为邻位金属化的配体,可以举出4h-三唑配体、1h-三唑配体、咪唑配体、吡啶配体、嘧啶配体、吡嗪配体或异喹啉配体等。此时,磷光性化合物具有三重mlct(metaltoligandchargetransfer:从金属到配体的电荷转移)跃迁的吸收带。

作为在蓝色或绿色的波长区域具有发光峰值的物质,例如可以举出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4h-1,2,4-三唑-3-基-κn2]苯基-κc}铱(iii)(简称:ir(mpptz-dmp)3)、三(5-甲基-3,4-二苯基-4h-1,2,4-三唑)铱(iii)(简称:ir(mptz)3)、三[4-(3-联苯)-5-异丙基-3-苯基-4h-1,2,4-三唑]铱(iii)(简称:ir(iprptz-3b)3)、三[3-(5-联苯)

-5-异丙基-4-苯基-4h-1,2,4-三唑]铱(iii)(简称:ir(ipr5btz)3)等具有4h-三唑骨架的有机金属铱配合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1h-1,2,4-三唑]铱(iii)(简称:ir(mptz1-mp)3)、三(1-甲基-5-苯基-3-丙基-1h-1,2,4-三唑)铱(iii)(简称:ir(prptz1-me)3)等具有1h-三唑骨架的有机金属铱配合物;fac-三[1-(2,6-二异丙基苯基)-2-苯基-1h-咪唑]铱(iii)(简称:ir(iprpmi)3)、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]铱(iii)(简称:ir(dmpimpt-me)3)等具有咪唑骨架的有机金属铱配合物;以及双[2-(4',6'-二氟苯基)吡啶根-n,c2']铱(iii)四(1-吡唑基)硼酸盐(简称:fir6)、双[2-(4',6'-二氟苯基)吡啶根-n,c2']铱(iii)吡啶甲酸盐(简称:firpic)、双{2-[3',5'-双(三氟甲基)苯基]吡啶根-n,c2'}铱(iii)吡啶甲酸盐(简称:ir(cf3ppy)2(pic))、双[2-(4',6'-二氟苯基)吡啶根-n,c2']铱(iii)乙酰丙酮(简称:fir(acac))等以具有吸电子基团的苯基吡啶衍生物为配体的有机金属铱配合物。在上述金属配合物中,由于具有4h-三唑骨架、1h-三唑骨架及咪唑骨架等含氮五元杂环骨架的有机金属铱配合物的三重激发能很高并具有优异的可靠性及发光效率,所以是特别优选的。

作为在绿色或黄色的波长区域具有发光峰值的物质,例如可以举出三(4-甲基-6-苯基嘧啶)铱(iii)(简称:ir(mppm)3)、三(4-叔丁基-6-苯基嘧啶)铱(iii)(简称:ir(tbuppm)3)、(乙酰丙酮根)双(6-甲基-4-苯基嘧啶)铱(iii)(简称:ir(mppm)2(acac))、(乙酰丙酮根)双(6-叔丁基-4-苯基嘧啶)铱(iii)(简称:ir(tbuppm)2(acac))、(乙酰丙酮根)双[4-(2-降莰基)-6-苯基嘧啶]铱(iii)(简称:ir(nbppm)2(acac))、(乙酰丙酮根)双[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]铱(iii)(简称:ir(mpmppm)2(acac))、(乙酰丙酮根)双{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-嘧啶基-κn3]苯基-κc}铱(iii)(简称:ir(dmppm-dmp)2(acac))、(乙酰丙酮根)双(4,6-二苯基嘧啶)铱(iii)(简称:ir(dppm)2(acac))等具有嘧啶骨架的有机金属铱配合物;(乙酰丙酮根)双(3,5-二甲基-2-苯基吡嗪)铱(iii)(简称:ir(mppr-me)2(acac))、(乙酰丙酮根)双(5-异丙基-3-甲基-2-苯基吡嗪)铱(iii)(简称:ir(mppr-ipr)2(acac))等具有吡嗪骨架的有机金属铱配合物;三(2-苯基吡啶-n,c2')铱(iii)(简称:ir(ppy)3)、双(2-苯基吡啶根-n,c2')铱(iii)乙酰丙酮(简称:ir(ppy)2(acac))、双(苯并[h]喹啉)铱(iii)乙酰丙酮(简称:ir(bzq)2(acac))、三(苯并[h]喹啉)铱(iii)(简称:ir(bzq)3)、三(2-苯基喹啉-n,c2′)铱(iii)(简称:ir(pq)3)、双(2-苯基喹啉-n,c2')铱(iii)乙酰丙酮(简称:ir(pq)2(acac))等具有吡啶骨架的有机金属铱配合物;双(2,4-二苯基-1,3-噁唑-n,c2')铱(iii)乙酰丙酮(简称:ir(dpo)2(acac))、双{2-[4'-(全氟苯基)苯基]吡啶-n,c2'}铱(iii)乙酰丙酮(简称:ir(p-pf-ph)2(acac))、双(2-苯基苯并噻唑-n,c2')铱(iii)乙酰丙酮(简称:ir(bt)2(acac))等有机金属铱配合物;三(乙酰丙酮根)(单菲咯啉)铽(iii)(简称:tb(acac)3(phen))等稀土金属配合物。在上述物质中,由于具有嘧啶骨架的有机金属铱配合物也具有显著优良的可靠性及发光效率,所以是尤其优选的。

另外,作为在黄色或红色的波长区域具有发光峰值的物质,例如可以举出(二异丁酰甲烷根)双[4,6-双(3-甲基苯基)嘧啶根]铱(iii)(简称:ir(5mdppm)2(dibm))、双[4,6-双(3-甲基苯基)嘧啶根](二新戊酰基甲烷根)铱(iii)(简称:ir(5mdppm)2(dpm))、双[4,6-二(萘-1-基)嘧啶根](二新戊酰基甲烷根)铱(iii)(简称:ir(d1npm)2(dpm))等具有嘧啶骨架的有机金属铱配合物;(乙酰丙酮根)双(2,3,5-三苯基吡嗪根)铱(iii)(简称:ir(tppr)2(acac))、双(2,3,5-三苯基吡嗪根)(二新戊酰基甲烷根)铱(iii)(简称:ir(tppr)2(dpm))、(乙酰丙酮根)双[2,3-双(4-氟苯基)喹喔啉]合铱(iii)(简称:ir(fdpq)2(acac))等具有吡嗪骨架的有机金属铱配合物;三(1-苯基异喹啉-n,c2’)铱(iii)(简称:ir(piq)3)、双(1-苯基异喹啉-n,c2’)铱(iii)乙酰丙酮(简称:ir(piq)2(acac))等具有吡啶骨架的有机金属铱配合物;2,3,7,8,12,13,17,18-八乙基-21h,23h-卟啉铂(ii)(简称:ptoep)等铂配合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(单菲罗啉)铕(iii)(简称:eu(dbm)3(phen))、三[1-(2-噻吩甲酰基)-3,3,3-三氟丙酮](单菲罗啉)铕(iii)(简称:eu(tta)3(phen))等稀土金属配合物。在上述物质中,由于具有嘧啶骨架的有机金属铱配合物也具有显著优良的可靠性及发光效率,所以是尤其优选的。另外,具有吡嗪骨架的有机金属铱配合物可以实现色度良好的红色光。

作为该能够将三重激发能转换为发光的材料,除了磷光性化合物之外,可以举出热活化延迟荧光(thermallyactivateddelayedfluorescence:tadf)材料。因此,可以将有关磷光性化合物的记载看作有关热活化延迟荧光性化合物的记载。热活化延迟荧光性化合物是指单重激发能级与三重激发能级的差较小且具有通过反系间窜越将能量从三重激发能转换为单重激发能的功能的材料。因此,能够通过微小的热能量将三重激发态上转换(up-convert)为单重激发态(反系间窜越)并能够高效地呈现来自单重激发态的发光(荧光)。另外,可以高效地获得热活化延迟荧光的条件为如下:单重激发能级与三重激发能级的能量差优选大于0ev且为0.3ev以下,更优选大于0ev且为0.2ev以下,进一步优选大于0ev且为0.1ev以下。

当热活化延迟荧光性化合物由一种材料构成时,例如可以使用如下材料。

首先,可以举出富勒烯或其衍生物、原黄素等吖啶衍生物、曙红(eosin)等。另外,可以举出包含镁(mg)、锌(zn)、镉(cd)、锡(sn)、铂(pt)、铟(in)或钯(pd)等的含金属卟啉。作为该含金属卟啉,例如也可以举出原卟啉-氟化锡配合物(snf2(protoix))、中卟啉-氟化锡配合物(snf2(mesoix))、血卟啉-氟化锡配合物(snf2(hematoix))、粪卟啉四甲基酯-氟化锡配合物(snf2(coproiii-4me))、八乙基卟啉-氟化锡配合物(snf2(oep))、初卟啉-氟化锡配合物(snf2(etioi))、八乙基卟啉-氯化铂配合物(ptcl2oep)等。

另外,作为由一种材料构成的热活化延迟荧光性化合物,还可以使用具有富π电子型杂芳族骨架及缺π电子型杂芳族骨架的杂环化合物。具体而言,可以举出2-(联苯-4-基)-4,6-双(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(简称:pic-trz)、2-{4-[3-(n-苯基-9h-咔唑-3-基)-9h-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:pcczptzn)、2-[4-(10h-吩恶嗪-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(简称:pxz-trz)、3-[4-(5-苯基-5,10-二氢吩嗪-10-基)苯基]-4,5-二苯基-1,2,4-三唑(简称:ppz-3tpt)、3-(9,9-二甲基-9h-吖啶-10-基)-9h-氧杂蒽-9-酮(简称:acrxtn)、双[4-(9,9-二甲基-9,10-二氢吖啶)苯基]砜(简称:dmac-dps)、10-苯基-10h,10’h-螺[吖啶-9,9’-蒽]-10’-酮(简称:acrsa)等。该杂环化合物具有富π电子型杂芳族骨架及缺π电子型杂芳族骨架,因此电子传输性及空穴传输性高,所以是优选的。尤其是,在缺π电子型杂芳族骨架中,二嗪骨架(嘧啶骨架、吡嗪骨架、哒嗪骨架)或三嗪骨架稳定且可靠性良好,所以是优选的。另外,在富π电子型杂芳族骨架中,吖啶骨架、吩恶嗪骨架、吩噻嗪骨架、呋喃骨架、噻吩骨架及吡咯骨架稳定且可靠性良好,所以具有选自该骨架中的任何一个或多个是优选的。作为吡咯骨架,特别优选使用吲哚骨架、咔唑骨架及9-苯基-3,3’-联-9h-咔唑骨架。另外,在富π电子型杂芳族骨架和缺π电子型杂芳族骨架直接键合的物质中,富π电子型杂芳族骨架的供体性和缺π电子型杂芳族骨架的受主性都强,单重激发能级与三重激发能级的差异变小,所以是尤其优选的。

另外,显示热活化延迟荧光的材料既可以是能够单独从三重激发态通过反系间窜跃生成单重激发态的材料,又可以由形成激基复合物(也称为exciplex)的多个材料构成。

作为用于发光层140的主体材料可以使用空穴传输性材料及电子传输性材料。

虽然对能够用于发光层的主体材料的材料没有特别的限制,但是例如可以举出:三(8-羟基喹啉)铝(iii)(简称:alq3)、三(4-甲基-8-羟基喹啉)铝(iii)(简称:almq3)、双(10-羟基苯并[h]喹啉)铍(ii)(简称:bebq2)、双(2-甲基-8-羟基喹啉)(4-苯基苯酚)铝(iii)(简称:balq)、双(8-羟基喹啉)锌(ii)(简称:znq)、双[2-(2-苯并恶唑基)苯酚]锌(ii)(简称:znpbo)、双[2-(2-苯并噻唑基)苯酚]锌(ii)(简称:znbtz)等金属配合物;2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(简称:pbd)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(简称:oxd-7)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(简称:taz)、2,2',2”-(1,3,5-苯三基)三(1-苯基-1h-苯并咪唑)(简称:tpbi)、浴铜灵(简称:bcp)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9h-咔唑(简称:co11)等杂环化合物;4,4’-双[n-(1-萘基)-n-苯基氨基]联苯(简称:npb或α-npd)、n,n’-双(3-甲基苯基)-n,n’-二苯基-[1,1’-联苯]-4,4’-二胺(简称:tpd)、4,4’-双[n-(螺-9,9’-二芴-2-基)-n-苯基氨基]联苯(简称:bspb)等芳香胺化合物。另外,可以举出蒽衍生物、菲衍生物、嵌二萘衍生物、衍生物、二苯并[g,p]衍生物等缩合多环芳香化合物(condensedpolycyclicaromaticcompound)。具体地,可以举出9,10-二苯基蒽(简称:dpanth)、n,n-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9h-咔唑-3-胺(简称:cza1pa)、4-(10-苯基-9-蒽基)三苯胺(简称:dphpa)、ygapa、pcapa、n,9-二苯基-n-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9h-咔唑-3-胺(简称:pcapba)、2pcapa、6,12-二甲氧基-5,11-二苯dbc1、9-[4-(10-苯基-9-蒽基)苯基]-9h-咔唑(简称:czpa)、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9h-咔唑(简称:dpczpa)、9,10-双(3,5-二苯基苯基)蒽(简称:dppa)、9,10-二(2-萘基)蒽(简称:dna)、2-叔丁基-9,10-二(2-萘基)蒽(简称:t-budna)、9,9'-联蒽(简称:bant)、9,9'-(二苯乙烯-3,3'-二基)二菲(简称:dpns)、9,9'-(二苯乙烯-4,4'-二基)二菲(简称:dpns2)、以及1,3,5-三(1-芘基)苯(简称:tpb3)等。从这些物质及各种物质中可以选择一种或多种具有比上述发光材料的能隙大的能隙的物质。此外,当发光材料是磷光性化合物时,作为主体材料可以选择其三重激发能比发光材料的三重激发能大的物质。

当作为发光层的主体材料使用多个材料时,优选组合形成激基复合物的两种化合物而使用。在此情况下,可以适当地使用各种载流子传输材料。特别优选的是,为了高效地形成激基复合物,组合电子传输性材料和空穴传输性材料。

这是因为如下缘故:当组合电子传输性材料和空穴传输性材料而得到形成激基复合物的主体材料时,通过调节电子传输性材料和空穴传输性材料的混合比率,容易使发光层中的空穴和电子之间的载流子平衡最优化。通过使发光层中的空穴和电子之间的载流子平衡最优化,可以抑制发光层中的电子和空穴重新结合的区域偏于一侧。通过抑制产生重新结合的区域偏于一侧,可以提高发光元件的可靠性。

