燃料电池系统的制作方法

文档序号:19899353发布日期:2020-02-11 13:39阅读:177来源:国知局
燃料电池系统的制作方法

本公开涉及燃料电池系统的技术。



背景技术:

以往,在燃料电池系统中,已知有进行排气排水阀是否冻结的有无冻结判定和排气排水阀是否解冻的有无解冻判定的技术(专利文献1)。另外,在现有技术中,在进行了排气排水阀发生冻结的冻结判定的情况下,执行用于消除冻结的解冻处理(升温处理)。

专利文献1:日本特开2011-3465号公报



技术实现要素:

发明所要解决的课题

在现有技术中,根据用于进行有无解冻判定的阈值,即使在没有充分进行排气排水阀的解冻的情况下也有可能产生进行解冻判定的情况。在此情况下,在再次进行了有无冻结判定的情况下进行排气排水阀发生冻结的冻结判定的可能性变高,有可能产生每次进行冻结判定时都执行解冻处理的必要。例如,在如现有技术那样在燃料电池系统启动时进行有无冻结判定的情况下,有可能产生每次燃料电池系统启动时都进行冻结判定,并且每次进行冻结判定时都执行解冻处理的必要。

用于解决课题的技术方案

本公开能够以如下形式实现。

(1)根据本公开的一个方式,提供一种燃料电池系统。该燃料电池系统包括:燃料电池;温度传感器,计测所述燃料电池的环境温度;阳极气体供给系统,向所述燃料电池供给阳极气体,并具有供朝向所述燃料电池的阳极气体流通的阳极气体供给路;阳极气体循环系统,使从所述燃料电池排出的阳极废气向所述阳极气体供给路循环,并具有供朝向所述阳极气体供给路的所述阳极废气流通的阳极气体循环路;排气排水路,使所述阳极气体循环路与外部连通;排气排水阀,用于开闭所述排气排水路;及控制部,控制所述燃料电池系统的动作,所述控制部具有:有无冻结判定部,在所述燃料电池系统启动时,在所述温度传感器的计测值为冰点以下且对所述排气排水阀进行了开阀指示的情况下,使用从所述排气排水阀排出的气体的排气流量来进行所述排气排水阀是否冻结的有无冻结判定,升温执行部,在由所述有无冻结判定部进行了所述排气排水阀冻结的冻结判定时,执行使所述排气排水阀升温的升温处理;及有无解冻判定部,在所述升温处理执行过程中和执行后的至少任一时机对所述排气排水阀进行了开阀指示的情况下,使用所述阳极废气的排气流量来进行所述排气排水阀是否解冻的有无解冻判定,在所述有无冻结判定中,在所述阳极废气的排气流量为第一阈值以下的情况下,进行所述冻结判定,在所述有无解冻判定中,在所述阳极废气的排气流量高于第二阈值的情况下,进行所述排气排水阀已解冻的解冻判定,所述第二阈值表示比所述第一阈值高的流量。根据该方式,在进行有无解冻判定时所使用的第二阈值表示比在进行有无冻结判定时所使用的第一阈值高的流量。由此,能够降低在进行了解冻判定后燃料电池系统停止并在下次的燃料电池系统启动时进行有无冻结判定的情况下进行冻结判定的可能性。因此,能够减少升温处理的执行次数。

(2)在上述方式中,可以采用如下结构,即,还具有计测所述阳极气体供给路内的压力的压力传感器,所述控制部使用由所述压力传感器计测的压力的变化来计算所述阳极气体的排气流量,所述控制部在进行所述有无解冻判定的情况下,执行第一预处理、第二预处理和第三预处理中的至少任一个处理,在所述第一预处理中,与通常排气处理执行过程中相比提高向所述燃料电池供给的所述阳极气体的压力,所述通常排气处理是在所述燃料电池系统通常运转时所执行的从所述排气排水阀排出所述阳极废气的处理,在所述第二预处理中,与所述通常排气处理执行过程中相比降低从所述阳极气体循环路向所述阳极气体供给路循环的所述阳极废气的流量,在所述第三预处理中,与所述通常排气处理执行过程中相比减小所述燃料电池的电流值。根据该方式,通过执行第一预处理至第三预处理中的至少任一个处理,能够降低由压力传感器计测的压力因从排气排水阀排出的气体以外的要素而发生变动的可能性。由此,能够进一步提高排气流量的计算精度,因此能够更准确地执行恢复有无判定。

(3)在上述方式中,可以采用如下结构,即,所述控制部使用在过去的所述有无解冻判定时所使用的所述第二阈值即过去第二阈值,来设定在本次的所述有无解冻判定时使用的所述第二阈值即本次第二阈值。根据该方式,通过使用过去第二阈值来设定本次第二阈值,能够适当地设定第二阈值。

(4)在上述方式中,可以采用如下结构,即,所述控制部以表示比所述过去第二阈值中的、前次的所述有无解冻判定时所使用的所述第二阈值即前次第二阈值高的所述排气流量的方式设定所述本次第二阈值。根据该方式,能够进一步降低在进行了解冻判定后燃料电池系统停止并在下次的燃料电池系统启动时进行有无冻结判定的情况下进行冻结判定的可能性。

