微型发光二极管显示面板及其制备方法与流程

文档序号:19410918发布日期:2019-12-14 00:24阅读:169来源:国知局
微型发光二极管显示面板及其制备方法与流程

本发明涉及显示技术领域,尤其涉及一种微型发光二极管显示面板及其制备方法。



背景技术:

目前,微型发光二极管(microlightemittingdiode)显示面板的制备通常包括:将承载基板上的微型发光二极管转移至薄膜晶体管(thinfilmtransistor,tft)基板上的步骤。然而,由于微型发光二极管的尺寸非常小(例如宽度不超过100微米),导致微型发光二极管的转移精度要求非常严苛,进而使得微型发光二极管显示面板的加工精度要求很高,制备流程复杂。



技术实现要素:

本发明提供一种微型发光二极管显示面板的制备方法,其包括以下步骤:

提供一承载基板,所述承载基板上设置有微型发光二极管,所述微型发光二极管的远离所述承载基板的一端设置有第一电极;

提供一薄膜晶体管基板,所述薄膜晶体管基板包括控制电路,于所述薄膜晶体管基板上依次形成导电连接件、覆盖所述导电连接件的绝缘层、以及设置于所述绝缘层远离所述薄膜晶体管基板的一侧的接触电极层,所述导电连接件电性连接所述控制电路,所述接触电极层穿过所述绝缘层以电性连接所述控制电路;

同时图案化所述绝缘层和所述接触电极层,以形成贯穿所述接触电极层和所述绝缘层的通孔,所述通孔暴露所述导电连接件;

将所述微型发光二极管的第一电极抵持所述接触电极层,并通过所述控制电路给所述接触电极层施加参考电压,通过所述控制电路给所述导电连接件施加不同于所述参考电压的电压,进而使所述微型发光二极管的第一电极和所述导电连接件之间形成静电吸附;

使所述微型发光二极管及其第一电极脱离所述承载基板,并转移至所述薄膜晶体管基板上;以及

处理所述导电连接件,以使所述微型发光二极管的第一电极与所述导电连接件结合。

本发明微型发光二极管显示面板的制备方法,同时图案化所述绝缘层和所述接触电极层,简化了制备流程。另外,同时图案化所述绝缘层和所述接触电极层的步骤中形成了贯穿所述接触电极层和所述绝缘层的通孔,使得所述微型发光二极管的第一电极抵持所述接触电极层时的转移精度要求降低。

附图说明

图1为本发明实施例的微型发光二极管显示面板的制备方法之步骤s1的剖面示意图。

图2为本发明实施例的微型发光二极管显示面板的制备方法之步骤s2的剖面示意图。

图3为本发明实施例的微型发光二极管显示面板的制备方法之步骤s3的剖面示意图。

图4为本发明实施例的微型发光二极管显示面板的制备方法之步骤s4的剖面示意图。

图5为本发明实施例的微型发光二极管显示面板的制备方法之步骤s5的剖面示意图。

图6为本发明实施例的微型发光二极管显示面板的制备方法之步骤s6的剖面示意图。

图7为本发明实施例的微型发光二极管显示面板的制备方法之步骤s7以及步骤s8的剖面示意图。

主要元件符号说明

如下具体实施方式将结合上述附图进一步说明本发明。

具体实施方式

附图中示出了本发明的实施例,本发明可以通过多种不同形式实现,而并不应解释为仅局限于这里所阐述的实施例。相反,提供这些实施例是为了使本发明更为全面和完整的公开,并使本领域的技术人员更充分地了解本发明的范围。为了清晰可见,在图中,层和区域的尺寸被放大了。

本申请中的“微型发光二极管”是指尺寸大约在1微米到100微米的范围的发光二极管,更确切地说,是指尺寸小于100微米的发光二极管。

本发明实施例提供的微型发光二极管显示面板的制备方法,包括以下步骤:

步骤s1:如图1所示,提供一承载基板10,承载基板10上设置有微型发光二极管20,微型发光二极管20的远离承载基板10的一端设置有第一电极25。

如图1所示,承载基板10包括基底11、以及设置于基底11的一表面的粘胶层12。多个间隔设置的微型发光二极管20嵌设于粘胶层12中。粘胶层12的材质为在紫外光照或加热状态下可以分解进而失去粘性的一类胶体。