作为电子传输性材料,可以使用包含锌或铝的金属配合物、含氮杂芳香化合物等缺π电子型杂芳香化合物等。具体而言,可以举出双(10-羟基苯并[h]喹啉)铍(ii)(简称:bebq2)、双(2-甲基-8-羟基喹啉)(4-苯基苯酚)铝(iii)(简称:balq)、双(8-羟基喹啉)锌(ii)(简称:znq)、双[2-(2-苯并噁唑基)苯酚]锌(ii)(简称:znpbo)或双[2-(2-苯并噻唑基)苯酚]锌(ii)(简称:znbtz)等的金属配合物、2-(4-联苯基)-5-(4-叔丁苯基)-1,3,4-二唑(简称:pbd)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(简称:taz)、1,3-双[5-(对-叔丁基苯基)-1,3,4-噁二唑-2-基]苯(简称:oxd-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9h-咔唑(简称:co11)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1h-苯并咪唑)(简称:tpbi)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1h-苯并咪唑(简称:mdbtbim-ii)等具有唑骨架的杂环化合物、2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:2mdbtpdbq-ii)、2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mdbtbpdbq-ii)、2-[3’-(9h-咔唑-9-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mczbpdbq)、2-[4-(3,6-二苯基-9h-咔唑-9-基)苯基]二苯并[f,h]喹喔啉(简称:2czpdbq-iii)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:7mdbtpdbq-ii)及6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:6mdbtpdbq-ii)、4,6-双[3-(菲-9-基)苯基]嘧啶(简称:4,6mpnp2pm)、4,6-双[3-(4-二苯并噻吩基)苯基]嘧啶(简称:4,6mdbtp2pm-ii)、4,6-双[3-(9h-咔唑-9-基)苯基]嘧啶(简称:4,6mczp2pm)、4-{3-[3’-(9h-咔唑-9-基)]联苯-3-基}苯并呋喃并[3,2-d]嘧啶(简称:4mczbpbfpm)等具有二嗪骨架的杂环化合物、2-{4-[3-(n-苯基-9h-咔唑-3-基)-9h-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:pcczptzn)、2,4,6-三[3'-(吡啶-3-基)联苯-3-基]-1,3,5-三嗪(简称:tmpppytz)、2,4,6-三(2-吡啶)-1,3,5-三嗪(简称:2py3tz)等具有三嗪骨架的杂环化合物、3,5-双[3-(9h-咔唑-9-基)苯基]吡啶(简称:35dczppy)、1,3,5-三[3-(3-吡啶基)苯基]苯(简称:tmpypb)等具有吡啶骨架的杂环化合物。其中,具有二嗪骨架及三嗪骨架的杂环化合物和具有吡啶骨架的杂环化合物具有高可靠性,所以是优选的。尤其是,具有二嗪(嘧啶或吡嗪)骨架及三嗪骨架的杂环化合物具有高电子传输性,还有助于降低驱动电压。

作为空穴传输性材料,优选使用富π电子型杂芳族(例如咔唑衍生物或吲哚衍生物)或芳香胺等。具体而言,可以举出:2-[n-(9-苯基咔唑-3-基)-n-苯基氨基]螺-9,9'-联芴(简称:pcasf)、4,4',4”-三[n-(1-萘基)-n-苯基氨基]三苯胺(简称:1'-tnata)、2,7-双[n-(4-二苯基氨基苯基)-n-苯基氨基]螺-9,9'-二芴(简称:dpa2sf)、n,n'-双(9-苯基咔唑-3-基)-n,n'-二苯基苯-1,3-二胺(简称:pca2b)、n-(9,9-二甲基-2-二苯基氨基-9h-芴-7-基)二苯基胺(简称:dpnf)、n,n',n”-三苯基-n,n',n”-三(9-苯基咔唑-3-基)苯-1,3,5-三胺(简称:pca3b)、2-[n-(9-苯基咔唑-3-基)-n-苯基氨基]螺-9,9'-二芴(简称:pcasf)、2-[n-(4-二苯基氨基苯基)-n-苯基氨基]螺-9,9'-二芴(简称:dpasf)、n,n'-双[4-(咔唑-9-基)苯基]-n,n'-二苯基-9,9-二甲基芴-2,7-二胺(简称:yga2f)、4,4'-双[n-(1-萘基)-n-苯基氨基]联苯(简称:npb)、n,n'-双(3-甲基苯基)-n,n'-二苯基-[1,1'-联苯]-4,4'-二胺(简称:tpd)、4,4'-双[n-(4-二苯基氨基苯基)-n-苯基氨基]联苯(简称:dpab)、4,4'-双[n-(螺-9,9'-二芴-2-基)-n-苯基氨基]联苯(简称:bspb)、4-苯基-4'-(9-苯基芴-9-基)三苯胺(简称:bpaflp)、4-苯基-3'-(9-苯基芴-9-基)三苯基胺(简称:mbpaflp)、n-(9,9-二甲基-9h-芴-2-基)-n-{9,9-二甲基-2-[n'-苯基-n'-(9,9-二甲基-9h-芴-2-基)氨基]-9h-芴-7-基}苯基胺(简称:dfladfl)、3-[n-(9-苯基咔唑-3-基)-n-苯基氨基]-9-苯基咔唑(简称:pczpca1)、3-[n-(4-二苯基氨基苯基)-n-苯基氨基]-9-苯基咔唑(简称:pczdpa1)、3,6-双[n-(4-二苯基氨基苯基)-n-苯基氨基]-9-苯基咔唑(简称:pczdpa2)、n-n’-双{4-[双(3-甲基苯基)氨基]苯基}-n,n’-二苯基-(1,1’-联苯)-4,4’-二胺(简称:dntpd)、3,6-双[n-(4-二苯基氨基苯基)-n-(1-萘基)氨基]-9-苯基咔唑(简称:pcztpn2)、3,6-双[n-(9-苯基咔唑-3-基)-n-苯基氨基]-9-苯基咔唑(简称:pczpca2)、4-苯基-4’-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcba1bp)、4,4’-二苯基-4”-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcbbi1bp)、4-(1-萘基)-4’-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcbanb)、4,4’-二(1-萘基)-4”-(9-苯基-9h-咔唑-3-基)三苯胺(简称:pcbnbb)、3-[n-(1-萘基)-n-(9-苯基咔唑-3-基)氨基]-9-苯基咔唑(简称:pczpcn1)、9,9-二甲基-n-苯基-n-[4-(9-苯基-9h-咔唑-3-基)苯基]芴-2-胺(简称:pcbaf)、n-苯基-n-[4-(9-苯基-9h-咔唑-3-基)苯基]-螺-9,9'-联芴-2-胺(简称:pcbasf)、n-(4-联苯)-n-(9,9-二甲基-9h-芴-2-基)-9-苯基-9h-咔唑-3-胺(简称:pcbif)、n-(1,1’-联苯-4-基)-n-[4-(9-苯基-9h-咔唑-3-基)苯基]-9,9-二甲基-9h-芴-2-胺(简称:pcbbif)等具有芳香胺骨架的化合物;1,3-双(n-咔唑基)苯(简称:mcp)、4,4'-二(n-咔唑基)联苯(简称:cbp)、3,6-双(3,5-二苯基苯基)-9-苯基咔唑(简称:cztp)、9-苯基-9h-3-(9-苯基-9h-咔唑-3-基)咔唑(简称:pccp)等具有咔唑骨架的化合物;4,4',4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:dbt3p-ii)、2,8-二苯基-4-[4-(9-苯基-9h-芴-9-基)苯基]二苯并噻吩(简称:dbtflp-iii)、4-[4-(9-苯基-9h-芴-9-基)苯基]-6-苯基二苯并噻吩(简称:dbtflp-iv)等具有噻吩骨架的化合物;以及4,4',4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:dbf3p-ii)、4-{3-[3-(9-苯基-9h-芴-9-基)苯基]苯基}二苯并呋喃(简称:mmdbfflbi-ii)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物以及具有咔唑骨架的化合物具有高可靠性和高空穴传输性,也有助于降低驱动电压,所以是优选的。

形成激基复合物的主体材料的组合不局限于上述化合物,可以使用载流子能够移动并能够形成激基复合物的组合的化合物,其中该激基复合物的发光可以与发光材料的吸收光谱中的最长波长一侧的吸收带(相当于从发光材料的单重基态到单重激发态的迁移的吸收)重叠,还可以使用其他材料。

作为用于发光层的主体材料,也可以使用热活化延迟荧光材料。

作为用于发光层的电子传输性材料可以使用与用于电子注入层的电子传输性材料相同的材料。由此,可以使发光元件的制造简化,从而可以降低发光元件的制造成本。

《电子传输层及缓冲层》

电子传输层118及缓冲层127是包含电子传输性高的物质的层。作为能够用于电子传输层118及缓冲层127的有机化合物可以举出具有喹啉配体、苯并喹啉配体、噁唑配体、噻唑配体的金属配合物、噁二唑衍生物、三唑衍生物、菲咯啉衍生物、吡啶衍生物、联吡啶衍生物等。另外,也可以使用作为能够用于电子注入层130的化合物的具有在3齿或4齿与金属相互作用的功能的有机化合物。

作为上述具有喹啉配体、苯并喹啉配体、噁唑配体、噻唑配体的金属配合物、噁二唑衍生物、三唑衍生物、菲咯啉衍生物、吡啶衍生物、联吡啶衍生物,具体地可以使用alq3、almq3、bebq2、balq、双(8-羟基喹啉)锌(ii)(简称:znq)、双[2-(2-苯并噁唑基)苯酚]锌(ii)(简称:znpbo)、双[2-(2-苯并噻唑基)苯酚]锌(ii)(简称:znbtz)等金属配合物。此外,可以举出2-(4-联苯基)-5-(4-叔丁苯基)-1,3,4-二唑(简称:pbd)、1,3-双[5-(对-叔丁基苯基)-1,3,4-噁二唑-2-基]苯(简称:oxd-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9h-咔唑(简称:co11)、3-(4’-叔丁基苯基)-4-苯基-5-(4”-联苯基)-1,2,4-三唑(简称:taz)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-三唑(简称:p-ettaz)、4,4’-双(5-甲基苯并噁唑-2-基)二苯乙烯(简称:bzos)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1h-苯并咪唑)(简称:tpbi)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1h-苯并咪唑(简称:mdbtbim-ii)等具有唑骨架的杂环化合物、2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:2mdbtpdbq-ii)、2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mdbtbpdbq-ii)、2-[3’-(9h-咔唑-9-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mczbpdbq)、2-[4-(3,6-二苯基-9h-咔唑-9-基)苯基]二苯并[f,h]喹喔啉(简称:2czpdbq-iii)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:7mdbtpdbq-ii)及6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:6mdbtpdbq-ii)、4,6-双[3-(菲-9-基)苯基]嘧啶(简称:4,6mpnp2pm)、4,6-双[3-(4-二苯并噻吩基)苯基]嘧啶(简称:4,6mdbtp2pm-ii)、4,6-双[3-(9h-咔唑-9-基)苯基]嘧啶(简称:4,6mczp2pm)、4-{3-[3’-(9h-咔唑-9-基)]联苯-3-基}苯并呋喃并[3,2-d]嘧啶(简称:4mczbpbfpm)等具有二嗪骨架的杂环化合物、2-{4-[3-(n-苯基-9h-咔唑-3-基)-9h-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:pcczptzn)、2,4,6-三[3'-(吡啶-3-基)联苯-3-基]-1,3,5-三嗪(简称:tmpppytz)、2,4,6-三(2-吡啶)-1,3,5-三嗪(简称:2py3tz)等具有三嗪骨架的杂环化合物、3,5-双[3-(9h-咔唑-9-基)苯基]吡啶(简称:35dczppy)、1,3,5-三[3-(3-吡啶基)苯基]苯(简称:tmpypb)、浴铜灵(简称:bcp)、2,9-双(萘-2-基)-4,7-二苯基-1,10-菲咯啉(简称:nbphen)等具有吡啶骨架的杂环化合物。其中,具有二嗪骨架及三嗪骨架的杂环化合物和具有吡啶骨架的杂环化合物具有高可靠性,所以是优选的。尤其是,具有二嗪(嘧啶或吡嗪)骨架及三嗪骨架的杂环化合物具有高电子传输性,还有助于降低驱动电压。在此所述的物质主要是电子迁移率为1×10-6cm2/vs以上的物质。另外,只要是电子传输性比空穴传输性高的物质,就可以将上述物质之外的物质用于电子注入层130。

电子传输层118及缓冲层127不限于单层,还可以层叠两层以上的由上述物质构成的层。

另外,还可以在电子传输层118与发光层140之间设置控制电子载流子的移动的层。该控制电子载流子的移动的层是对上述电子传输性高的材料添加少量的电子俘获性高的物质而成的层,通过抑制电子载流子的移动,可以调节载流子平衡。这种结构对抑制因电子穿过发光层而引起的问题(例如元件寿命的下降)发挥很大的效果。

作为用于电子传输层的电子传输性材料可以使用与用于电子注入层的电子传输性材料相同的材料。此外,作为用于电子传输层的电子传输性材料可以使用与用于发光层的电子传输性材料相同的材料。由此,可以使发光元件的制造简化,从而可以降低发光元件的制造成本。

另外,上述空穴注入层、空穴传输层、发光层、电子传输层及电子注入层分别可以通过蒸镀法(包括真空蒸镀法)、喷墨法、涂敷法、凹版印刷等形成。此外,作为上述空穴注入层、空穴传输层、发光层、电子传输层及电子注入层,除了上述材料之外,也可以使用量子点等无机化合物或高分子化合物(低聚物、树枝状聚合物、聚合物等)。

作为量子点,可以使用胶状量子点、合金型量子点、核壳(coreshell)型量子点、核型量子点等。此外,也可以使用包含第2族与第16族、第13族与第15族、第13族与第17族、第11族与第17族或第14族与第15族的元素群的量子点。或者,可以使用包含镉(cd)、硒(se)、锌(zn)、硫(s)、磷(p)、铟(in)、碲(te)、铅(pb)、镓(ga)、砷(as)、铝(al)等元素的量子点。

作为用于湿式法的液体介质,例如可以使用:甲乙酮、环己酮等酮类;乙酸乙酯等脂肪酸酯类;二氯苯等卤化烃类;甲苯、二甲苯、均三甲苯、环己基苯等芳烃类;环己烷、十氢化萘、十二烷等脂肪族烃类;n,n-二甲基甲酰胺(dmf)、二甲亚砜(dmso)等有机溶剂。