(5)在上述方式中,可以采用如下结构,即,所述升温执行部通过暖机运转来执行所述升温处理。根据该方式,由于能够通过暖机运转来执行升温处理,所以不需要为了进行升温处理而使用加热器等其他设备。

本公开能够以上述以外的各种形式来实现,例如,能够以燃料电池系统的控制方法、用于执行控制方法的程序、搭载有燃料电池系统的车辆等形式来实现。

附图说明

图1为表示第一实施方式中的燃料电池系统的概略的说明图。

图2为表示燃料电池系统的电结构的概念图。

图3为包括排气排水阀的有无冻结判定及有无解冻判定的流程图。

图4为冰点下启动处理的流程图。

图5为表示排气排水阀的特性的曲线图。

图6为包括第二实施方式中的排气排水阀的有无冻结判定及有无解冻判定的流程图。

图7为包括第三实施方式中的排气排水阀的有无冻结判定及有无解冻判定的流程图。

图8为用于对本次第二阈值的设定进行说明的图。

图9为在第四实施方式中控制部所执行的流程图。

图10为图9所示的流程图的时序图。

具体实施方式

a.第一实施方式:

图1为表示第一实施方式中的燃料电池系统10的概略的说明图。本实施方式中的燃料电池系统10例如搭载于燃料电池车辆12,作为用于驱动燃料电池车辆12的驱动用电动机的发电装置而使用。燃料电池系统10具备燃料电池15、阴极气体给排系统30、阳极气体给排系统50、冷却介质循环系统70、控制装置60。

控制装置60具备控制部62和存储部64。控制部62通过执行存储在存储部64中的各种程序来控制燃料电池系统10的动作。在存储部64中,除了各种程序之外,还存储有用于后述的有无冻结判定、有无解冻判定等的各种阈值。

燃料电池15是接受作为反应气体的阴极气体和阳极气体的供给并通过氧和氢的电化学反应而发电的固体高分子型燃料电池。在本实施方式中,阴极气体为空气,阳极气体为氢气。燃料电池15具有层叠有多个单电池的堆叠结构。各个单电池分别是能够单独发电的发电元件。单电池具备膜电极接合体和夹着膜电极接合体的2片隔板。膜电极接合体具有:电解质膜;配置在电解质膜的一个面的阳极;及配置在电解质膜的另一个面的阴极。电解质膜是在内部含有水分的湿润状态时显示良好的质子传导性的固体高分子薄膜。在各个单电池的外周端部设置有在各个单电池的层叠方向上延伸并与各个单电池的发电部分支连接的反应气体用的歧管(省略图示)。各个单电池在层叠的状态下,以在层叠方向上被夹持的状态紧固。

阴极气体给排系统30向燃料电池15供给阴极气体,或者向外部排出阴极气体。阴极气体给排系统30具备阴极气体供给系统30a和阴极气体排出系统30b。阴极气体供给系统30a向燃料电池15供给阴极气体。阴极气体供给系统30a具有阴极气体供给路302、空气滤清器31、压缩机33、电动机34、中间冷却器35、分流阀36。

阴极气体供给路302配置在燃料电池15的上游侧,是使外部与燃料电池15的阴极连通的配管。空气滤清器31设置在阴极气体供给路302中的比压缩机33靠上游侧,去除向燃料电池15供给的阴极气体中的异物。压缩机33设置于比燃料电池15靠上游侧的阴极气体供给路302,根据来自控制部62的指示,向阴极喷出压缩后的空气。压缩机33由根据来自控制部62的指示进行动作的电动机34驱动。中间冷却器35设置在阴极气体供给路302中的比压缩机33靠下游侧。中间冷却器35冷却由压缩机33压缩而成为高温的阴极气体。分流阀36例如是三通阀,通过由控制部62调整开度,从而对从阴极气体供给路302朝向燃料电池15的阴极气体的流量及流通于从阴极气体供给路302分支而不经过燃料电池15的旁通路306的阴极气体的流量进行调整。旁通路306与后述的阴极气体排出路308连接。流通于旁通路306的阴极气体经由阴极气体排出路308排出到外部。

阴极气体排出系统30b将阴极气体排出到外部。阴极气体排出系统30b具有阴极气体排出路308、旁通路306、调压阀37。阴极气体排出路308是用于将从燃料电池15排出的阴极气体(也称为“阴极废气”)、流过旁通路306的阴极气体排出到外部的配管。调压阀37通过由控制部62调整开度,从而调整燃料电池15的阴极侧流路的背压。调压阀37配置在阴极气体排出路308中的比与旁通路306连接的地点靠上游侧的位置。在阴极气体排出路308的下游侧端部配置有消音器310。