如图1所示,每一微型发光二极管20包括依次层叠设置的p型掺杂的无机发光材料层21、活性层22、n型掺杂的无机发光材料层23。活性层22位于p型掺杂的无机发光材料层21和n型掺杂的无机发光材料层23之间。微型发光二极管20的靠近承载基板10的一端设置有第二电极26。n型掺杂的无机发光材料层23电性连接第二电极26,p型掺杂的无机发光材料层21电性连接第一电极25。

于一实施例中,微型发光二极管20的外部还设置有保护层24,保护层24包裹微型发光二极管20的侧面并暴露出第一电极25和第二电极26。保护层24的材质可以为硅的氧化物。

步骤s2:如图2所示,提供一薄膜晶体管基板50,薄膜晶体管基板50包括控制电路51,于薄膜晶体管基板50上形成电性连接控制电路51的导电连接件52。

于一实施例中,控制电路51包括多条数据线60(图中仅示意性地示出一条)、多条扫描线70(图中仅示意性地示出一条)、多个存储电容c(图中仅示意性地示出一个)、多个第一薄膜晶体管m1(图中仅示意性地示出一个)、多个第二薄膜晶体管m2(图中仅示意性地示出一个)、以及多个第三薄膜晶体管m3(图中仅示意性地示出一个)。其中,多条数据线60沿第一方向(图未示)延伸,多条扫描线70沿与第一方向交叉的第二方向(图未示)延伸,相邻的两条扫描线70和相邻的两条数据线60交叉定义一子像素单元(图未示)。每一子像素单元对应一个微型发光二极管20。薄膜晶体管基板50通过控制电路51以驱动微型发光二极管20发光。

图2中仅示意性地示出一个子像素单元的等效电路图。如图2所示,每一子像素单元中包括一个存储电容c、一个第一薄膜晶体管m1、一个第二薄膜晶体管m2、以及一个第三薄膜晶体管m3。存储电容c包括第一端a和电性连接电源电压vdd的第二端b。第一薄膜晶体管m1包括电性连接数据线60的源极、电性连接扫描线70的栅极、以及电性连接存储电容c的第一端a的漏极。第二薄膜晶体管m2包括电性连接电源电压vdd的源极、电性连接存储电容c的第一端a的栅极、以及电性连接导电连接件52的漏极。第三薄膜晶体管m3包括电性连接参考电压vref的源极、电性连接控制电压v-off的栅极、以及电性连接导电连接件52的漏极。其中,电源电压vdd不同于参考电压vref。

于一实施例中,薄膜晶体管基板50上形成有间隔设置的多个导电连接件52(图中仅示意性地示出一个)。每一个导电连接件52对应一个微型发光二极管20并用于后续电性连接微型发光二极管20的第一电极25。

如图2所示,导电连接件52包括设置于薄膜晶体管基板50上的导电基底层521、设置于导电基底层521远离薄膜晶体管基板50的一侧的导电屏障层522、以及设置于导电屏障层522远离薄膜晶体管基板50的一侧的导电熔接层523。导电屏障层522位于导电基底层521和导电熔接层523之间,以用于抑制导电熔接层523中的原子扩散至导电基底层521。

于一实施例中,导电基底层521包括间隔且绝缘设置的第一部分5211和第二部分5212。导电屏障层522和导电熔接层523依次层叠于导电基底层521的第一部分5211,导电基底层521的第二部分5212远离薄膜晶体管基板50的一侧未被导电屏障层522和导电熔接层523覆盖。第二薄膜晶体管m2的漏极电性连接导电基底层521的第一部分5211。第三薄膜晶体管m3的漏极电性连接导电基底层521的第二部分5212。

于一实施例中,导电基底层521的材质可为氧化铟锡。导电熔接层523的材质可为锡。导电屏障层522的材质可为金属镍或金。导电屏障层522用于防止导电熔接层523的原子扩散到导电基底层521。导电基底层521用于将微型发光二极管20发出的光线向远离薄膜晶体管基板50的一侧反射,进而提高微型发光二极管显示面板的出光效率。