作为可以用于发光层的高分子化合物,例如可以举出:聚亚苯基亚乙烯(ppv)衍生物诸如聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基](简称:meh-ppv)、聚(2,5-二辛基-1,4-亚苯基亚乙烯)等;聚芴衍生物诸如聚(9,9-二正辛基芴基-2,7-二基)(简称:pf8)、聚[(9,9-二正辛基芴基-2,7-二基)-alt-(苯并[2,1,3]噻二唑-4,8-二基)](简称:f8bt)、聚[(9,9-二正辛基芴基-2,7-二基)-alt-(2,2’-联噻吩-5,5’-二基)](简称f8t2)、聚[(9,9-二辛基-2,7-二亚乙烯基亚芴基(divinylenefluorenylene))-alt-(9,10-蒽)]、聚[(9,9-二己基芴-2,7-二基)-alt-(2,5-二甲基-1,4-亚苯)]等;聚烷基噻吩(pat)衍生物诸如聚(3-己基噻吩)(简称:p3ht)等、聚亚苯衍生物等。另外,也可以对上述高分子化合物、聚(n-乙烯基咔唑)(简称:pvk)、聚(2-乙烯基萘)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](简称:ptaa)等高分子化合物掺杂发光性低分子化合物,而将其用于发光层。作为发光性低分子化合物,可以使用以上举例的荧光性化合物。

《一对电极》

电极101及电极102被用作发光元件的阳极或阴极。电极101及电极102可以使用金属、合金、导电性化合物及其混合物或叠层体等形成。

电极101和电极102中的一个优选使用具有反射光的功能的导电材料形成。作为该导电材料,可以举出铝(al)或包含al的合金等。作为包含al的合金,可以举出包含al及l(l表示钛(ti)、钕(nd)、镍(ni)和镧(la)中的一个或多个)的合金等,例如为包含al及ti的合金或者包含al、ni及la的合金等。铝具有低电阻率和高光反射率。此外,由于铝在地壳中大量地含有且不昂贵,所以通过使用铝可以降低发光元件的制造成本。此外,银(ag)由于具有高光反射率,所以适合用于电极材料。此外,ag是第11族的过渡金属,当作为本发明的一个方式的电子注入层中使用ag的发光元件的阴极使用ag时,电极与电子注入层的密接性提高,所以是优选的。此外,也可以使用包含ag、n(n表示钇(y)、nd、镁(mg)、镱(yb)、al、ti、镓(ga)、锌(zn)、铟(in)、钨(w)、锰(mn)、锡(sn)、铁(fe)、ni、铜(cu)、钯(pd)、铱(ir)和金(au)中的一个或多个)的合金等。作为包含银的合金,例如可以举出如下合金:包含银、钯及铜的合金;包含银及铜的合金;包含银及镁的合金;包含银及镍的合金;包含银及金的合金;以及包含银及镱的合金等。除了上述材料以外,可以使用钨、铬(cr)、钼(mo)、铜及钛等的过渡金属。

另外,从发光层获得的光透过电极101和电极102中的一方或双方被提取。由此,电极101和电极102中的至少一个优选使用具有透过光的功能的导电材料形成。作为该导电材料,可以举出可见光透过率为40%以上且100%以下,优选为60%以上且100%以下,且电阻率为1×10-2ω·cm以下的导电材料。

此外,电极101及电极102也可以使用具有透过光的功能及反射光的功能的导电材料形成。作为该导电材料,可以举出可见光反射率为20%以上且80%以下,优选为40%以上且70%以下,且电阻率为1×10-2ω·cm以下的导电材料。例如,可以使用具有导电性的金属、合金和导电性化合物中的一种或多种。具体而言,例如可以使用铟锡氧化物(indiumtinoxide,以下称为ito)、包含硅或氧化硅的铟锡氧化物(简称:itso)、氧化铟-氧化锌(indiumzincoxide)、含有钛的氧化铟-锡氧化物、铟-钛氧化物、包含氧化钨及氧化锌的氧化铟等金属氧化物。另外,可以使用具有透过光的程度的厚度(优选为1nm以上且30nm以下的厚度)的金属膜。作为金属,例如可以使用ag、ag及al、ag及mg、ag及au以及ag及yb等的合金等。

注意,在本说明书等中,作为具有透光的功能的材料,使用具有使可见光透过的功能且具有导电性的材料即可,例如有上述以ito为代表的氧化物导电体、氧化物半导体或包含有机物的有机导电体。作为包含有机物的有机导电体,例如可以举出包含混合有机化合物与电子给体(供体)而成的复合材料、包含混合有机化合物与电子受体(受体)而成的复合材料等。另外,也可以使用石墨烯等无机碳类材料。另外,该材料的电阻率优选为1×105ω·cm以下,更优选为1×104ω·cm以下。

另外,可以通过层叠多个上述材料形成电极101和电极102中的一方或双方。

为了提高光提取效率,可以与具有透过光的功能的电极接触地形成其折射率比该电极高的材料。作为这种材料,只要具有透过可见光的功能即可,可以为具有导电性的材料,也可以为不具有导电性的材料。例如,除了上述氧化物导电体以外,还可以举出氧化物半导体、有机物。作为有机物,例如可以举出作为发光层、空穴注入层、空穴传输层、电子传输层或电子注入层例示出的材料。另外,也可以使用无机碳类材料或具有透过光的程度的厚度的金属薄膜,也可以层叠多个具有几nm至几十nm厚的层。

当电极101或电极102被用作阴极时,优选使用功函数小(3.8ev以下)的材料。

当电极101或电极102被用作阳极时,优选使用功函数大(4.0ev以上)的材料。

电极101及电极102也可以采用具有反射光的功能的导电材料及具有透过光的功能的导电材料的叠层。在此情况下,电极101及电极102具有调整光学距离的功能而可以使来自各发光层的所希望的波长的光谐振而增强该波长的光,所以是优选的。

作为电极101及电极102的成膜方法,可以适当地使用溅射法、蒸镀法、印刷法、涂敷法、mbe(molecularbeamepitaxy:分子束外延)法、cvd法、脉冲激光沉积法、ald(atomiclayerdeposition:原子层沉积)法等。

《衬底《

本发明的一个方式的发光元件可以在由玻璃、塑料等构成的衬底上制造。作为在衬底上层叠的顺序,可以从电极101一侧依次层叠,也可以从电极102一侧依次层叠。

另外,作为能够形成本发明的一个方式的发光元件的衬底,例如可以使用玻璃、石英或塑料等。或者,也可以使用柔性衬底。柔性衬底是可以弯曲(flexible)的衬底,例如由聚碳酸酯、聚芳酯制成的塑料衬底等。另外,可以使用薄膜、无机蒸镀薄膜等。注意,只要在发光元件及光学元件的制造过程中起支撑物的作用,就可以使用其他材料。或者,只要具有保护发光元件及光学元件的功能即可。

例如,在本说明书等中,可以使用各种衬底形成发光元件。对衬底的种类没有特别的限制。作为该衬底的例子,例如可以使用半导体衬底(例如,单晶衬底或硅衬底)、soi衬底、玻璃衬底、石英衬底、塑料衬底、金属衬底、不锈钢衬底、具有不锈钢箔的衬底、钨衬底、具有钨箔的衬底、柔性衬底、贴合薄膜、包含纤维状的材料的纤维素纳米纤维(cnf)或纸或者基材薄膜等。作为玻璃衬底的例子,有钡硼硅酸盐玻璃、铝硼硅酸盐玻璃、钠钙玻璃等。作为柔性衬底、贴合薄膜、基材薄膜等,可以举出如下例子。例如,可以举出以聚对苯二甲酸乙二醇酯(pet)、聚萘二甲酸乙二醇酯(pen)、聚醚砜(pes)、聚四氟乙烯(ptfe)为代表的塑料。或者,作为例子,可以举出丙烯酸树脂等树脂等。或者,作为例子,可以举出聚丙烯、聚酯、聚氟化乙烯或聚氯乙烯等。或者,作为例子,可以举出聚酰胺、聚酰亚胺、芳族聚酰胺、环氧树脂、无机蒸镀薄膜、纸类等。

另外,也可以作为衬底使用柔性衬底,并在柔性衬底上直接形成发光元件。或者,也可以在衬底与发光元件之间设置剥离层。当在剥离层上制造发光元件的一部分或全部,然后将其从衬底分离并转置到其他衬底上时可以使用剥离层。此时,也可以将发光元件转置到耐热性低的衬底或柔性衬底上。另外,作为上述剥离层,例如可以使用钨膜和氧化硅膜等的无机膜的叠层结构或在衬底上形成有聚酰亚胺等树脂膜的结构等。

也就是说,也可以使用一个衬底来形成发光元件,然后将发光元件转置到另一个衬底上。作为发光元件被转置的衬底的例子,除了上述衬底之外,还可以举出玻璃纸衬底、石材衬底、木材衬底、布衬底(包括天然纤维(丝、棉、麻)、合成纤维(尼龙、聚氨酯、聚酯)或再生纤维(醋酯纤维、铜氨纤维、人造纤维、再生聚酯)等)、皮革衬底、橡胶衬底等。通过采用这些衬底,可以制造不易损坏的发光元件、耐热性高的发光元件、实现轻量化的发光元件或实现薄型化的发光元件。

另外,也可以在上述衬底上例如形成场效应晶体管(fet),并且在与fet电连接的电极上制造发光元件150。由此,可以制造通过fet控制发光元件的驱动的有源矩阵型显示装置。

本实施方式所示的结构可以与其他实施方式所示的结构适当地组合而实施。

(实施方式2)

在本实施方式中,参照图3对具有与实施方式1所示的发光元件的结构不同的结构的发光元件及该发光元件的发光机理进行说明。注意,在图3中使用与图1a相同的阴影线示出具有与图1a相同的功能的部分,而有时省略附图标记。此外,具有与图1a所示的功能相同的功能的部分由相同的附图标记表示,有时省略其详细说明。

<发光元件的结构例子4>

图3是发光元件250a及发光元件250b的截面示意图。

发光元件250a及发光元件250b在衬底200上包括电极101、电极102、电极103以及电极104。此外,在电极101与电极102之间、电极102与电极103之间以及电极102与电极104之间至少包括发光单元106、发光单元108以及电子注入层130。另外,在发光单元106与发光单元108之间设置电荷产生层115。注意,发光单元106及发光单元108可以具有相同结构或不同结构。

夹在发光单元106与发光单元108之间的电荷产生层115例如可以具有在将电压施加到电极101和电极102之间时,将电子注入到一个发光单元且将空穴注入到另一个发光单元的结构。例如,在图1中,在以使电极102的电位高于电极101的电位的方式施加电压时,电荷产生层115将电子注入到发光单元106且将空穴注入到发光单元108。

发光单元106例如包括空穴注入层111、空穴传输层112、发光层140以及电子传输层113。此外,发光单元108例如包括空穴注入层116、空穴传输层117、发光层170、电子传输层118以及电子注入层119。

这里,如图3所示,电子注入层130优选与电子传输层113相邻并设置在发光单元108与电子传输层113之间。此外,如图3所示,电荷产生层115优选与电子注入层130相邻并设置在电子注入层130与发光单元108之间。通过采用这种结构,可以向发光单元106高效地传输电子。

在本实施方式中,电极101、电极103及电极104为阳极且电极102为阴极,但是发光元件250a及发光元件250b的结构不局限于此。也就是说,也可以使电极101、电极103及电极104为阴极而电极102为阳极,将该电极间的各层的叠层顺序倒过来。换言之,可以从发光单元106的阳极一侧依次层叠空穴注入层111、空穴传输层112、发光层140、电子传输层113以及电子注入层130,从发光单元108的阳极一侧依次层叠空穴注入层116、空穴传输层117、发光层170、电子传输层118以及电子注入层119。

发光元件250a及发光元件250b的结构不局限于图3所示的结构,其至少包括发光层140、发光层170、电荷产生层115以及电子注入层130,可以包括空穴注入层111、空穴注入层116、空穴传输层112、空穴传输层117、电子传输层113、电子传输层118、电子注入层119也可以不包括这些层。

在一对电极间根据其功能形成各层即可,不局限于上述层。就是说,一对电极层之间也可以包括具有如下功能的层:减少空穴或电子的注入势垒;提高空穴或电子的传输性;阻碍空穴或电子的传输性;或者抑制因电极导致的猝灭现象等。

如发光单元108那样,在发光单元的阳极一侧的表面接触于电荷产生层115时,有时电荷产生层115还可以具有发光单元108的空穴注入层的功能,所以在该发光单元中也可以不设置空穴注入层。

虽然在图3中说明了具有两个发光单元的发光元件,但是也可以采用层叠有三个以上的发光单元的发光元件。如发光元件250a及发光元件250b所示,通过在一对电极间以由电荷产生层将其隔开的方式配置多个发光单元,可以实现在保持低电流密度的同时还可以进行高亮度发光,并且寿命更长的发光元件。另外,还可以实现功耗低的发光元件。

在发光元件250a中,电极101、电极103及电极104具有反射可见光的功能,电极102具有透过可见光的功能。此外,在发光元件250b中,电极101、电极103及电极104具有透过可见光的功能,电极102具有反射可见光的功能。

因此,发光元件250a所发射的光通过电极102射出到外部,发光元件250b所发射的光通过电极101、电极103及电极104射出到外部。注意,本发明的一个方式不局限于此,也可以采用从形成有发光元件的衬底200的上方及下方的双方提取光的发光元件。

电极101包括导电层101a以及导电层101a上的与其接触的导电层101b。此外,电极103包括导电层103a以及导电层103a上的与其接触的导电层103b。电极104包括导电层104a以及导电层104a上的与其接触的导电层104b。

导电层101b、导电层103b及导电层104b具有透过可见光的功能。此外,在发光元件250a中,导电层101a、导电层103a及导电层104a具有反射可见光的功能。另外,在发光元件250b中,导电层101a、导电层103a及导电层104a具有透过可见光的功能。

图3a所示的发光元件250a及图3b所示的发光元件250b在由电极101及电极102夹持的区域222b与由电极102及电极103夹持的区域222g与由电极102及电极104夹持的区域222r之间都包括分隔壁145。分隔壁145具有绝缘性。分隔壁145覆盖电极101、电极103及电极104的端部,并包括与该电极重叠的开口部。通过设置分隔壁145,可以将各区域的衬底200上的该电极分为岛状。

在图3中,示出空穴注入层111、空穴注入层116、空穴传输层112、空穴传输层117、发光层140、发光层170、电子传输层113、电子传输层118、电子注入层119、电荷产生层115及电极102在各区域中没有被分开地设置的例子,但是也可以在各区域分开地设置。

在本发明的一个方式的发光元件250a及发光元件250b中,通过对区域222b的一对电极(电极101及电极102)之间、区域222g的一对电极(电极102及电极103)之间以及区域222r的一对电极(电极102及电极104)之间施加电压,电子从每个阴极注入到电子注入层119,空穴从阳极注入到空穴注入层111,由此电流流过。此外,电子从电荷产生层115注入到电子注入层130,空穴从电荷产生层115注入到空穴注入层116。并且,注入的载流子(电子及空穴)复合,从而形成激子。在包含发光材料的发光层140及发光层170中,在载流子(电子及空穴)复合而形成激子时,发光层140及发光层170所包含的发光材料处于激发态,由此从发光材料得到发光。