阳极气体给排系统50具备阳极气体供给系统50a、阳极气体循环系统50b、阳极气体排出系统50c。

阳极气体供给系统50a向燃料电池15供给阳极气体。阳极气体供给系统50a具备阳极气体罐51、阳极气体供给路501、开闭阀52、调节器53、喷射器54、压力传感器59。阳极气体罐51贮存例如高压的氢气。阳极气体供给路501与阳极气体罐51和燃料电池15连接,是供从阳极气体罐51朝向燃料电池15的阳极气体流通的配管。开闭阀52在开阀状态下使阳极气体罐51的阳极气体向下游侧流通。调节器53通过控制部62的控制,调整比喷射器54靠上游侧的阳极气体的压力。喷射器54配置在阳极气体供给路501中的比后述的阳极气体循环路502的合流地点靠上游侧。喷射器54是根据由控制部62设定的驱动周期、开阀时间以电磁方式进行驱动的开闭阀,调整向燃料电池15供给的阳极气体供给量。压力传感器59计测阳极气体供给路501中的比喷射器54靠下游侧的内部压力(阳极气体的供给压力)。计测结果被发送到控制装置60。

阳极气体循环系统50b使从燃料电池15排出的阳极气体(也称为“阳极废气”)再次循环到阳极气体供给路501。阳极气体循环系统50b具有阳极气体循环路502、气液分离器57、循环泵55、电动机56。阳极气体循环路502与燃料电池15和阳极气体供给路501连接,是供朝向阳极气体供给路501的阳极废气流通的配管。气液分离器57设置于阳极气体循环路502,从混合有液态水的阳极废气中分离液态水。循环泵55通过驱动电动机56而使阳极气体循环路502内的阳极废气向阳极气体供给路501循环。

阳极气体排出系统50c将阳极废气、由燃料电池15的发电产生的液态水排出到外部。阳极气体排出系统50c具有排气排水路504和排气排水阀58。排气排水路504是将排出液态水的气液分离器57的排出口与外部连通的配管。

排气排水阀58配置于排气排水路504,对排气排水路504进行开闭。排气排水阀58例如使用隔膜阀。在燃料电池系统10的通常运转时,控制部62在预先设定的定时对排气排水阀58进行开阀指示,并且对喷射器54进行开闭控制而向下游侧供给阳极气体(通常排气处理)。所谓燃料电池系统10的通常运转时,是指后述的判定为排气排水阀58未冻结的情况、判定为已解冻的情况下的运转状态。通过进行通常排气处理,排气排水阀58成为打开状态,作为阳极废气中所含的杂质气体的氮气与液态水一起经由排气排水路504排出到外部。作为预先设定的定时,例如是贮存有预定的第一液态水量以上的气液分离器57的液态水时。另外,在通常排气处理中,循环泵55既可以驱动,也可以停止。控制部62使用燃料电池15的发电量来推定贮存在气液分离器57中的液态水的量。另外,在其他实施方式中,可以在气液分离器57至少配置一个水位传感器,并根据来自水位传感器的检测信号来取得贮水量。水位传感器例如根据控制部62在控制中使用的贮水量的阈值而配置。例如,在第一液态水量以上时执行通常排气处理的情况下,水位传感器配置在与第一液态水量相对应的位置。

冷却介质循环系统70使用冷却介质来调整燃料电池15的温度。作为冷却介质,使用水、乙二醇等防冻液。冷却介质循环系统70具备冷却介质循环路79、冷却介质循环泵74、电动机75、散热器72、散热器风扇71、温度传感器73。

冷却介质循环路79具有冷却介质供给路79a和冷却介质排出路79b。冷却介质供给路79a是用于向燃料电池15供给冷却介质的配管。冷却介质排出路79b是用于从燃料电池15排出冷却介质的配管。冷却介质循环泵74通过电动机75的驱动而将冷却介质供给路79a的冷却介质向燃料电池15送出。散热器72通过由散热器风扇71输送风而进行散热,从而对流通于内部的冷却介质进行冷却。温度传感器73计测冷却介质排出路79b内的冷却介质的温度。冷却介质的温度的计测结果被发送到控制部62。

控制部62具有有无冻结判定部622、升温执行部624、有无解冻判定部626。有无冻结判定部622在温度传感器73的计测值为冰点以下且对排气排水阀58进行了开阀指示的情况下,进行排气排水阀58的有无冻结判定。在有无冻结判定中,使用在进行开阀指示的期间内的从排气排水阀58排出的气体即阳极废气的排气流量,来进行排气排水阀58是否冻结的判定。在有无冻结判定中,在阳极废气的排气流量为第一阈值lt以下的情况下,进行排气排水阀58发生冻结的冻结判定。