步骤s3:如图3所示,于薄膜晶体管基板50上形成覆盖导电连接件52的绝缘层53。

如图3所示,绝缘层53具有暴露导电基底层521的第二部分5212的接触孔531。于一实施例中,绝缘层53的材质可为硅的氧化物。

步骤s4:如图4所示,于绝缘层53远离薄膜晶体管基板50的一侧形成接触电极层54,接触电极层54穿过绝缘层53以电性连接控制电路51。

如图4所示,接触电极层54填充接触孔531,并通过导电基底层521的第二部分5212电性连接控制电路51。

步骤s5:如图5所示,同时图案化绝缘层53和接触电极层54,以形成贯穿接触电极层54和绝缘层53的通孔55,通孔55暴露导电连接件52。

如图5所示,通孔55暴露出部分导电熔接层523。

于一实施例中,接触电极层54图案化后形成绝缘间隔设置的多个接触电极541(图中仅示意性地示出一个),每一个接触电极541对应一个导电连接件52。

步骤s6:如图6所示,将微型发光二极管20的第一电极25抵持接触电极层54,并通过控制电路51给接触电极层54施加参考电压vref,通过控制电路51给导电连接件52施加不同于参考电压vref的电源电压vdd,进而使微型发光二极管20的第一电极25和导电连接件52之间形成静电吸附。

于一实施例中,每一个微型发光二极管20与一个导电连接件52对应。每一个微型发光二极管20的第一电极25抵持接触电极层54中对应的一个接触电极541。

如图6所示,微型发光二极管20的第一电极25在薄膜晶体管基板50上的投影完全覆盖通孔55在薄膜晶体管基板50上的投影。

由于通孔55完全贯穿接触电极层54和绝缘层53,使得对应通孔55的位置处,绝缘层53的远离薄膜晶体管基板50的表面完全被接触电极层54覆盖。因此,将微型发光二极管20的第一电极25抵持接触电极层54的过程中,微型发光二极管20的第一电极25必然不会与位于接触电极层54下方的绝缘层53接触。如此,降低了微型发光二极管20转移至薄膜晶体管基板50的精度要求。

具体地,微型发光二极管20的第一电极25抵持接触电极层54的同时,第三薄膜晶体管m3被开启,以提供参考电压vref至接触电极层54和微型发光二极管20的第一电极25;第一薄膜晶体管m1和第二薄膜晶体管m2也被开启,以提供电源电压vdd给导电连接件52。由于电源电压vdd不同于参考电压vref,使得微型发光二极管20的第一电极25和导电连接件52之间形成静电吸附。

步骤s7:如图7所示,使微型发光二极管20及其第一电极25脱离承载基板10,并转移至薄膜晶体管基板50上。

于一实施例中,利用紫外光照射或加热粘胶层12使其失去粘性,进而微型发光二极管20及其第一电极25脱离承载基板10,并由于微型发光二极管20的第一电极25和导电连接件52之间的静电吸附,而转移至薄膜晶体管基板50上。

步骤s8:如图7所示,处理导电连接件52,以使微型发光二极管20的第一电极25与导电连接件52结合。

于一实施例中,加热导电连接件52,以使导电熔接层523熔融,而与微型发光二极管20的第一电极25固化结合。

如图7所示,第二薄膜晶体管m2的漏极和第三薄膜晶体管m3的漏极均电性连接微型发光二极管20的第一电极25。其中,第二薄膜晶体管m2的漏极通过导电连接件52电性连接微型发光二极管20的第一电极25;第三薄膜晶体管m3的漏极通过接触电极层54电性连接微型发光二极管20的第一电极25。

于一实施例中,第三薄膜晶体管m3仅在微型发光二极管20转移至薄膜晶体管基板50的过程中使用。在后续微型发光二极管显示面板进行显示时,每一个子像素单元中,第三薄膜晶体管m3不工作,进而不会对微型发光二极管20的发光造成影响。例如,在微型发光二极管显示面板进行显示时,控制电路51通过第一薄膜晶体管m1和第二薄膜晶体管m2向微型发光二极管20的第一电极25施加电源电压vdd,控制电路51向微型发光二极管20的第二电极26施加另一小于电源电压vdd的电压,以使微型发光二极管20在该正向偏压下发光。

本发明微型发光二极管显示面板的制备方法,同时图案化绝缘层53和接触电极层54,简化了制备流程。另外,同时图案化绝缘层53和接触电极层54的步骤中形成了贯穿接触电极层54和绝缘层53的通孔55,使得微型发光二极管20的第一电极25抵持接触电极541时的转移精度要求降低。

本发明实施例还提供一种采用上述方法制备的微型发光二极管显示面板。该微型发光二极管显示面板可以为手机、平板电脑、智能手表等。

以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1