发光层140及发光层170优选包含发射紫色、蓝色、蓝绿色、绿色、黄绿色、黄色、黄橙色、橙色和红色的光的发光材料中的一种或多种。

发光层140及发光层170也可以具有两层的叠层结构。通过作为两层的发光层分别使用第一化合物及第二化合物这两种具有发射不同颜色的功能的发光材料,可以同时得到多种发光。尤其是,优选以通过组合发光层140及发光层170所发射的光能够得到白色或接近白色的发光的方式选择各发光层所使用的发光材料。

发光层140及发光层170也可以具有三层以上的叠层结构,也可以包括不具有发光材料的层。

发光元件250a及发光元件250b在从区域222b、区域222g及区域222r发射的光被提取的方向上包括设置有光学元件224b、光学元件224g及光学元件224r的衬底220。从各区域发射的光透过各光学元件射出到发光元件的外部。也就是说,从区域222b发射的光透过光学元件224b射出,从区域222g发射的光透过光学元件224g射出,且从区域222r发射的光透过光学元件224r射出。

光学元件224b、光学元件224g及光学元件224r具有选择性地使入射光中的呈现特定颜色的光透过的功能。例如,从区域222b发射的光透过光学元件224b成为蓝色光,从区域222g发射的光透过光学元件224g成为绿色光,从区域222r发射的光透过光学元件224r成为红色光。

在图3a及图3b中使用虚线的箭头示意性地示出透过各光学元件从各区域射出的蓝色(b)光、绿色(g)光、红色(r)光。图3a所示的发光元件250a是顶部发射型发光元件,图3b所示的发光元件250b是底部发射型发光元件。

在各光学元件之间包括遮光层223。遮光层223具有遮蔽从相邻的区域发射的光的功能。此外,也可以采用不设置遮光层223的结构。此外,也可以不设置光学元件224b、光学元件224g和光学元件224r中的一个或两个以上。通过采用不设置光学元件224b、光学元件224g或光学元件224r的结构,可以提高从发光元件发射的光的提取效率。

通过使用对空穴传输性材料添加电子受体(受体)的材料或对电子传输性材料添加电子给体(供体)的材料,可以形成电荷产生层115。

这里,为了降低发光元件的驱动电压,优选采用如下结构:通过降低从电荷产生层115至电子传输层113的电子注入势垒,将电荷产生层115中产生的电子顺利地注入并传输到电子传输层113。因此,优选在电荷产生层115与电子传输层113之间设置电子注入层130。由于电子注入层119及电子注入层130需要高电子注入性,所以该电子注入层使用如锂(li)及铯(cs)那样的碱金属或其化合物、如钙(ca)那样的碱土金属或其化合物。但是,在将该金属及该化合物用于电子注入层130的情况下,例如如图4所示,在对电极103及电极102之间施加电压而使区域222g中流过电流时,有时通过电子注入层130及电子传输层113与区域222g相邻的区域222b及区域222r中也流过电流,产生不仅从区域222g发射光而且从相邻的区域222b及区域222r也发射光的现象(被称为串扰)。此外,在图4中,以实线箭头表示区域222g、区域222r及区域222b中流过的电流。

当发光元件中产生串扰时,不仅从所希望的区域(例如区域222g)发射光,而且从其他区域(例如区域222b及222r)也发射光,这有时导致发光元件250a及发光元件250b所发射的光的色纯度降低或发光强度下降。

产生串扰的原因之一是用于由电荷产生层115及电子传输层113夹持的电子注入层130的碱金属、碱土金属或其化合物扩散到电子传输层113导致的电子传输层113的导电性(尤其是垂直于施加电压的方向的方向上的导电性)上升。尤其是,当将如li及ca那样的原子序数小的金属或其化合物用于电子注入层130时,该原子序数小的金属容易扩散电子传输层113。因此,为了抑制串扰,电子注入层130优选不具有碱金属及碱土金属。另一方面,当不在电子注入层130中使用碱金属、碱土金属或其化合物时,由于从电荷产生层115至电子传输层113的电子注入势垒变高,电子不容易注入到电子传输层113,所以有时发光元件的驱动电压变高或发光效率下降。

因此,为了降低发光元件的驱动电压、提高发光效率、抑制串扰,优选将电子注入性优异且在与有机化合物混合时不容易扩散到该有机化合物中的金属用于电子注入层130。用于电子注入层130的不容易扩散的金属优选为原子半径大的金属。此外,优选为原子量大的金属。

这里,本发明的一个方式的发光元件包含具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料。作为该金属,可以适合使用属于第3族至第13族的原子量或原子半径较大的金属。因此,本发明的一个方式可以提供一种串扰得到抑制的发光元件。

尤其是,由于过渡金属的原子量较大而不容易扩散到有机化合物中,所以可以提供串扰得到抑制的发光元件。

另外,可以利用蒸镀法(包括真空蒸镀法)、喷墨法、涂敷法、凹版印刷等形成发光单元106、发光单元108及电荷产生层115。

本实施方式所示的结构可以与其他实施方式所示的结构适当地组合而实施。

(实施方式3)

在本实施方式中,参照图5a及图5b对使用实施方式1及实施方式2中说明的发光元件的发光装置进行说明。

图5a是示出发光装置的俯视图,图5b是沿图5a中的线a-b及线c-d切割的截面图。该发光装置包括以虚线表示的用来控制发光元件的发光的驱动电路部(源极一侧驱动电路)601、像素部602以及驱动电路部(栅极一侧驱动电路)603。另外,附图标记604是密封衬底,附图标记625是干燥剂,附图标记605是密封剂,由密封剂605围绕的内侧是空间607。

另外,引导布线608是用来传送输入到源极一侧驱动电路601及栅极一侧驱动电路603的信号的布线,并且从用作外部输入端子的fpc(柔性印刷电路)609接收视频信号、时钟信号、起始信号、复位信号等。另外,虽然在此只图示fpc,但是该fpc也可以安装有印刷线路板(pwb:printedwiringboard)。本说明书中的发光装置不仅包括发光装置主体,并且还包括安装有fpc或pwb的发光装置。

接下来,参照图5b说明上述发光装置的截面结构。在元件衬底610上形成有驱动电路部及像素部,在此示出作为驱动电路部的源极一侧驱动电路601及像素部602中的一个像素。

另外,在源极一侧驱动电路601中,形成组合n沟道tft623和p沟道tft624的cmos电路。此外,驱动电路也可以使用各种cmos电路、pmos电路或nmos电路形成。另外,在本实施方式中,虽然示出将驱动电路形成于衬底上的驱动器一体型,但不需要必须采用该结构,也可以将驱动电路形成于外部而不形成于衬底上。

此外,像素部602由包括开关用tft611、电流控制用tft612、电连接于该电流控制用tft612的漏极的第一电极613的像素形成。另外,以覆盖第一电极613的端部的方式形成有绝缘物614。绝缘物614可以使用正型光敏树脂膜来形成。

另外,为了提高形成于绝缘物614上的膜的覆盖率,将绝缘物614上端部或下端部形成为具有曲率的曲面。例如,在作为绝缘物614的材料使用光敏丙烯酸树脂的情况下,优选仅使绝缘物614上端部具有曲面。该曲面的曲率半径为0.2μm以上且0.3μm以下。此外,作为绝缘物614,可以使用负型光敏材料或正型光敏材料。

在第一电极613上形成有el层616及第二电极617。在此,作为用作阳极的第一电极613的材料优选使用功函数大的材料。例如,除了ito膜、包含硅的铟锡氧化物膜、包含2wt%以上且20wt%以下的氧化锌的氧化铟膜、氮化钛膜、铬膜、钨膜、zn膜、pt膜等的单层膜以外,还可以使用由氮化钛膜和以铝为主要成分的膜构成的叠层膜以及由氮化钛膜、以铝为主要成分的膜和氮化钛膜构成的三层的叠层膜等。注意,当采用叠层结构时,布线电阻也低,可以得到良好的欧姆接触,并且可以将其用作阳极。

另外,el层616通过使用蒸镀掩模的蒸镀法、喷墨法、旋涂法等各种方法形成。作为构成el层616的材料,也可以使用低分子化合物、或者高分子化合物(包含低聚物、树枝状聚合物)。

另外,作为形成在el层616上并用作阴极的第二电极617的材料,优选使用功函数小的材料(al、mg、li、ca、或它们的合金及化合物(mgag、mgin、alli等)等)。注意,当使产生在el层616中的光透过第二电极617时,作为第二电极617优选使用由膜厚度减薄了的金属薄膜和透明导电膜(ito、包含2wt%以上且20wt%以下的氧化锌的氧化铟、包含硅的铟锡氧化物、氧化锌(zno)等)构成的叠层。

此外,发光元件618由第一电极613、el层616、第二电极617形成。该发光元件618优选具有实施方式1及实施方式2所示的结构。另外,像素部包括多个发光元件,本实施方式的发光装置也可以包括具有实施方式1及实施方式2所说明的结构的发光元件和具有其他结构的发光元件的双方。

再者,通过利用密封剂605将密封衬底604与元件衬底610贴合在一起,在由元件衬底610、密封衬底604及密封剂605围绕的空间607中设置有发光元件618。另外,在空间607中填充有填充剂,有时作为该填充剂使用惰性气体(氮、氩等)、树脂或干燥材料、或者树脂与干燥材料的双方。

作为密封剂605,优选使用环氧类树脂或玻璃粉。另外,这些材料优选是尽量不使水分、氧透过的材料。此外,作为密封衬底604,除了玻璃衬底、石英衬底之外,还可以使用由frp(fiberreinforcedplastics:纤维增强塑料)、pvf(聚氟乙烯)、聚酯或丙烯酸树脂等构成的塑料衬底。

通过上述方法可以得到使用实施方式1及实施方式2中说明的发光元件的发光装置。

<发光装置的结构例子1>

在图6中,作为发光装置的一个例子示出形成有发射白色光的发光元件及着色层(滤色片)的发光装置。

图6a示出衬底1001、基底绝缘膜1002、栅极绝缘膜1003、栅电极1006、1007、1008、第一层间绝缘膜1020、第二层间绝缘膜1021、周边部1042、像素部1040、驱动电路部1041、发光元件的第一电极1024w、1024r、1024g、1024b、分隔壁1026、el层1028、发光元件的第二电极1029、密封衬底1031、密封剂1032、红色像素1044r、绿色像素1044g、蓝色像素1044b、白色像素1044w等。

另外,在图6a和图6b中将着色层(红色着色层1034r、绿色着色层1034g、蓝色着色层1034b)设置于透明基材1033上。另外,还可以设置黑色层(黑矩阵)1035。对设置有着色层及黑色层的透明基材1033进行对准将其固定在衬底1001上。此外,着色层及黑色层由覆盖层1036覆盖。另外,在图6a中,有不透过着色层而透射到外部的光以及透过各颜色的着色层而透射到外部的光。不透过着色层的光成为白色光且透过着色层的光成为红色光、蓝色光、绿色光,因此能够以四个颜色的像素呈现图像。

图6b示出将红色着色层1034r、绿色着色层1034g、蓝色着色层1034b形成在栅极绝缘膜1003与第一层间绝缘膜1020之间的例子。如图6b所示,也可以将着色层设置在衬底1001与密封衬底1031之间。

另外,虽然作为上述说明的发光装置采用从形成有tft的衬底1001一侧取出发光的结构(底部发射结构)的发光装置,但是也可以采用从密封衬底1031一侧取出发光的结构(顶部发射结构)的发光装置。

<发光装置的结构例子2>

图7a及图7b示出顶部发射型发光装置的截面图。在此情况下,衬底1001可以使用不使光透过的衬底。直到制造连接tft与发光元件的阳极的连接电极为止的工序与底部发射型发光装置同样地进行。然后,以覆盖电极1022的方式形成第三层间绝缘膜1037。该绝缘膜也可以具有平坦化的功能。第三层间绝缘膜1037可以使用与第二层间绝缘膜1021相同的材料或其他各种材料形成。

虽然发光元件的下部电极1025w、下部电极1025r、下部电极1025g、下部电极1025b在这里都为阳极,但是也可以为阴极。另外,在图7a及图7b所示的顶部发射型发光装置中,优选下部电极1025w、下部电极1025r、下部电极1025g、下部电极1025b为反射电极。另外,优选第二电极1029具有发射光及使光透过的功能。另外,优选在第二电极1029与下部电极1025w、下部电极1025r、下部电极1025g、下部电极1025b间采用微腔结构,来放大特定波长的光。el层1028具有如实施方式1及实施方式2所说明那样的结构,并且具有能够得到白色发光的元件结构。

在图6a、图6b、图7a及图7b中,通过使用多个发光层或者使用多个发光单元等来实现能够得到白色发光的el层的结构,即可。注意,获得白色发光的结构不局限于此。

在采用如图7a及图7b所示的顶部发射结构的情况下,可以使用设置有着色层(红色着色层1034r、绿色着色层1034g、蓝色着色层1034b)的密封衬底1031进行密封。可以在密封衬底1031上设置有位于像素与像素之间的黑色层(黑矩阵)1035。着色层(红色着色层1034r、绿色着色层1034g、蓝色着色层1034b)、黑色层(黑矩阵)也可以由覆盖层覆盖。另外,作为密封衬底1031使用具有透光性的衬底。

此外,虽然在图7a中示出以红色、绿色、蓝色的三种颜色进行全彩色显示的结构,但是如图7b所示,也可以以红色、绿色、蓝色、白色的四种颜色进行全彩色显示。此外,进行全彩色显示的结构不局限于这些结构。例如,也可以以红色、绿色、蓝色、黄色的四种颜色进行全彩色显示。

本发明的一个方式的发光元件将荧光材料用作客体材料。因为荧光材料具有比磷光材料尖锐的光谱,所以可以得到色纯度高的发光。因此,通过将该发光元件用于本实施方式所示的发光装置,可以得到颜色再现性高的发光装置。

通过上述方法可以得到使用实施方式1及实施方式2中说明的发光元件的发光装置。

另外,本实施方式可以与其他实施方式适当地组合。

(实施方式4)

在本实施方式中,说明本发明的一个方式的电子设备及显示装置。

根据本发明的一个方式可以制造具有平面、发光效率高且可靠性高的电子设备及显示装置。根据本发明的一个方式,可以制造具有曲面、发光效率高且可靠性高的电子设备及显示装置。从本发明的一个方式的发光元件可以得到色纯度高的发光。因此,通过将该发光元件用于本实施方式所示的发光装置,可以得到颜色再现性高的电子设备及显示装置。

作为电子设备,例如可以举出:电视装置;台式或笔记本型个人计算机;用于计算机等的显示器;数码相机;数码摄像机;数码相框;移动电话机;便携式游戏机;便携式信息终端;声音再现装置;弹珠机等大型游戏机等。

图8a和图8b所示的便携式信息终端900包括外壳901、外壳902、显示部903及铰链部905等。

外壳901与外壳902通过铰链部905连接在一起。便携式信息终端900可以从折叠状态(图8a)转换成如图8b所示的展开状态。由此,携带时的可携带性好,并且由于具有大显示区域,所以使用时的可见度高。