在进行了冻结判定的情况下,升温执行部624执行使排气排水阀58升温的升温处理。升温执行部624通过对燃料电池系统10进行急速暖机运转而执行升温处理,直至满足预先设定的条件。即,升温执行部624通过急速暖机运转而使燃料电池15升温,由此,利用来自燃料电池15的热量来对配置在燃料电池15周围的排气排水阀58进行加热。预先设定的条件例如可以包括执行升温处理的期间作为条件,也可以以包括温度传感器73的计测温度达到预先设定的温度(例如,60℃)以上作为条件。所谓急速暖机运转,是与判定为排气排水阀58未冻结的燃料电池系统10的通常运转时相比降低了阴极气体过剩系数的运转,该阴极气体过剩系数为阴极气体的供给量相对于使用燃料电池15的发电量在理论上求出的阴极气体的理论供给量的比率。在通常运转时,阴极气体过剩系数设定为1.5~2.0左右。与此相对,在急速暖机运转中,阴极气体过剩系数设定为0.9~1.1左右。另外,也可以代替急速暖机运转,通过与急速暖机运转相比阴极过剩系数更高的暖机运转来执行升温处理。另外,“用于解决课题的技术方案”中的暖机运转并不限于急速暖机运转,只要是燃料电池15的发热超过放热的运转即可。通过利用包括急速暖机运转在内的暖机运转来执行升温处理,不需要为了进行升温处理而使用加热器等其他设备。另外,在其他实施方式中,升温执行部624也可以通过使用加热器对排气排水阀58进行加热来执行升温处理。在此情况下,在通过加热器对排气排水阀58进行加热的升温处理的执行过程中、在由加热器对排气排水阀58进行了加热之后的升温处理的执行后,执行后述的有无解冻判定。

在对排气排水阀58进行了开阀指示的情况下,有无解冻判定部626使用进行开阀指示的期间内的从排气排水阀58排出的气体即阳极废气的排气流量,来进行排气排水阀58是否解冻的有无解冻判定。在有无解冻判定中,在来自排气排水阀58的阳极废气的排气流量低于第二阈值lp的情况下,进行排气排水阀58已解冻的解冻判定。第二阈值lp表示比第一阈值lt高的流量。关于第一阈值lt和第二阈值lp的详细内容,将在后面叙述。

图2为表示燃料电池系统10的电结构的概念图。燃料电池系统10包括fdc95、dc/ac逆变器98、电池电压计91和电流传感器92。

电池电压计91与燃料电池15的全部单电池151分别连接,以全部单电池151为对象计测电池电压。电池电压计91将其计测结果发送给控制装置60。电流传感器92计测燃料电池15的输出电流的值,并将其发送到控制装置60。

fdc95是构成为dc/dc转换器的电路。fdc95根据从控制装置60发送的电压指令值,控制fdc95的输出电压。另外,fdc95根据从控制装置60发送的电流指令值,控制燃料电池15的输出电流。所谓电流指令值是作为燃料电池15的输出电流的目标值的值,由控制装置60设定。控制装置60例如通过使用燃料电池15的要求电力量来计算要求电流值,从而生成电流指令值。

dc/ac逆变器98与燃料电池15和负载255连接。dc/ac逆变器98将从燃料电池15输出的直流电力转换成交流电力,并将其供给至负载255。

燃料电池系统10还包括二次电池96和bdc97。二次电池96例如由镍氢电池、锂离子电池构成,作为辅助电源而发挥功能。另外,二次电池96进行向燃料电池15的电力的供给和由燃料电池15产生的电力、再生电力的充电。

bdc97是与fdc95一起构成为dc/dc转换器的电路,根据作为控制部的控制装置60的指示,控制二次电池96的充放电。bdc97计测二次电池96的soc(stateofcharge:剩余容量),并将其发送给控制装置60。

图3为包括排气排水阀的有无冻结判定及有无解冻判定的流程图。图4为冰点下启动处理的流程图。图5为表示排气排水阀58的特性的曲线图。在图5的曲线图中,纵轴为从排气排水阀58排出的阳极废气的排气量,横轴为排气时间。图3所示的流程图在燃料电池车辆12的启动开关接通、燃料电池系统10启动的启动时执行。

如图3所示,控制部62判定燃料电池系统10的环境温度(摄氏度)是否为冰点下(步骤s10)。在本实施方式中,环境温度是由温度传感器73(图1)取得的冷却介质排出路79b的冷却介质温度。另外,在其他实施方式中,环境温度可以是外部气温的温度,也可以是排气排水阀58的温度。外部气温例如可以通过配置外部气温传感器来取得。排气排水阀58的温度例如可以通过在排气排水阀58配置温度传感器来取得。

在步骤s10中判定为“否”的情况下,控制部62执行步骤s20。在步骤s20中,控制部62向驾驶员通知车辆行驶许可。例如,通过在燃料电池车辆12的车内的监视器等显示燃料电池车辆12成为可行驶的状态的情况,从而向驾驶者通知车辆行驶许可。另一方面,在步骤s10中判定为“是”的情况下,控制部62执行冰点下启动处理(步骤s11)。冰点下启动处理是用于即使在燃料电池15发生了冻结的情况下也确保燃料电池15的要求发电量的处理。具体而言,冰点下启动处理是为了提高燃料电池15的阳极侧的氢气浓度而用阳极气体对阳极内部进行置换的处理。

如图4所示,在冰点下启动处理中,控制部62对压缩机33进行驱动(步骤s70)。接着,控制部62控制喷射器54的开闭,以将阳极气体供给到燃料电池15(步骤s72)。另外,控制部62对排气排水阀58进行开阀指示(步骤s74)。另外,在冰点下启动处理的执行过程中,为了用阳极气体对燃料电池15的阳极内部进行置换,而使循环泵55停止。持续进行冰点下启动处理,直至使用由压力传感器59计测的压力值计算出的向燃料电池15的阳极供给的阳极气体的供给量达到阳极的容积以上为止。

在执行上述的冰点下启动处理并对排气排水阀58进行了开阀指示的情况下,如图3所示,有无冻结判定部622执行判定排气排水阀58是否冻结的有无冻结判定(步骤s12、步骤s13)。即,有无冻结判定以在冰点下启动处理中进行了开阀指示为起点而开始。有无冻结判定部622计算预先设定的期间tc(例如,5秒)内的来自排气排水阀58的阳极废气的排气累计量[m3](步骤s12)。接着,有无冻结判定部622判定所计算出的排气累计量是否为预先设定的基准累计量[m3]以下(步骤s13)。在排气累计量为基准累计量以下的情况下,有无冻结判定部622进行排气排水阀58已冻结的冻结判定。另一方面,在排气累计量高于基准累计量的情况下,有无冻结判定部622进行排气排水阀58未冻结的无冻结判定。

预先设定的基准累计量是第一阈值lt乘以预先设定的期间tc所得的值。即,在步骤s12中,有无冻结判定部622判定来自排气排水阀58的阳极废气的排气流量[m3/sec]是否为第一阈值lt以下。并且,在排气流量为第一阈值lt以下的情况下进行冻结判定。

如图5所示,将排气排水阀58的开通率为100%时的从排气排水阀58排出的阳极废气的排气流量设为lc。所谓开通率是指,实际的排气排水阀58的流路截面积相对于排气排水阀58没有异常而按照设计成为打开状态时的排气排水阀58的流路截面积的比例(%)。第一阈值lt设定为排气排水阀58的开通率为低于100%的值时的排气流量。第一阈值lt例如设定在如下范围内,即,在进行通常排气处理的情况下能够实现所要求的必要最小限度的排气性能的范围。在本实施方式中,第一阈值lt设定为开通率为20%时的排气流量。另外,排气流量根据燃料电池15的温度、向燃料电池15的阳极气体的供给压力等而变化。

有无冻结判定部622通过使用以下的式(1)~(4)进行计算而取得阳极废气的排气流量。

δp=f(qvin-qvcrs-qvfc-qvex)…式(1)

这里,δp是预先设定的期间tc(例如,5秒)内的由压力传感器59计测出的压力降低量[pa]。qvin是期间tc内的从喷射器54供给至下游侧的阳极气体的供给量[m3]。另外,qvcrs是期间tc内的从燃料电池15的阳极向阴极的氢透过量[m3]。qvfc是期间tc内的由燃料电池15的发电所消耗的阳极气体量[m3]。qvex是期间tc内的从排气排水阀58排出的阳极气体的量[m3]。f表示函数。qvin、qvcrs、qvfc由标准状态下的体积表示。

qvin利用隔着喷射器54的流路的下游侧与上游侧的压差,通过节流孔的式子计算出。图3所示的步骤s12的判定优选在喷射器54的动作停止过程中即用于向燃料电池15供给阳极气体的开闭动作之中的关闭动作过程中执行。在处于该关闭动作过程中的情况下,在qvin代入“0”。qvcrs基于两极间的氢分压差而计算出。在进行步骤s12的判定时,由于透过氢量非常小,所以qvcrs可以视为“0”。

qvfc通过以下的式(2)计算出。

qvfc=(i/f)×(1/2)×n×22.4×10-3…(2)

在此,i为电流传感器92的计测电流值[a],f为法拉第常数,n为单电池151的层叠片数。22.4×10-3为标准状态的每1摩尔气体的体积[m3/mol]。

通过在上述式(1)中,将“0”代入qvin,并将“0”代入qvcrs,由此导出以下的式(3),并由式(3)导出式(4)。

δp=f(-qvfc-qvex)…式(3)

qvex=[{v×(δp/ps)×(273/(273+t)}]-qvfc…式(4)

在式(4)中,v为在排气排水阀58的关闭状态下喷射器54的下游侧的可供阳极气体流通的容积[m3],是在阳极气体供给路501中的比喷射器54靠下游侧供燃料电池15的阳极气体流通的歧管、阳极气体循环路502及气液分离器57的总容积。并且,在式(4)中,ps为标准压力,在本实施方式中为101.3kpa。另外,t为配置有燃料电池系统10的环境下的温度(环境温度),在本实施方式中为温度传感器73的计测值。