便携式信息终端900跨着由铰链部905连接的外壳901和外壳902设置有柔性显示部903。

可以将使用本发明的一个方式制造的发光装置用于显示部903。由此,可以以高成品率制造便携式信息终端。

显示部903可以显示文件信息、静态图像和动态图像等中的至少一个。当在显示部中显示文件信息时,可以将便携式信息终端900用作电子书阅读器。

当使便携式信息终端900展开时,显示部903被保持为曲率半径大的状态。例如,可以以包括以1mm以上且50mm以下,优选为5mm以上且30mm以下的曲率半径弯曲的部分的方式保持显示部903。显示部903的一部分跨着外壳901和外壳902连续地配置有像素,从而能够进行曲面显示。

显示部903被用作触摸面板,可以用手指或触屏笔等进行操作。

显示部903优选由一个柔性显示器构成。由此,可以跨着外壳901和外壳902进行连续的显示。此外,外壳901和外壳902也可以分别设置有显示器。

为了避免在使便携式信息终端900展开时外壳901和外壳902所形成的角度超过预定角度,铰链部905优选具有锁定机构。例如,锁定角度(达到该角度时不能再继续打开)优选为90°以上且小于180°,典型的是,可以为90°、120°、135°、150°或175°等。由此,可以提高便携式信息终端900的方便性、安全性和可靠性。

当铰链部905具有上述锁定机构时,可以抑制过大的力施加到显示部903,从而可以防止显示部903的损坏。由此,可以实现可靠性高的便携式信息终端。

外壳901和外壳902也可以包括电源按钮、操作按钮、外部连接端口、扬声器、麦克风等。

外壳901和外壳902中的任一个可以设置有无线通信模块,可以通过因特网、局域网(lan)、无线保真(wi-fi:注册商标)等计算机网络进行数据收发。

图8c所示的便携式信息终端910包括外壳911、显示部912、操作按钮913、外部连接端口914、扬声器915、麦克风916、照相机917等。

可以将利用本发明的一个方式制造的发光装置用于显示部912。由此,可以以高成品率制造便携式信息终端。

在便携式信息终端910中,在显示部912中具有触摸传感器。通过用手指或触屏笔等触摸显示部912可以进行打电话或输入文字等各种操作。

另外,通过操作按钮913的操作,可以进行电源的on、off工作或切换显示在显示部912上的图像的种类。例如,可以将电子邮件的编写画面切换为主菜单画面。

另外,通过在便携式信息终端910内部设置陀螺仪传感器或加速度传感器等检测装置,可以判断便携式信息终端910的方向(纵向或横向),而对显示部912的屏面显示方向进行自动切换。另外,屏面显示方向的切换也可以通过触摸显示部912、操作操作按钮913或者使用麦克风916输入声音来进行。

便携式信息终端910例如具有选自电话机、笔记本和信息阅读装置等中的一种或多种功能。具体地说,便携式信息终端910可以被用作智能手机。便携式信息终端910例如可以执行移动电话、电子邮件、文章的阅读及编辑、音乐播放、动画播放、网络通信、电脑游戏等各种应用程序。

图8d所示的照相机920包括外壳921、显示部922、操作按钮923、快门按钮924等。另外,照相机920安装有可装卸的镜头926。

可以将利用本发明的一个方式制造的发光装置用于显示部922。由此,可以制造可靠性高的照相机。

在此,虽然照相机920具有能够从外壳921拆卸下镜头926而交换的结构,但是镜头926和外壳921也可以被形成为一体。

通过按下快门按钮924,照相机920可以拍摄静态图像或动态图像。另外,也可以使显示部922具有触摸面板的功能,通过触摸显示部922进行摄像。

另外,照相机920还可以具备另外安装的闪光灯装置及取景器等。另外,这些构件也可以组装在外壳921中。

图9a为示出扫地机器人的例子的示意图。

扫地机器人5100包括顶面上的显示器5101及侧面上的多个照相机5102、刷子5103及操作按钮5104。虽然未图示,但是扫地机器人5100的底面设置有轮胎和吸入口等。此外,扫地机器人5100还包括红外线传感器、超音波传感器、加速度传感器、压电传感器、光传感器、陀螺仪传感器等各种传感器。另外,扫地机器人5100包括无线通信单元。

扫地机器人5100可以自动行走,检测垃圾5120,可以从底面的吸入口吸引垃圾。

另外,扫地机器人5100对照相机5102所拍摄的图像进行分析,可以判断墙壁、家具或台阶等障碍物的有无。另外,在通过图像分析检测布线等可能会绕在刷子5103上的物体的情况下,可以停止刷子5103的旋转。

可以在显示器5101上显示电池的剩余电量和所吸引的垃圾的量等。另外,也可以在显示器5101上显示扫地机器人5100的行走路径。另外,显示器5101可以是触摸面板,可以将操作按钮5104显示在显示器5101上。

扫地机器人5100可以与智能手机等便携式电子设备5140互相通信。照相机5102所拍摄的图像可以显示在便携式电子设备5140上。因此,扫地机器人5100的拥有者在出门时也可以知道房间的情况。另外,可以使用智能手机等便携式电子设备确认显示器5101的显示内容。

可以将本发明的一个方式的发光装置用于显示器5101。

图9b所示的机器人2100包括运算装置2110、照度传感器2101、麦克风2102、上部照相机2103、扬声器2104、显示器2105、下部照相机2106、障碍物传感器2107及移动机构2108。

麦克风2102具有检测使用者的声音及周围的声音等的功能。另外,扬声器2104具有发出声音的功能。机器人2100可以使用麦克风2102及扬声器2104与使用者交流。

显示器2105具有显示各种信息的功能。机器人2100可以将使用者所希望的信息显示在显示器2105上。显示器2105可以安装有触摸面板。显示器2105可以是可拆卸的信息终端,通过将该信息终端设置在机器人2100的所定位置,可以进行充电及数据的收发。

上部照相机2103及下部照相机2106具有对机器人2100的周围环境进行摄像的功能。另外,障碍物传感器2107可以检测机器人2100使用移动机构2108移动时的前方的障碍物的有无。机器人2100可以使用上部照相机2103、下部照相机2106及障碍物传感器2107认知周囲环境而安全地移动。

可以将本发明的一个方式的发光装置用于显示器2105。

图9c是示出护目镜型显示器的一个例子的图。护目镜型显示器例如包括外壳5000、显示部5001、扬声器5003、led灯5004、连接端子5006、传感器5007(它具有测量如下因素的功能:力、位移、位置、速度、加速度、角速度、转速、距离、光、液、磁、温度、化学物质、声音、时间、硬度、电场、电流、电压、电力、辐射线、流量、湿度、倾斜度、振动、气味或红外线)、麦克风5008、第二显示部5002、支撑部5012、耳机5013等。

可以将本发明的一个方式的发光装置用于显示部5001及第二显示部5002。

图10a和图10b示出可折叠的便携式信息终端5150。可折叠的便携式信息终端5150包括外壳5151、显示区域5152及弯曲部5153。图10a示出展开状态的便携式信息终端5150。图10b示出折叠状态的便携式信息终端5150。虽然便携式信息终端5150具有较大的显示区域5152,但是通过将便携式信息终端5150折叠,便携式信息终端5150变小而可便携性好。

可以由弯曲部5153将显示区域5152折叠成一半。弯曲部5153由可伸缩的构件和多个支撑构件构成。在折叠显示区域时,可伸缩的构件被拉伸,弯曲部5153具有2mm以上,优选为5mm以上的曲率半径。

另外,显示区域5152也可以为安装有触摸传感器(输入装置)的触摸面板(输入/输出装置)。可以将本发明的一个方式的发光装置用于显示区域5152。

本实施方式可以与其他实施方式适当地组合。

(实施方式5)

在本实施方式中,参照图11说明将本发明的一个方式的发光元件适用于各种照明装置的情况的例子。通过使用本发明的一个方式的发光元件,可以制造发光效率及可靠性高的照明装置。

通过将本发明的一个方式的发光元件形成在具有柔性的衬底上,能够实现在曲面上具有发光区域的电子设备或照明装置。

另外,还可以将应用了本发明的一个方式的发光元件的发光装置适用于汽车的照明,其中该照明被设置于挡风玻璃、天花板等。

图11是将发光元件用于室内照明装置8501的例子。另外,因为发光元件可以实现大面积化,所以也可以形成大面积的照明装置。另外,也可以通过使用具有曲面的外壳来形成发光区域具有曲面的照明装置8502。本实施方式所示的发光元件为薄膜状,所以外壳的设计的自由度高。因此,可以形成能够对应各种设计的照明装置。并且,室内的墙面也可以设置有大型的照明装置8503。另外,也可以在照明装置8501、照明装置8502、照明装置8503中设置触摸传感器,启动或关闭电源。

另外,通过将发光元件用于桌子的表面一侧,可以提供具有桌子的功能的照明装置8504。另外,通过将发光元件用于其他家具的一部分,可以提供具有家具的功能的照明装置。

如上所述,通过应用本发明的一个方式的发光装置,能够得到照明装置及电子设备。注意,本发明的一个方式的发光装置不局限于本实施方式所示的发光装置,可以应用于各种领域的照明装置及电子设备。

本实施方式所示的结构可以与其他实施方式所示的结构适当地组合而使用。

[实施例1]

在本实施例中,示出本发明的一个方式的发光元件的发光元件2至发光元件5及比较发光元件1的制造例子。图1a示出在本实施例中制造的发光元件的截面示意图,表2及表3示出元件结构的详细内容。此外,以下示出在本实施例中使用的有机化合物的化学式。注意,其他化合物的结构和简称可以参照上述实施方式1。

[化学式19]

[表2]

[表3]

<发光元件的制造>

下面示出在本实施例中制造的发光元件的制造方法。比较发光元件1是在电子注入层中使用一般使用的li化合物的lif的发光元件,发光元件2至发光元件5是本发明的一个方式的在电子注入层中使用具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的发光元件。

<<比较发光元件1的制造>>

作为电极101,在玻璃衬底上形成厚度为110nm的itso膜。另外,电极101的电极面积为4mm2(2mm×2mm)。

接着,作为空穴注入层111,在电极101上将dbt3p-ii与氧化钼(moo3)以重量比(dbt3p-ii:moo3)为1:0.5且厚度为25nm的方式共蒸镀。

接着,作为空穴传输层112,在空穴注入层111上以20nm的厚度蒸镀pcbbif。

接着,作为发光层140,在空穴传输层112上将2mdbtbpdbq-ii、pcbbif与ir(dmdppr-dmp)2(dpm)以重量比(2mdbtbpdbq-ii:pcbbif:ir(dmdppr-dmp)2(dpm))为0.75:0.25:0.08且厚度为40nm的方式共蒸镀。另外,在发光层140中,2mdbtbpdbq-ii及pcbbif为主体材料,ir(dmdppr-dmp)2(dpm)为客体材料(磷光性化合物)。

接着,作为电子传输层118(1),在发光层140上以20nm的厚度蒸镀2mdbtbpdbq-ii。

接着,作为电子传输层118(2),在电子传输层118(1)上以15nm的厚度蒸镀nbphen。

作为电子注入层130,在电子传输层118(2)上以1nm的厚度蒸镀氟化锂(lif)。

接着,作为电极102,在电子注入层130上以200nm的厚度形成铝(al)。

接着,在不进行密封的情况下在大气中以80℃进行1小时的热处理。通过上述工序得到比较发光元件1。

《发光元件2至发光元件5的制造》

发光元件2至发光元件5与比较发光元件1的不同之处在于电子注入层130的形成工序,而其他工序与比较发光元件1相同。

〈发光元件2的制造〉

作为电子注入层130,在电子传输层118(2)上将tpy2p与ag以重量比(tpy2p:ag)为1:0.3且厚度为5nm的方式共蒸镀。

〈发光元件3的制造〉

作为电子注入层130,在电子传输层118(2)上将2py3tzn与cu以重量比(2py3tzn:cu)为1:0.3且厚度为5nm的方式共蒸镀。

〈发光元件4的制造〉

作为电子注入层130,在电子传输层118(2)上将pm3tzn与cu以重量比(pm3tzn:cu)为1:0.3且厚度为5nm的方式共蒸镀。

〈发光元件5的制造〉

作为电子注入层130,在电子传输层118(2)上将tpy2p与co以重量比(tpy2p:co)为1:0.2且厚度为5nm的方式共蒸镀。

<发光元件的特性>

接着,测定上述制造的比较发光元件1及发光元件2至发光元件5的元件特性。在亮度及cie色度的测定中,利用色亮度计(由topcontechnohouse公司制造的bm-5a)。在电致发射光谱的测定中,利用多通道光谱分析仪(由日本滨松光子学株式会社制造的pma-11)。

图12、图13及图14分别示出所制造的比较发光元件1及发光元件2至发光元件5的电流效率-亮度特性、电流-电压特性及外部量子效率-亮度特性。另外,各发光元件的测定在室温(保持为23℃的气氛)下进行。另外,图15示出以2.5ma/cm2的电流密度使电流流过各发光元件时的电致发射光谱。注意,测定在室温下进行。

表4示出1000cd/m2附近的比较发光元件1及发光元件2至发光元件5的元件特性。

[表4]

如图14及表4所示,比较发光元件1及发光元件2至发光元件5都示出高发光效率,即外部量子效率超过25%。此外,本发明的一个方式的发光元件2至发光元件5示出与在电子注入层中使用一般使用的材料的lif的比较发光元件1相等的高效率。

如图13及表4所示,比较发光元件1及发光元件2至发光元件5示出良好的电流-电压特性。发光元件2至发光元件5示出与比较发光元件1相等的电流-电压特性,由此可知cu、ag、co等功函数大(4.5ev以上)的过渡金属和具有在3齿或4齿与金属相互作用的功能的有机化合物的复合材料具有与在电子注入层中一般使用的材料的lif相等的非常良好的电子注入性。

如图15所示,比较发光元件1及发光元件2至发光元件5都示出红色发光,其中电致发射光谱的峰值波长都是619nm附近,半峰全宽都是58nm左右。从所得到的电致发射光谱可知上述发光来源于客体材料ir(dmdppr-dmp)2(dpm)。

<发光元件的恒电流驱动测试结果>

接着,在大气气氛且1.0ma恒电流下对比较发光元件1及发光元件2至发光元件5进行驱动测试。图16示出其结果。如上所述,不对比较发光元件1及发光元件2至发光元件5进行密封。由图16可知,在大气气氛下发光元件2至发光元件5的可靠性高于比较发光元件1。在比较发光元件1中,将包含功函数小的金属的材料用于电子注入层。功函数小的金属与水的反应性较高,而有可能水分侵入到发光元件内部。由此,当在大气气氛下使发光元件1驱动时,因水分而可靠性下降。另一方面,在本发明的一个方式的发光元件中,可以将与水的反应性较低的功函数大的金属用于电子注入层。因此,作为本发明的一个方式的发光元件,可以实现水分不容易侵入到发光元件内部且在大气气氛下进行驱动也具有高可靠性的发光元件。此外,发光元件3至发光元件5示出高可靠性。因此,通过使用cu或co等功函数为4.7ev以上的金属,可以实现具有高可靠性的发光元件。