控制部62通过将上述式(2)代入上述式(4)来计算qvex。其中,在燃料电池15未发电时,qvfc为“0”。通过将qvex除以期间tc而计算出排气流量。

在图3的步骤s13中判定为“否”的情况下,即,在有无冻结判定部622进行了在排气排水阀58未产生冻结的无冻结判定的情况下,执行步骤s20。

另一方面,在步骤s13中判定为“是”的情况下,即,在有无冻结判定部622进行了冻结判定的情况下,升温执行部624执行作为升温处理的急速暖机运转(步骤s14)。

在从开始升温处理起经过了预定的时间之后,并且在满足了预先设定的开始条件时,有无解冻判定部626进行排气排水阀58的有无解冻判定(步骤s18、s19)。所谓预先设定的开始条件是指例如在燃料电池系统10为低负荷下的运转状态并且气液分离器57的液态水达到了预先设定的第一液态水量以上的情况下,从控制部62向排气排水阀58进行开阀指示的条件。所谓低负荷下的运转状态是指在燃料电池车辆12的停车过程中的怠速运转时等的与燃料电池15连接的负载为预先设定的值(例如2千瓦)以下的状态。另外,低负荷下的运转状态也包括执行利用暖机运转的升温处理的状态。在有无解冻判定中,有无解冻判定部626使用由压力传感器59计测的压力的变化,来计算来自排气排水阀58的阳极废气的排气流量[m3/sec](步骤s18)。接着,有无解冻判定部626判定计算出的排气流量是否为第二阈值lp以下(步骤s19)。在排气流量高于第二阈值lp的情况下,有无解冻判定部626进行排气排水阀58的冰融化而已经解冻的解冻判定。另一方面,在排气流量为第二阈值lp以下的情况下,有无解冻判定部626进行排气排水阀58未解冻的无解冻判定。

如图5所示,第二阈值lp设定为排气排水阀58的开通率为低于100%的值时的排气流量。另外,第二阈值lp被设定为比第一阈值lt高的值。第二阈值lp例如优选为第一阈值lt的1.2倍以上,更优选为1.5倍以上。在本实施方式中,第二阈值lp设定为开通率为40%时的排气流量。

有无解冻判定部626使用以下的式(5)来计算阳极废气的排气流量qex。

qex=[{v×(pv/ps)×(273/(273+t)}]-qfc…式(5)

在式(5)中,v为在排气排水阀58的关闭状态下喷射器54的下游侧的可供阳极气体流通的容积[m3],是在阳极气体供给路501中的比喷射器54靠下游侧供燃料电池15的阳极气体流通的歧管、阳极气体循环路502及气液分离器57的总容积。并且,在式(5)中,ps为标准压力,在本实施方式中为101.3kpa。pv是通过对压力传感器59的计测值(压力)进行时间微分而求得的阳极气体供给路501内的阳极气体的压力降低速度[p/sec]。另外,t为配置有燃料电池系统10的环境温度,在本实施方式中为温度传感器73的计测值。

有无解冻判定部626将排气流量qex与第二阈值lp进行比较,并判定排气流量qex是否为第二阈值lp以上,由此进行有无解冻判定。在图3的步骤s19中判定为“否”的情况下,控制部62向驾驶员通知车辆行驶许可(步骤s20)。

根据以上的第一实施方式,在进行有无解冻判定时所使用的第二阈值lp表示比在有无冻结判定时所使用的第一阈值lt高的排气流量。由此,能够降低在进行了解冻判定后燃料电池系统10停止并在下次的燃料电池系统10启动时进行有无冻结判定的情况下进行冻结判定的可能性。因此,能够减少使排气排水阀58升温的升温处理的执行次数。尤其在从启动开关断开到再次变为接通为止的期间,不进行燃料电池15的发电,从而燃料电池15的温度降低。因此,在该期间,在排气排水阀58中冰融化而使开通率上升的可能性较低。因此,在将第一阈值lt和第二阈值lp设定为相同值的情况下,在启动开关再次接通而执行了冰点下启动处理时,进行冻结判定的可能性变高。另一方面,通过将第二阈值lp设定为比第一阈值lt高的值,能够成为在一定程度上确保排气排水阀58的开通率的状态,因此能够降低在冰点下启动处理后再次进行冻结判定的可能性。

b.第二实施方式:

图6为包括第二实施方式中的排气排水阀58的有无冻结判定及有无解冻判定的流程图。与第一实施方式的流程图(图3)的不同点在于,在控制部62执行步骤s18之前,执行预处理。关于其他步骤,由于是与第一实施方式相同的内容,所以标注同一附图标记,并省略说明。在第二实施方式中,控制装置60可以执行图6所示的流程图,以代替图3所示的流程图。

控制部62在步骤s14之后执行预处理(步骤s17)。预处理是用于更准确地进行有无解冻判定的处理。预处理包括以下的至少一个处理。

·第一预处理:与通常排气处理执行过程中相比提高向燃料电池15供给的阳极气体的压力。

·第二预处理:与通常排气处理执行过程中相比降低从阳极气体循环路502向阳极气体供给路501循环的阳极废气的流量。

·第三预处理:与通常排气处理执行过程中相比将燃料电池15的电流值设定为较小。

在第一预处理中,例如,控制部62使喷射器54的开阀间隔比通常排气处理的执行过程中短,或者增加开阀时间。第一预处理中的阳极气体的供给压力例如可以为通常排气处理的执行过程中的阳极气体的供给压力的110%以上,也可以为120%以上。第一预处理中的阳极气体的供给压力的上限设定为小于上限压力,该上限压力为阳极气体给排系统50的各种部件不发生损坏的上限。