[实施例2]

在本实施例中,示出本发明的一个方式的发光元件的发光元件7至发光元件10及比较发光元件6的制造例子。图1a示出在本实施例中制造的发光元件的截面示意图,表5及表6示出元件结构的详细内容。注意,在本实施例中使用的有机化合物的结构和简称可以参照上述实施方式1及实施例1。

[表5]

[表6]

<发光元件的制造>

下面示出在本实施例中制造的发光元件的制造方法。比较发光元件6是不形成电子注入层且电极与电子传输层接触的发光元件,发光元件7至发光元件10是本发明的一个方式的在电子注入层中使用具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的发光元件。

《比较发光元件6的制造》

比较发光元件6与比较发光元件1的不同之处在于电子注入层130的形成工序,而其他工序与比较发光元件1相同。

比较发光元件6的电子注入层130不被形成,作为电极102在电子传输层118上以200nm的厚度蒸镀al。就是说,在比较发光元件6中电极102与电子传输层118接触。

《发光元件7至发光元件10的制造》

发光元件7至发光元件10与比较发光元件1的不同之处在于电子注入层130的形成工序,而其他工序与比较发光元件1相同。

<发光元件7的制造>

作为发光元件7的电子注入层130,在电子传输层118(2)上将tpy2p与au以重量比(tpy2p:au)为1:0.6且厚度为5nm的方式共蒸镀。

<发光元件8的制造>

作为发光元件8的电子注入层130,在电子传输层118(2)上将2py3tzn与ag以重量比(2py3tzn:ag)为1:0.5且厚度为5nm的方式共蒸镀。

<发光元件9的制造>

作为发光元件9的电子注入层130,在电子传输层118(2)上将tpy2p与cu以重量比(tpy2p:cu)为1:0.2且厚度为5nm的方式共蒸镀。

<发光元件10的制造>

作为发光元件10的电子注入层130,在电子传输层118(2)上将2py3tzn与co以重量比(2py3tzn:co)为1:0.3且厚度为5nm的方式共蒸镀。

<发光元件的特性>

接着,对上述制造的比较发光元件6及发光元件7至发光元件10的元件特性进行测定。测定与实施例1同样地进行。

图17、图18及图19分别示出所制造的比较发光元件6及发光元件7至发光元件10的电流效率-亮度特性、电流-电压特性以及外部量子效率-亮度特性。另外,各发光元件的测定在室温(保持为23℃的气氛)下进行。另外,图20示出以2.5ma/cm2的电流密度使电流流过各发光元件时的电致发射光谱。注意,测定在室温下进行。

表7示出1000cd/m2附近的比较发光元件6及发光元件7至发光元件10的元件特性。

[表7]

由图19及表7可知,发光元件7至发光元件10的外部量子效率高于比较发光元件6。尤其是,发光元件9及发光元件10示出超过25%的高外部量子效率。另外,如图18所示,发光元件7至发光元件10的电流-电压特性比比较发光元件6良好。尤其是,发光元件9示出优良的电流-电压特性。由这些结果可知,发光元件7至发光元件10的电子注入特性比比较发光元件6良好。

在比较发光元件6中,电极与电子传输层接触,在发光元件7至发光元件10中,将其功函数比用于电极的al高的金属用于电子注入层。因此,着眼于金属的功函数,被估计为比较发光元件6的电子注入特性比发光元件7至发光元件10良好。然而,如上所述,发光元件7至发光元件10的电子注入特性比比较发光元件6良好。因此,在本发明的一个方式的发光元件中,通过在电子注入层中使用具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料,该复合材料的somo形成在电子注入层中,从而即便将其功函数比电极材料高的功能的金属用于电子注入层,也可以得到良好的电子注入特性。

如图20所示,比较发光元件6及发光元件7至发光元件10都示出红色发光,其中电致发射光谱的峰值波长都是619nm附近,半峰全宽都是58nm左右。从所得到的电致发射光谱可知上述发光来源于客体材料ir(dmdppr-dmp)2(dpm)。

<发光元件的恒电流驱动测试结果>

接着,在大气气氛且1.0ma恒电流下对比较发光元件6及发光元件7至发光元件10进行驱动测试。图21示出其结果。注意,不对比较发光元件6及发光元件7至发光元件10进行密封。由图21可知,发光元件7至发光元件10的可靠性高于比较发光元件6。这里,如图18及图19所示,比较发光元件6的电子注入特性低于发光元件7至发光元件10,比较发光元件6的载流子平衡不好,对可靠造成负面影响。另一方面,本发明的一个方式的发光元件具有高电子注入特性,并且各发光元件中的载流子平衡良好,因此能够实现可靠性高的发光元件。

[实施例3]

在本实施例中,示出本发明的一个方式的发光元件的发光元件12至发光元件15及比较发光元件11的制造例子。图1a示出在本实施例中制造的发光元件的截面示意图,表8及表9示出元件结构的详细内容。此外,以下示出在本实施例中使用的有机化合物的化学式。注意,其他化合物的结构和简称可以参照上述实施例及实施方式1。

[化学式20]

[表8]

[表9]

<发光元件的制造>

下面示出在本实施例中制造的发光元件的制造方法。比较发光元件11是在电子注入层中使用一般使用的li化合物的lif的发光元件,发光元件12至发光元件15是本发明的一个方式的在电子注入层中使用具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的发光元件。

《比较发光元件11的制造》

作为电极101,在玻璃衬底上形成厚度为70nm的itso膜。另外,电极101的电极面积为4mm2(2mm×2mm)。

接着,作为空穴注入层111,在电极101上将dbt3p-ii与氧化钼(moo3)以重量比(dbt3p-ii:moo3)为1:0.5且厚度为40nm的方式共蒸镀。

接着,作为空穴传输层112,在空穴注入层111上以20nm的厚度蒸镀pccp。

接着,作为发光层140,在空穴传输层112上将9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-联-9h-咔唑(简称:mpcczptzn-02)、pccp与gd270(吉林奥来德光电材料股份有限公司制造)以重量比(mpcczptzn:pccp:gd270)为0.5:0.5:0.1且厚度为40nm的方式共蒸镀。注意,在发光层140中,mpcczptzn及pccp是主体材料,gd270是客体材料(磷光性化合物)。

接着,作为电子传输层118(1),在发光层140上以10nm的厚度蒸镀mpcczptzn-02。

接着,作为电子传输层118(2),在电子传输层118(1)上以15nm的厚度蒸镀nbphen。

作为电子注入层130,在电子传输层118(2)上以1nm的厚度蒸镀lif。

接着,作为电极102,在电子注入层130上以200nm的厚度形成铝(al)。

接着,在不进行密封的情况下在大气中以80℃进行1小时的热处理。通过上述工序得到比较发光元件11。

《发光元件12至发光元件15的制造》

发光元件12至发光元件15与比较发光元件11的不同之处在于电子传输层118(2)及电子注入层130的形成工序,而其他工序与比较发光元件11相同。

<发光元件12的制造>

作为电子传输层118(2),在电子传输层118(1)上以15nm的厚度蒸镀nbphen。接着,作为电子注入层130,在电子传输层118(2)上将tpy2p与ag以重量比(tpy2p:ag)为1:0.3且厚度为5nm的方式共蒸镀。

<发光元件13的制造>

作为电子传输层118(2),在电子传输层118(1)上以10nm的厚度蒸镀nbphen。接着,作为电子注入层130,在电子传输层118(2)上将nbphen与ag以重量比(nbphen:ag)为1:0.3且厚度为5nm的方式共蒸镀,其上将tpy2p与au以重量比(tpy2p:au)为1:0.6且厚度为5nm的方式共蒸镀。

<发光元件14的制造>

作为电子传输层118(2),在电子传输层118(1)上以15nm的厚度蒸镀nbphen。接着,作为电子注入层130,在电子传输层118(2)上将2py3tzn与cu以重量比(2py3tzn:cu)为1:0.3且厚度为5nm的方式共蒸镀。

<发光元件15的制造>

作为电子传输层118(2),在电子传输层118(1)上以10nm的厚度蒸镀nbphen。接着,作为电子注入层130,在电子传输层118(2)上将nbphen与cu以重量比(nbphen:cu)为1:0.2且厚度为5nm的方式共蒸镀,其上将2py3tzn与co以重量比(2py3tzn:co)为1:0.2且厚度为5nm的方式共蒸镀。

<发光元件的特性>

接着,对上述制造的比较发光元件11及发光元件12至发光元件15的元件特性进行测定。测定与实施例1同样地进行。

图22、图23及图24分别示出所制造的比较发光元件11及发光元件12至发光元件15的电流效率-亮度特性、电流-电压特性以及外部量子效率-亮度特性。另外,各发光元件的测定在室温(保持为23℃的气氛)下进行。另外,图25示出以2.5ma/cm2的电流密度使电流流过各发光元件时的电致发射光谱。注意,测定在室温下进行。

表10示出1000cd/m2附近的比较发光元件11及发光元件12至发光元件15的元件特性。

[表10]

由图24及表10可知,比较发光元件11与发光元件12至发光元件15示出相等的外部量子效率。另外,发光元件12至发光元件14示出超过20%的高外部量子效率。此外,如图23及表10所示,比较发光元件11与发光元件12至发光元件15示出相等的电流-电压特性。根据这些结果可知,发光元件12至发光元件15具有与在电子注入层中使用一般使用的lif的比较发光元件11相等的电子注入性。

如图25所示,比较发光元件11及发光元件12至发光元件15都示出绿色发光,其中电致发射光谱的峰值波长都是520nm附近,半峰全宽都是63nm左右。从所得到的电致发射光谱可知上述发光来源于客体材料gd270。

<发光元件的可靠性评价>

接着,对比较发光元件11及发光元件12至发光元件15进行恒温恒湿保存测试。由于不对各发光元件进行密封,所以发光元件的阴极及el层暴露于测试环境的气氛。一般而言,当水分侵入到发光元件中时,产生黑点(发光部中的非发光区域)或收缩(发光部端部的非发光区域),对发光元件的可靠性造成负面影响。由此,通过进行恒温恒湿保存测试,可以对发光元件的抗水分的可靠性进行评价。

在比较发光元件11及发光元件12至发光元件15分别放置于温度保持为40℃且湿度保持为90%的恒温槽内350小时之后,对各发光元件的发光状态进行调查。

发光状态的评价通过估算出在恒温恒湿保存测试前后的发光面积的比率进行。表11示出其结果。

[表11]

在表11中发光面积比(%)=恒温恒湿保存测试后的发光面积/恒温恒湿测试前的发光面积×100。从表11可知,在电子注入层中使用碱金属化合物的lif的比较发光元件11经过保存测试劣化而变为非发光。另一方面,本发明的一个方式的发光元件的发光元件12至发光元件15的发光面积大于比较发光元件11。换言之,本发明的一个方式的发光元件与在电子注入层中使用如碱金属那样的功函数小的材料的发光元件相比具有优异的抗湿性。这是因为功函数小的材料的与水的反应性较高,水分侵入到发光元件中。另一方面,由于本发明的一个方式的发光元件能够使用与水的反应性低且功函数大的金属,所以水分不容易侵入到发光元件中。因此,可以实现抗湿性高的发光元件。

如上所述,本发明的一个方式的发光元件具有优异的电子注入性,所以是驱动电压低且发光效率高的发光元件。此外,由于能够使用功函数大的材料,所以是抗湿性优异的发光元件。本实施例所示的结构可以与其他实施例及实施方式适当地组合而使用。

[实施例4]

在本实施例中,说明可用于本发明的一个方式的发光元件的有机化合物的例子及其合成例子。

<4’-[4-(10-苯基-9-蒽基)苯基]-2,2’:6’,2”-三联吡啶(简称:patpy)(结构式(200))的合成>

将4’-(4-溴苯基)-2,2’:6’,2”-三联吡啶1.0g(2.6mmol)、10-苯基-9-蒽基硼酸0.86g(2.9mmol)、碳酸钠0.85g(8.0mmol)、甲苯20ml、乙醇5ml以及水5ml放在100ml三口烧瓶中。将该混合物在减压下搅拌的同时脱气,然后将烧瓶内的气氛置换为氮气。对该混合物添加四(三苯基膦)钯(0)65mg(56μmol),在氮气流下以100℃的温度回流8小时。在搅拌后,将反应混合物冷却到室温,通过抽滤收集所析出的固体。使用水、饱和碳酸氢钠及饱和食盐水洗涤所得到的固体的氯仿溶液,并使用硫酸镁进行干燥。对氯仿溶液和硫酸镁的混合物进行重力过滤,浓缩滤液而得到固体。对所得到的固体的甲醇悬浮液照射超声波,通过抽滤收集固体。再者,通过使用甲苯使该固体再结晶,以1.2g的产量且81%的产率得到目的物的淡红色粉末。下述式(a-1)示出本合成方案。

[化学式21]

利用梯度升华法对所得到的淡红色粉末1.2g进行升华纯化。在升华纯化中,在压力为4.5pa且氩流量为10ml/min的条件下,以290℃的温度加热patpy。在升华纯化之后,以47%的回收率得到patpy的淡红色粉末0.55g。

利用核磁共振分光法(1h-nmr)对上述得到的淡红色粉末进行测定。以下示出分析结果。

1h-nmr(cdcl3,300mhz):δ=7.34-7.40(m,6h),7.49-7.79(m,11h),7.91(dt,j=1.5hz,7.2hz,2h),8.16(d,j=7.8hz,2h),8.72-8.78(m,4h),8.93(s,2h)。

图26a和图26b示出所得到的淡红色粉末的1hnmr谱。图26b是图26a中的7.0ppm至9.5ppm的范围的放大图。由测定结果可知得到了目的物的patpy。

[实施例5]

在本实施例中,说明可用于本发明的一个方式的发光元件的有机化合物的例子及其合成例子。

<2-[4’-(2,2’:6’,2”-三联吡啶-4’-基)联苯基-4-基]苯并噁唑(简称:boxtpy)(结构式(201))的合成>

将4’-(4-溴苯基)-2,2’:6’,2”-三联吡啶1.0g(2.6mmol)、4-(苯并噁唑-2-基)苯基硼酸0.68g(2.9mmol)、碳酸钠0.62g(5.8mmol)、甲苯20ml、乙醇5ml以及水3ml放在100ml三口烧瓶中。将该混合物在减压下搅拌的同时脱气,然后将烧瓶内的气氛置换为氮气。对该混合物添加四(三苯基膦)钯(0)63mg(55μmol),在氮气流下以100℃的温度回流5小时。在回流后,将该反应混合物冷却到室温,通过抽滤收集所析出的固体。使用水、饱和碳酸氢钠及饱和食盐水洗涤所得到的固体的氯仿溶液,并使用硫酸镁进行干燥。对所得到的氯仿溶液和硫酸镁的混合物进行重力过滤,浓缩滤液而得到固体。通过使用甲苯使所得到的固体再结晶,以1.0g的产量且78%的产率得到目的物的淡红色粉末。下述式(b-1)示出本合成方案。