在第二预处理中,例如,通过控制部62停止循环泵55的驱动,从而降低向阳极气体供给路501循环的阳极废气的流量。另外,在第二预处理中,例如,也可以在不产生燃料电池15内部的局部的氢气不足的范围内,降低循环的阳极废气的流量。在第三预处理中,例如,控制部62将作为电流指令值的电流值设定为零。在进行了第三预处理的情况下,用于驱动压缩机33等辅机的电力供给的不足部分由二次电池96的放电来补偿。

在步骤s17中,在执行第一预处理到第三预处理中的至少一个处理的情况下,控制部62也可以执行以下的第四预处理。

·第四预处理:使向阴极气体排出路308流通的阴极气体的流量比在通常排气处理中向阴极气体排出路308流通的阴极气体的流量大。

在第四预处理中,例如,通过控制部62提高压缩机33的转速,由此增大阴极气体流量。另外,第四预处理中的阴极气体的流量可以为通常排气处理中的阴极气体的流量的110%以上,也可以为120%以上。通过执行第四预处理,即使在由于第一预处理、第二预处理、第三预处理而使经由排气排水阀58排出到外部的阳极废气的量增加的情况下,也能够通过阴极废气稀释阳极废气中的氢气。由此,能够降低氢气浓度高的气体经由阴极气体排出路308排出到外部的可能性。

根据上述第二实施方式,在具有与上述第一实施方式相同的结构这一点上,起到与第一实施方式同样的效果。另外,控制部62执行第一预处理作为预处理,由此获得以下效果,在所述第一预处理中,与通常排气处理执行过程中相比提高向燃料电池15供给的阳极气体的压力。即,利用阳极气体压力的降低速度(pv)来计算来自排气排水阀58的阳极废气的排气流量qex。因此,供给至燃料电池15的阳极气体的压力越高,则越能够相对减小由其他的压力变动噪声产生的影响。由此,控制部62能够更准确地执行有无解冻判定。另外,供给的阳极气体的压力越高,则阳极废气的排气流量qex也越大,因此,能够缩短有无解冻判定所花费的时间。

另外,控制部62执行第二预处理作为预处理,由此获得以下效果,在所述第二预处理中,与通常排气处理执行过程中相比降低从阳极气体循环路502流通的向阳极气体供给路501循环的阳极废气的流量。即,通过降低循环的阳极废气的流量,能够抑制阳极气体供给路501中的配置有压力传感器59的区域的压力的脉动。由此,能够降低压力变动噪声,因此能够更准确地执行有无解冻判定。

另外,控制部62执行第三预处理作为预处理,由此获得以下效果,在所述第三预处理中,与通常排气处理执行过程中相比将燃料电池15的电流值设定为较小。即,当燃料电池15的电流值变大时,供给到燃料电池15的阳极气体在燃料电池15中的消耗量变多。由此,由压力传感器59计测出的压力的压力变动噪声变大。另一方面,通过利用第三预处理将燃料电池15的电流值设定为较小,能够降低燃料电池15中的阳极气体的消耗量,因此能够降低压力变动噪声,所以能够更准确地执行有无解冻判定。

如上所述,通过执行第一预处理到第三预处理中的至少一个处理,能够降低由压力传感器59计测的压力因从排气排水阀58排出的阳极废气以外的要素而发生变动的可能性。由此,能够进一步提高排气流量qex的计算精度,因此能够更准确地执行有无解冻判定。

c.第三实施方式:

图7为包括第三实施方式中的排气排水阀58的有无冻结判定及有无解冻判定的流程图。与第一实施方式的流程图(图3)的不同点在于,在控制部62执行步骤s18之前,设定第二阈值lp。关于其他步骤,由于是与第一实施方式相同的内容,所以标注同一附图标记,并省略说明。在第三实施方式中,控制装置60可以执行图7所示的流程图,以代替图3所示的流程图。

控制部62在步骤s14之后,使用在前次的冰点下启动处理之际所执行的有无解冻判定(步骤s18)时所使用的第二阈值lp(也称为“前次第二阈值lp”),设定在本次的冰点下启动处理之际执行的有无解冻判定时使用的第二阈值lp(也称为“本次第二阈值lp”)(步骤s15)。

图8是用于对本次第二阈值lp的设定进行说明的图。在图8中示出了如下内容,即,附图标记lp之后附带的数值越大,则越为在靠后的冰点下启动处理时进行的有无解冻判定中所使用的阈值。例如,第二阈值lp3是本次第二阈值lp3,第二阈值lp2是前次第二阈值lp2,第二阈值lp1是在前前次的冰点下启动处理时进行的有无解冻判定所使用的阈值。在步骤s15中,控制部62将本次第二阈值lp3设定为表示比前次第二阈值lp2高的阳极废气的排气流量。控制部62例如以在开通率下增高5%的方式将本次第二阈值lp3设定为高于前次第二阈值lp2。

根据上述第三实施方式,除了与上述第一实施方式同样的效果之外,还起到以下效果。即,能够进一步降低在进行了解冻判定后燃料电池系统10停止并在下次的燃料电池系统10启动时进行有无冻结判定的情况下进行冻结判定的可能性。另外,在第三实施方式所示的流程图中,也可以执行第二实施方式的预处理。

d.第四实施方式:

图9为在第四实施方式中控制部62所执行的流程图。在从在图3的步骤13中判定为“是”之后到执行步骤s18之前执行本流程图。

控制部62将作为对排气排水阀58进行开阀指示的触发的贮存在气液分离器57中的液态水的阈值设定为第二液态水量(步骤s120)。第二液态水量是比成为通常排气处理的触发的第一液态水量少的量。第二液态水量例如优选为第一液态水量的20%以下,更优选为10%以下。

接着,控制部62判定贮存在气液分离器57中的液态水的量是否达到第二液态水量以上(步骤s130)。在步骤s130中判定为“否”的情况下,再次执行步骤s130。另一方面,在步骤s130中判定为“是”的情况下,控制部62对排气排水阀58进行开阀指示而执行排气处理(步骤s140)。步骤s140持续执行,直至贮存在气液分离器57中的液态水的量达到预先设定的阈值以下为止。在步骤s140中对排气排水阀58进行了开阀指示时,控制部62执行步骤s18。

图10为图9所示的流程图的时序图。在由燃料电池15的发电量推定出的贮存在气液分离器57中的液态水量达到第二液态水量时(时刻t10、t14、t18),控制部62对排气排水阀58进行开阀指示(图9的步骤s140)。在假定排气排水阀58的开通率为100%的情况下,在从排气排水阀58排出液态水而使所贮存的液态水量成为预定值以下(例如,0)时(时刻t12、t16),控制部62对排气排水阀58进行闭阀指示。另外,由于在进行开阀指示的期间进行恢复有无判定,因此也可以执行上述第二实施方式的预处理。图10中还示出了第一预处理和第四预处理的定时,在所述第一预处理中,通过与通常排气处理执行过程中相比缩短喷射器54的开阀间隔,从而提高阳极气体的供给压力,在所述第四预处理中,与通常排气处理执行过程中相比提高压缩机33的转速,从而使向阴极气体排出路308流通的阴极气体的流量增大。

根据上述第四实施方式,除了与上述第一实施方式同样的效果之外,还起到以下效果。即,通过将成为对排气排水阀58进行开阀指示而进行排气处理的触发的阈值设定为比第一液态水量少的第二液态水量,从而能够增加对排气排水阀58进行开阀指示的频率,所以能够增多恢复有无判定的执行次数。

e.其他实施方式:

e-1.其他实施方式1:

在上述第三实施方式中,控制部62将本次第二阈值lp3设定为表示比前次第二阈值lp2高的阳极废气的排气流量,但并不限定于此,也可以使用在过去的冰点下启动处理时执行的有无解冻判定所使用的过去第二阈值来设定本次第二阈值lp3。例如,在冰点下启动处理时执行的有无解冻判定中,在判定为进行了解冻的频率较多的情况下,也可以将本次第二阈值lp3设定为比过去第二阈值低。即,根据驾驶员对燃料电池车辆12的驾驶方式,在燃料电池15中生成的液态水的量不同。因此,控制部62也可以通过学习过去第二阈值等来设定本次第二阈值。如此,能够根据驾驶员的驾驶特性等适当地设定第二阈值,因此能够降低进行冻结判定的频率。

e-2.其他实施方式2:

在上述各实施方式中,控制部62通过使用压力传感器59的计测值进行计算而取得来自排气排水阀58的阳极废气的排气流量,但也可以通过其他方法取得排气流量。例如,可以在排气排水路504中的排气排水阀58的出口附近配置流量计,控制部62将从流量计取得的计测值作为排气流量。

另外,本公开并不限定于上述实施方式,包括各种变形例。例如,上述实施方式是为了便于说明本公开而详细说明的,并不限定于具备所说明的全部结构的实施方式。此外,能够将一些实施方式的结构的一部分替换为其他实施方式的结构,并且,也能够在一些实施例的结构中添加其他实施方式的结构。另外,对于各实施方式的结构的一部分,能够进行其他结构的追加、删除、置换。另外,也可以将实施方式、变形方式和变形例进行组合。

附图标记说明

10…燃料电池系统12、12a…燃料电池车辆15…燃料电池30…阴极气体给排系统30a…阴极气体供给系统30b…阴极气体排出系统31…空气滤清器33…压缩机34…电动机35…中间冷却器36…分流阀37…调压阀50…阳极气体给排系统50a…阳极气体供给系统50b…阳极气体循环系统50c…阳极气体排出系统51…阳极气体罐52…开闭阀53…调节器54…喷射器55…循环泵56…电动机57…气液分离器58…排气排水阀59…压力传感器60…控制装置62…控制部64…存储部70…冷却介质循环系统71…散热器风扇72…散热器73…温度传感器74…冷却介质循环泵75…电动机79…冷却介质循环路79a…冷却介质供给路79b…冷却介质排出路91…电池电压计92…电流传感器96…二次电池98…dc/ac逆变器151…单电池255…负载302…阴极气体供给路306…旁通路308…阴极气体排出路309…阴极气体排出路310…消音器501…阳极气体供给路502…阳极气体循环路503…循环路504…排气排水路622…有无冻结判定部624…升温执行部626…有无解冻判定部。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1