[化学式22]

利用梯度升华法对所得到的boxtpy的粉末1.0g进行升华纯化。在升华纯化中,在压力为4.4pa且氩流量为10ml/min的条件下,以280℃的温度加热boxtpy。在升华纯化之后,以63%的回收率得到boxtpy的淡红色粉末0.64g。

利用核磁共振分光法(1h-nmr)对上述得到的淡红色粉末进行测定。以下示出分析结果。

1h-nmr(cdcl3,300mhz):δ=7.32-7.41(m,4h),7.59-7.65(m,1h),7.78-7.93(m,7h),8.05(d,j=8.4hz,2h),8.37(d,j=7.8hz,2h),8.70(d,j=7.8hz,2h),8.75-8.77(m,2h),8.81(s,2h)。

图27a和图27b示出所得到的淡红色粉末的1hnmr谱。图27b是图27a中的7.0ppm至9.0ppm的范围的放大图。由测定结果可知得到了目的物的boxtpy。

[实施例6]

在本实施例中,说明可用于本发明的一个方式的发光元件的有机化合物的例子及其合成例子。

<4’-{4-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]苯基}-2,2’:6’,2”-三联吡啶(简称:o11tpy)(结构式(202))的合成>

将4’-(4-溴苯基)-2,2’:6’,2”-三联吡啶1.0g(2.6mmol)、4-(5-苯基-1,3,4-噁二唑-2-基)苯基硼酸0.73g(2.7mmol)、碳酸钠0.71g(6.7mmol)、甲苯20ml、乙醇5ml以及水3ml放在100ml三口烧瓶中。将该混合物在减压下搅拌的同时脱气,将烧瓶内的气氛置换为氮气。对该混合物添加四(三苯基膦)钯(0)68mg(59μmol)。对该混合物在氮气流下以100℃的温度回流9小时。在搅拌后,将该混合物冷却到室温,对所析出的固体进行抽滤。使用水、饱和碳酸氢钠水溶液及饱和食盐水洗涤所得到的固体的氯仿溶液,并使用硫酸镁进行干燥。对该混合物进行重力过滤,浓缩滤液而得到固体。使用甲醇洗涤所得到的固体,然后使用甲苯/己烷使该固体再结晶,由此以0.72g的产量且51%的产率得到目的物的白色粉末。下述式(c-1)示出本合成方案。

[化学式23]

利用梯度升华法对所得到的o11tpy的粉末0.71g进行升华纯化。在升华纯化中,在压力为4.0pa且氩流量为10ml/min的条件下,以270℃的温度加热o11tpy。在升华纯化之后,以41%的回收率得到o11tpy的白色粉末0.29g。

利用核磁共振分光法(1h-nmr)对上述得到的白色粉末进行测定。以下示出分析结果。

1h-nmr(cdcl3,300mhz):δ=7.35-7.39(m,2h),7.52-7.58(m,3h),7.79-7.93(m,6h),8.04(d,j=8.4hz,2h),8.16-8.19(m,2h),8.24(d,j=8.4hz,2h),8.69(d,j=7.8hz,2h),8.74-8.76(m,2h),8.80(s,2h)。

图28a和图28b示出所得到的白色粉末的1hnmr谱。图28b是图28a中的7.0ppm至9.0ppm的范围的放大图。由测定结果可知得到了目的物的o11tpy。

[实施例7]

在本实施例中,说明可用于本发明的一个方式的发光元件的有机化合物的例子及其合成例子。

<9,9’-[5-(2,2’:6’,2”-三联吡啶-4’-基)-1,3-亚苯基]双(9h-咔唑)(简称:cz2ptpy)(结构式(203))的合成>

将4’-溴-2,2’:6’,2”-三联吡啶0.94g(3.0mmol)、3,5-双(9h-咔唑-9-基)苯基硼酸1.4g(3.2mmol)、碳酸钠0.86g(6.2mmol)、甲苯30ml、乙醇5ml以及水3ml放在100ml三口烧瓶中。在减压下搅拌该混合物来进行脱气,将烧瓶内的气氛置换为氮气。对该混合物添加四(三苯基膦)钯(0)72mg(62μmol)。将该混合物在氮气流下以80℃的温度搅拌7小时。在搅拌后,使用甲苯对该混合物的水层进行萃取,将萃取溶液和有机层合并,使用饱和碳酸氢钠水溶液、饱和食盐水进行洗涤,并使用硫酸镁进行干燥。对该混合物进行重力过滤,浓缩滤液而得到固体。使用甲醇洗涤所得到的固体,然后使用甲苯使该固体再结晶,由此以1.1g的产量且55%的产率得到目的物的白色粉末。下述式(d-1)示出本合成方案。

[化学式24]

梯度升华法对所得到的cz2ptpy的粉末0.83g进行升华纯化。在升华纯化中,在压力为3.2pa且氩流量为5.0ml/min的条件下,以290℃的温度加热cz2ptpy。在升华纯化之后,以86%的回收率得到cz2ptpy的白色粉末0.71g。

利用核磁共振分光法(1h-nmr)对上述得到的白色粉末进行测定。以下示出分析结果。

1h-nmr(cdcl3,300mhz):δ=7.31-7.37(m,6h),7.47(dt,j=0.9hz,7.2hz,4h),7.59(d,j=8.1hz,4h),7.85-7.92(m,3h),8.17-8.22(m,6h),8.66-8.69(m,4h),8.82(s,2h)。

图29a和图29b示出所得到的白色粉末的1hnmr谱。图29b是图29a中的7.0ppm至9.0ppm的范围的放大图。由测定结果可知得到了目的物的cz2ptpy。

[实施例8]

在本实施例中,说明可用于本发明的一个方式的发光元件的有机化合物的例子及其合成例子。

<2,4,6-三(5-苯基-2-嘧啶-2-基)-1,3,5-三嗪(简称:ppm3tzn)(结构式(105))的合成>

将5-苯基嘧啶-2-carboximidamide0.80g(4.0mmol)、2-氰基-5-苯基吡啶1.4g(7.7mmol)、二甘醇二甲醚2ml以及1,2,3,4-四氢化萘1ml放在50ml双口烧瓶中。将该混合物在氮气流下以180℃的温度搅拌29小时并以200℃的温度搅拌100小时。在搅拌后,将该混合物冷却到室温,使用乙酸乙酯洗涤该混合物,由此以0.82g的产量得到褐色粉末。下述式(e-1)示出本合成方案。此外,在测定后述的升华纯化之前的1h-nmr时,质子比为ppm3tzn:5-苯基嘧啶-2-carboximidamide=1:1.7,褐色粉末中混合有目的物和原料。另外,观察不到来源于2-氰基-5-苯基吡啶的信号。

[化学式25]

利用梯度升华法对所得到的褐色粉末0.79g进行升华纯化。在升华纯化中,在压力为3.7pa且氩流量为15ml/min的条件下,以310℃的温度进行加热。在升华纯化之后,得到2,4,6-三(5-苯基-2-嘧啶-2-基)-1,3,5-三嗪的淡褐色粉末0.19g。在测定升华纯化后的1h-nmr时,来源于5-苯基嘧啶-2-carboximidamide的信号消失了。由此可知,通过利用升华纯化,能够简单地使目的物纯化。

利用核磁共振分光法(1h-nmr)对上述得到的淡褐色粉末进行测定。以下示出分析结果。

1h-nmr(cdcl3,300mhz):δ=7.52-7.63(m,9h),7.73(dd,j=1.5hz,7.8hz,6h),9.35(s,6h)。

图30a和图30b示出所得到的淡褐色粉末的1hnmr谱。图30b是图30a中的7.0ppm至9.5ppm的范围的放大图。由测定结果可知得到了目的物的ppm3tzn。

[实施例9]

作为本发明的一个方式的发光元件,示出下述串联元件之一的发光元件16至发光元件21、比较发光元件33及比较发光元件34的制造例子。图31示出在本实施例中制造的发光元件的截面示意图,表12至表14示出元件结构的详细内容。此外,以下示出在本实施例中使用的有机化合物的化学式。注意,其他化合物的结构和简称可以参照上述实施例及实施方式1。注意,发光元件16至发光元件21是发光元件的一个例子,其中,在一对电极间隔着电荷产生层使多个el层串联连接的元件(也称为串联元件)中,作为接触于el层之间的电荷产生层(图31中的电荷产生层115)的电子注入层(图31中的电子注入层114),使用具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料。

[化学式26]

[表12]

[表13]

[表14]

<<发光元件16的制造》

作为电极101,在玻璃衬底上形成厚度为110nm的itso膜。电极面积为4mm2(2mm×2mm)。

接着,作为空穴注入层111,在电极101上将dbt3p-ii与moo3以重量比(dbt3p-ii:moo3)为1:0.5且厚度为25nm的方式共蒸镀。

接着,作为空穴传输层112,在空穴注入层111上以20nm的厚度蒸镀pcbbif。

接着,作为发光层170,在空穴传输层112上将2mdbtbpdbq-ii、pcbbif与ir(dmdppr-dmp)2(dpm)以重量比(2mdbtbpdbq-ii:pcbbif:ir(dmdppr-dmp)2(dpm))为0.75:0.25:0.08且厚度为40nm的方式共蒸镀。注意,在发光层170中,2mdbtbpdbq-ii及pcbbif是主体材料,ir(dmdppr-dmp)2(dpm)是客体材料(磷光性化合物)。

接着,作为电子传输层113(1),在发光层170上以10nm的厚度蒸镀2mdbtbpdbq-ii。接着,作为电子传输层113(2),以15nm的厚度蒸镀nbphen。

作为电子注入层114,在电子传输层113(2)上将2,2’-(吡啶-2,6-二基)双(4-苯基苯并[h]喹唑啉)(简称:2,6(p-bqn)2py)与cu以重量比(2,6(p-bqn)2py:cu)为1:0.2且厚度为5nm的方式共蒸镀。

接着,作为电荷产生层115,在电子注入层114上将dbt3p-ii与moo3以重量比(dbt3p-ii:moo3)为1:0.5且厚度为80nm的方式共蒸镀。

接着,作为空穴传输层119,在电荷产生层115上以20nm的厚度蒸镀pcbbif。

接着,作为发光层140,在空穴传输层119上将2mdbtbpdbq-ii、pcbbif与ir(dmdppr-dmp)2(dpm)以重量比(2mdbtbpdbq-ii:pcbbif:ir(dmdppr-dmp)2(dpm))为0.75:0.25:0.08且厚度为40nm的方式共蒸镀。

接着,作为电子传输层118(1),在发光层140上以25nm的厚度蒸镀2mdbtbpdbq-ii。接着,作为电子传输层118(2),在电子传输层118(1)上以10nm的厚度蒸镀nbphen。

作为电子注入层130,在电子传输层118(2)上将nbphen与cu以重量比(nbphen:cu)为1:0.2且厚度为5nm的方式共蒸镀。

接着,作为电极102,在电子注入层130上以200nm的厚度蒸镀al。

接着,在氮气氛的手套箱中使用有机el用密封剂将密封用玻璃衬底固定于形成有有机材料的玻璃衬底上,由此密封发光元件16。具体而言,将密封剂涂敷于形成在玻璃衬底上的有机材料的周围,贴合该玻璃衬底和用来密封的玻璃衬底,以6j/cm2照射波长为365nm的紫外光,并且以80℃进行1小时的热处理。通过上述工序得到发光元件16。

《发光元件17至发光元件21、比较发光元件33及比较发光元件34的制造》

发光元件17至发光元件21、比较发光元件33及比较发光元件34与上述发光元件16同样地制造。元件结构的详细内容如表12至表14所示,因此省略制造方法的详细内容。

《各发光元件的测定》

测定上述制造的发光元件16至发光元件21、比较发光元件33及比较发光元件34的元件特性。在亮度及cie色度的测定中,利用色亮度计(由topcontechnohouse公司制造的bm-5a)。在电致发射光谱的测定中,利用多通道光谱分析仪(由日本滨松光子学株式会社制造的pma-11)。

图32、图33、图34及图35分别示出所制造的发光元件16至发光元件21、比较发光元件33及比较发光元件34的电流效率-亮度特性、电流-电压特性、功率效率-亮度特性及外部量子效率-亮度特性。另外,各发光元件的测定在室温(保持为23℃的气氛)下进行。另外,图36示出以2.5ma/cm2的电流密度使电流流过各发光元件时的电致发射光谱。注意,测定在室温下进行。

表15示出1000cd/m2附近的发光元件16至发光元件21、比较发光元件33及比较发光元件34的元件特性。

[表15]

如图36所示,发光元件16至发光元件21、比较发光元件33及比较发光元件34的电场发射光谱的峰值波长都在620nm附近,由此可知,发光元件16至发光元件21、比较发光元件33及比较发光元件34呈现来源于各发光元件所包含的客体材料的ir(dmdppr-dmp)2(dpm)的发光。

如图35及表15所示,发光元件16至发光元件21都示出与比较发光元件33相等的非常高的发光效率,即外部量子效率超过50%。此外,如图32及图34所示,示出高电流效率及高功率效率。另一方面,比较发光元件34的外部量子效率低,即27.2%,得不到对串联元件来说是充分高的效率。从这些结果可知,发光元件16至发光元件21的电子注入性与在接触于el层之间的电荷产生层的电子注入层中使用一般使用的li化合物的li2o的比较发光元件33相等。

如图33及表15所示,发光元件16至发光元件21与比较发光元件33及比较发光元件34相比具有低驱动电压及良好的电流-电压特性。并且可知,比较发光元件34的驱动电压非常高,对来自电荷产生层的电子注入性有问题。从这些结果可知,发光元件16至发光元件21的电子注入性与在接触于el层之间的电荷产生层的电子注入层中使用一般使用的li化合物的li2o的比较发光元件33相等。因此,具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料即使被用作串联元件中的接触于el层之间的电荷产生层的电子注入层也示出良好的驱动电压特性。

<发光元件的恒电流驱动测试结果>

接着,在室温且1.0ma恒电流下对发光元件18、发光元件19、比较发光元件33及比较发光元件34进行驱动测试。图52示出其结果。由图52可知,发光元件18及发光元件19的可靠性高于比较发光元件33及比较发光元件34。从这些结果可知,发光元件18及发光元件19的可靠性高于与在接触于电荷产生层的电子注入层中使用一般使用的li化合物的li2o的比较发光元件33及不包括接触于电荷产生层的电子注入层的比较发光元件34。因此,通过将具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料被用作串联元件中的接触于el层之间的电荷产生层的电子注入层,能够实现可靠性高的发光元件。

如上所述,本发明的一个方式的发光元件具有优异的电子注入性,所以是驱动电压低且发光效率高的发光元件。此外,由于能够使用功函数大的材料,所以是抗湿性优异且可靠性高的发光元件。本实施例所示的结构可以与其他实施例及实施方式适当地组合而使用。

[实施例10]

作为本发明的一个方式的发光元件,示出发光元件22至发光元件25的制造例子。图1示出在本实施例中制造的发光元件的截面示意图,表16示出元件结构的详细内容。注意,其他化合物的结构和简称可以参照上述实施例及实施方式1。注意,在发光元件22至发光元件25中,作为用于具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的金属,使用属于第13族的金属的in。

[表16]

《发光元件22的制造》

发光元件22与比较发光元件1的不同之处在于电子注入层130的形成工序,而其他工序与比较发光元件1相同。

作为发光元件22的电子注入层130,在电子传输层118(2)上将tpy2p与in以重量比(tpy2p:in)为1:0.4且厚度为5nm的方式共蒸镀。

《发光元件23的制造》

发光元件23与比较发光元件1的不同之处在于电子传输层118(2)及电子注入层130的形成工序,而其他工序与比较发光元件1相同。

作为发光元件23的电子传输层118(2),在电子传输层118(1)上以10nm的厚度蒸镀nbphen。

接着,作为电子注入层130(1),在电子传输层118(2)上将nbphen与ag以重量比(nbphen:ag)为1:0.3且厚度为5nm的方式共蒸镀。接着,作为电子注入层130(2),在电子注入层130(1)上将2py3tzn与in以重量比(2py3tzn:in)为1:0.6且厚度为5nm的方式共蒸镀。

《发光元件24及发光元件25的制造》

发光元件24及发光元件25与发光元件23的不同之处在于电子注入层130(2)的形成工序,而其他工序与发光元件23相同。

〈发光元件24的制造〉

作为发光元件24的电子注入层130(2),在电子传输层130(1)上将2,6(p-bqn)2py与in以重量比(2,6(p-bqn)2py:in)为1:0.3且厚度为5nm的方式共蒸镀。

〈发光元件25的制造〉

作为发光元件25的电子注入层130(2),在电子传输层130(1)上将2,6(np-ppm)2py与in以重量比(2,6(np-ppm)2py:in)为1:0.3且厚度为5nm的方式共蒸镀。

在发光元件22至发光元件25中,与比较发光元件1同样地制造阴极,然后在不进行密封的情况下在大气中以80℃进行1小时的热处理。

<各发光元件的测定〉

测定上述制造的发光元件22至发光元件25的元件特性。在亮度及cie色度的测定中,利用色亮度计(由topcontechnohouse公司制造的bm-5a)。在电致发射光谱的测定中,利用多通道光谱分析仪(由日本滨松光子学株式会社制造的pma-11)。

图37、图38、图39及图40分别示出所制造的发光元件22至发光元件25的电流效率-亮度特性、电流-电压特性、功率效率-亮度特性以及外部量子效率-亮度特性。另外,各发光元件的测定在室温(保持为23℃的气氛)下进行。另外,图41示出以2.5ma/cm2的电流密度使电流流过各发光元件时的电致发射光谱。注意,测定在室温下进行。

表17示出1000cd/m2附近的发光元件22至发光元件25的元件特性。

[表17]

如图41所示,发光元件22至发光元件25的电场发射光谱的峰值波长都在615nm附近,由此可知,发光元件22至发光元件25呈现来源于各发光元件所包含的客体材料的ir(dmdppr-dmp)2(dpm)的发光。

如图40及表17所示,发光元件22至发光元件25都示出非常高的发光效率,即外部量子效率超过25%。如图37及图39所示,示出高电流效率及高功率效率。因此可知,作为用于具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的金属,优选使用in。

另外,如图38所示,发光元件22至发光元件25示出良好的电流-电压特性。因此可知,作为用于具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的金属,优选使用in。

如上所述,本发明的一个方式的发光元件具有优异的电子注入性,所以是驱动电压低且发光效率高的发光元件。此外,由于能够使用功函数大的材料,所以是抗湿性优异的发光元件。本实施例所示的结构可以与其他实施例及实施方式适当地组合而使用。

[实施例11]

示出本发明的一个方式的发光元件之一的发光元件26至发光元件28的制造例子。图1示出在本实施例中制造的发光元件的截面示意图,表18示出元件结构的详细内容。此外,以下示出在本实施例中使用的有机化合物的化学式。注意,其他化合物的结构和简称可以参照上述实施例及实施方式1。注意,在发光元件26至发光元件28是发光元件的一个例子,其中,作为用于具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的有机化合物,使用具有三嗪骨架或联吡啶骨架的有机化合物。注意,在本实施例中,将具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料用于电子注入层130。

[化学式27]

[表18]

《发光元件26至发光元件28的制造》

发光元件26至发光元件28与比较发光元件1的不同之处在于电子注入层130的形成工序,而其他工序与比较发光元件1相同。

作为发光元件26的电子注入层130,在电子传输层118(2)上将ppm3tzn与cu以重量比(ppm3tzn:cu)为1:0.2且厚度为5nm的方式共蒸镀。ppm3tzn是具有三嗪骨架的有机化合物的一个例子。ppm3tzn也可以说是具有嘧啶骨架的有机化合物。

作为发光元件27的电子注入层130,在电子传输层118(2)上将2,2’-(2,2’-联吡啶-6,6’-二基)双(4-苯基苯并[h]喹唑啉)(简称:6,6’(p-bqn)2bpy)与ag以重量比(6,6’(p-bqn)2bpy:ag)为1:0.3且厚度为5nm的方式共蒸镀。6,6’(p-bqn)2bpy是具有联吡啶骨架的有机化合物的一个例子。6,6’(p-bqn)2bpy也可以说是具有喹唑啉骨架的有机化合物。

作为发光元件28的电子注入层130,在电子传输层118(2)上将6,6’(p-bqn)2bpy与cu以重量比(6,6’(p-bqn)2bpy:cu)为1:0.3且厚度为5nm的方式共蒸镀。

在发光元件26至发光元件28中,与比较发光元件1同样地制造阴极,然后在不进行密封的情况下在大气中以80℃进行1小时的热处理。

<各发光元件的测定>

接着,测定上述制造的发光元件26至发光元件28的元件特性。在亮度及cie色度的测定中,利用色亮度计(由topcontechnohouse公司制造的bm-5a)。在电致发射光谱的测定中,利用多通道光谱分析仪(由日本滨松光子学株式会社制造的pma-11)。

图42、图43、图44及图45分别示出所制造的发光元件26至发光元件28的电流效率-亮度特性、电流-电压特性、功率效率-亮度特性以及外部量子效率-亮度特性。另外,各发光元件的测定在室温(保持为23℃的气氛)下进行。另外,图46示出以2.5ma/cm2的电流密度使电流流过各发光元件时的电致发射光谱。注意,测定在室温下进行。

表19示出1000cd/m2附近的发光元件26至发光元件28的元件特性。

[表19]

如图46所示,发光元件26至发光元件28的电场发射光谱的峰值波长都在618nm附近,由此可知,发光元件26至发光元件28呈现来源于各发光元件所包含的客体材料的ir(dmdppr-dmp)2(dpm)的发光。

如图45及表19所示,发光元件26至发光元件28都示出非常高的发光效率,即外部量子效率超过29%。如图42及图44所示,示出高电流效率及高功率效率。因此可知,作为用于具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的有机化合物,优选使用具有三嗪骨架(或嘧啶骨架)或联吡啶骨架(或喹唑啉骨架)的有机化合物。

如图43所示,发光元件26至发光元件28示出良好的电流-电压特性。因此可知,作为用于具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的有机化合物,优选使用具有三嗪骨架(或嘧啶骨架)或联吡啶骨架(或喹唑啉骨架)的有机化合物。

如上所述,本发明的一个方式的发光元件具有优异的电子注入性,所以是驱动电压低且发光效率高的发光元件。此外,由于能够使用功函数大的材料,所以是抗湿性优异的发光元件。本实施例所示的结构可以与其他实施例及实施方式适当地组合而使用。

[实施例12]

示出本发明的一个方式的发光元件之一的发光元件29至发光元件32的制造例子。图1示出在本实施例中制造的发光元件的截面示意图,表20示出元件结构的详细内容。此外,以下示出在本实施例中使用的有机化合物的化学式。注意,其他化合物的结构和简称可以参照上述实施例及实施方式1。注意,在发光元件29至发光元件32是发光元件的一个例子,其中,作为用于具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的有机化合物,使用具有吡啶骨架的有机化合物。注意,在本实施例中,将具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料用于电子注入层130。

[表20]

《发光元件29至发光元件32的制造》

发光元件29至发光元件32与比较发光元件1的不同之处在于电子注入层130的形成工序,而其他工序与比较发光元件1相同。

作为发光元件29的电子注入层130,在电子传输层118(2)上将2,6(p-bqn)2py与ag以重量比(2,6(p-bqn)2py:ag)为1:0.3且厚度为5nm的方式共蒸镀。2,6(p-bqn)2py是具有吡啶骨架的有机化合物的一个例子。2,6(p-bqn)2py也可以说是具有喹唑啉骨架的有机化合物。

作为发光元件30的电子注入层130,在电子传输层118(2)上将2,6(p-bqn)2py与cu以重量比(2,6(p-bqn)2py:cu)为1:0.2且厚度为5nm的方式共蒸镀。

作为发光元件31的电子注入层130,在电子传输层118(2)上将2,6’(np-ppm)2py与ag以重量比(2,6’(np-ppm)2py:ag)为1:0.3且厚度为5nm的方式共蒸镀。2,6’(np-ppm)2py是具有吡啶骨架的有机化合物的一个例子。2,6’(np-ppm)2py也可以说是具有嘧啶骨架的有机化合物。

在发光元件29至发光元件32中,与比较发光元件1同样地制造阴极,然后在不进行密封的情况下在大气中以80℃进行1小时的热处理。

<各发光元件的测定>

测定上述制造的发光元件29至发光元件32的元件特性。在亮度及cie色度的测定中,利用色亮度计(由topcontechnohouse公司制造的bm-5a)。在电致发射光谱的测定中,利用多通道光谱分析仪(由日本滨松光子学株式会社制造的pma-11)。

图47、图48、图49及图50分别示出所制造的发光元件29至发光元件32的电流效率-亮度特性、电流-电压特性、功率效率-亮度特性以及外部量子效率-亮度特性。另外,各发光元件的测定在室温(保持为23℃的气氛)下进行。另外,图51示出以2.5ma/cm2的电流密度使电流流过各发光元件时的电致发射光谱。注意,测定在室温下进行。

表21示出1000cd/m2附近的发光元件29至发光元件32的元件特性。

[表21]

如图51所示,发光元件29至发光元件32的电场发射光谱的峰值波长都在618nm附近,由此可知,发光元件29至发光元件32呈现来源于各发光元件所包含的客体材料的ir(dmdppr-dmp)2(dpm)的发光。

如图50及表21所示,发光元件29至发光元件32都示出非常高的发光效率,即外部量子效率超过28%。如图47及图49所示,示出高电流效率及高功率效率。因此可知,作为用于具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的有机化合物,优选使用具有吡啶骨架(嘧啶骨架或喹唑啉骨架)的有机化合物。

如图48所示,发光元件29至发光元件32示出良好的电流-电压特性。因此可知,作为用于具有在3齿或4齿与金属相互作用的功能的有机化合物和金属的复合材料的有机化合物,优选使用具有三嗪骨架(或嘧啶骨架)或联吡啶骨架(或喹唑啉骨架)的有机化合物。

如上所述,本发明的一个方式的发光元件具有优异的电子注入性,所以是驱动电压低且发光效率高的发光元件。此外,由于能够使用功函数大的材料,所以是抗湿性优异的发光元件。本实施例所示的结构可以与其他实施例及实施方式适当地组合而使用。

[符号说明]

100:el层、101:电极、101a:导电层、101b:导电层、102:电极、103:电极、103a:导电层、103b:导电层、104:电极、104a:导电层、104b:导电层、106:发光单元、108:发光单元、110:el层、111:空穴注入层、112:空穴传输层、113:电子传输层、115:电荷产生层、116:空穴注入层、117:空穴传输层、118:电子传输层、119:电子注入层、127:缓冲层、129:电荷产生层、130:电子注入层、131:化合物、132:金属、133:化合物、140:发光层、145:分隔壁、150:发光元件、152:发光元件、154:发光元件、170:发光层、200:衬底、220:衬底、222b:区域、222g:区域、222r:区域、223:遮光层、224b:光学元件、224g:光学元件、224r:光学元件、250a:发光元件、250b:发光元件、601:源极一侧驱动电路、602:像素部、603:栅极一侧驱动电路、604:密封衬底、605:密封剂、607:空间、608:布线、610:元件衬底、611:开关用tft、612:电流控制用tft、613:电极、614:绝缘物、616:el层、617:电极、618:发光元件、623:n沟道tft、624:p沟道tft、900:便携式信息终端、901:外壳、902:外壳、903:显示部、905:铰链部、910:便携式信息终端、911:外壳、912:显示部、913:操作按钮、914:外部连接端口、915:扬声器、916:麦克风、917:照相机、920:照相机、921:外壳、922:显示部、923:操作按钮、924:快门按钮、926:镜头、1001:衬底、1002:基底绝缘膜、1003:栅极绝缘膜、1006:栅电极、1007:栅电极、1008:栅电极、1020:层间绝缘膜、1021:层间绝缘膜、1022:电极、1024b:电极、1024g:电极、1024r:电极、1024w:电极、1025b:下部电极、1025g:下部电极、1025r:下部电极、1025w:下部电极、1026:分隔壁、1028:el层、1029:电极、1031:密封衬底、1032:密封剂、1033:基材、1034b:着色层、1034g:着色层、1034r:着色层、1036:保护层层、1037:层间绝缘膜、1040:像素部、1041:驱动电路部、1042:周边部、2100:机器人、2101:照度传感器、2102:麦克风、2103:上部照相机、2104:扬声器、2105:显示器、2106:下部照相机、2107:障碍物传感器、2108:移动机构、2110:运算装置、5000:外壳、5001:显示部、5002:显示部、5003:扬声器、5004:led灯、5005:操作键、5006:连接端子、5007:传感器、5008:麦克风、5012:支撑部、5013:耳机、5100:扫地机器人、5101:显示器、5102:照相机、5103:刷子、5104:操作按钮、5120:垃圾、5140:便携式电子设备、5150:便携式信息终端、5151:外壳、5152:显示区域、5153:弯曲部、8501:照明装置、8502:照明装置、8503:照明装置、8504:照明装置。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1