一种n型AlGaN半导体材料及其外延制备方法与流程

文档序号:19494299发布日期:2019-12-24 14:36阅读:600来源:国知局
一种n型AlGaN半导体材料及其外延制备方法与流程

本发明涉及化合物半导体材料algan领域,更具体地,涉及一种n型algan化合物半导体材料外延制备方法。



背景技术:

三元化合物半导体algan材料因具有直接带隙、禁带宽度大、电子饱和迁移速度快、导热性能好等诸多优良特性而适合高集成密度、高工作频率、耐辐射微波大功率器件的制作以及高效率紫外波段发光与探测等光电器件的制作。特别是在面向光电器件的应用中,三元化合物半导体algan可通过调节al组分从0变化至1,使其禁带宽度从3.43ev到6.02ev连续变化(对应波长从362nm至200nm连续变化),覆盖了uva、uvb和uvc波段,是制作紫外波段光电器件最具潜力的半导体材料。

目前,algan薄膜材料的制备面临着缺乏同质衬底,而基于其它晶体材料衬底的异质外延由于外延层与衬底之间的大晶格失配和热膨胀系数失配,导致外延层中存在高密度的缺陷。此外,同诸多宽禁带半导体同样,材料的p型掺杂由于受主杂质的高离化能,而导致掺杂效率极低,甚至无法实现有效的p型掺杂。与此相比,尽管algan的n型掺杂比较容易实现,但也面临着电导率(电阻率)有待进一步提升(降低)的问题。特别是对于高al组分的n型algan,有研究表明在5×1018/cm3的掺杂浓度下,algan层中的电子浓度随着al组分从30%到50%,其值从3.57×1018/cm3下降到3.94×1017/cm3,电导率也从27.7ω-1cm-1下降到0.88ω-1cm-1。导致电导率下降的原因主要有三方面,一是由于随着al组分的升高,n型掺杂施主杂质的离化能增大,所以电离出来的电子浓度降低,致使电导率降低(电阻率增大);二是随着al组分的升高,离化能增大,且c、o等受主杂质、深能级杂质增加,减少了电子的浓度;为了提高电子浓度,需要重掺杂,而重掺杂则会导致施主掺杂杂质形成补偿性缺陷、中性杂质原子,影响电子浓度的进一步提高,同时增加电子的散射,降低电子的迁移率,导致电导率下降。

为了提高n型algan薄膜材料的电导率,研究者们提出了一些外延方法,包括in-si共掺杂的办法提高有效掺杂浓度,in作为表面活性剂,在生长过程中可以降低外延层中的螺位错密度和深能级缺陷,从而提高n型掺杂效率,增加了电子浓度,提升了电导率。但这种方法对电子的迁移率并没有改善,电导率仍有较大的提升空间。另外,也有研究者采用超晶格掺杂来降低离化能,提升从掺杂施主杂质离化出来的电子浓度,从而提高n型algan薄膜的掺杂效率。但这种方法同时却又会引入其它衍生问题,比如超晶格掺杂虽然会比较显著地改善n型algan的掺杂效率、提高水平方向的导电性,但却会影响纵向导电性,即阻碍载流子的纵向输运。



技术实现要素:

本发明旨在克服上述现有技术的至少一种缺陷(不足),提供一种n型algan半导体材料,具有较高的横向电导率,位错数量及由于位错所产生的电子输运中的散射少,整体电导率高。

本发明的另一个目的在于,提供一种n型algan半导体材料的外延制备方法,采用多个周期的n型掺杂algan单层和u型非掺杂algan单层的交替叠层组成外延层,利用n型掺杂单层中电子浓度的扩散,在u型单层中形成满足平衡载流子浓度分布的电子浓度,并通过u型非掺杂层中电子的高迁移率,与高电子浓度的n型掺杂单层的结合达到提高整体n型algan外延层的横向电导率的作用。同时,由于外延结构属于周期性掺杂,n型高掺杂单层和非掺杂单层所处的应力状态也随周期产生调制,可使层中贯穿位错产生弯曲、闭合,从而减少位错数量及由于位错所产生的电子输运中的散射,从而进一步提升电导率。

本发明采取的技术方案是:

一种n型algan半导体材料,所述n型algan外延层由若干周期的交替叠层构成,每个周期包括一个n型掺杂algan单层和一个u型非掺杂algan单层,两个单层的al组分同等。

本发明中,所述n型algan外延层由n个周期的n型掺杂algan单层和非掺杂(undoped,简称u)algan单层的交替叠层组成。单个周期内algan交替叠层的总厚度为d,u型非掺杂algan层的施主杂质浓度为nu,平衡后载流子浓度为nu0,u型非掺杂algan层厚度为d2;n型掺杂algan层厚度为d1,n型掺杂algan施主杂质浓度为nd,平衡后载流子浓度为nn0;根据扩散理论,q为电子电荷,k0为玻尔兹曼常数,t为温度,ε为介电常数,则平衡态下载流子浓度分布n(x)满足关系式:

当其达到平衡态后能带弯曲符合二次函数形式,通过载流子浓度分布可以看到载流子浓度变化梯度与掺杂浓度(nd、nu)和掺杂层、非故意掺杂层的厚度(d1、d2)有关,可以通过控制这两个变量得到不同的变化趋势。要获得足够的平均载流子浓度,n型algan掺杂层d1的厚度在单个周期厚度d中的占比不能过小;同时,为了减少杂质散射的影响取最小值,使得交叠结构的有效平均载流子浓度不低于n型均匀掺杂层载流子浓度的30%,则而为了达到提高迁移率的目的,n型algan掺杂层d1的厚度则不能大于u型非掺杂层厚度,故:

原因在于:(1)交替叠层中n型掺杂algan单层为u型非掺杂algan单层提供了电子;u型非掺杂algan单层作为扩散电子的输运通道,电子从高掺杂层扩散到非掺杂层,其在纵向上的输运长度小于等于电子的扩散长,并且在纵向、横向上的输运由于杂质散射的减少可获得更高的迁移率uu;(2)优化后的u型非掺杂algan层厚度在单位周期内的平均迁移率uu的提高大于电子浓度nu的降低倍数,因此相比于通常的n型均匀掺杂algan结构,电子浓度nn和迁移率un的乘积远小于交替叠层的电导,即可降低有效电阻率;(3)采用n型掺杂algan/u型非掺杂algan交叠结构,u型非掺杂层中没有因重掺杂所产生的自补偿缺陷,且因掺杂/非掺杂层交替产生应力调制,可减少位错,相比于其它相同电导率下重掺杂的n型algan,缺陷降低,晶体质量得以改善。

进一步的,构成外延层交替叠层的单个周期内n型掺杂algan层的厚度为d1,u型非掺杂algan层的厚度为d2,单个周期交替叠层的厚度d=d1+d2,d值的范围为6~30nm。

进一步的,所述n型algan半导体外延层的总厚度为单个周期交替叠层的厚度d与生长周期数n的乘积。具体的,所述n型algan半导体外延层的总厚度为100~1000nm。

进一步的,构成外延层交替叠层的单个周期内n型掺杂algan层的厚度为d1,u型非掺杂algan层的厚度为d2,d1和d2满足关系

进一步的,单个周期内n型掺杂algan层的n型掺杂杂质浓度的数值nd的范围为1×1018~8×1019cm-3

进一步的,所述n型algan外延层的al组分范围为20%~100%。

本发明的另一个目的在于,提供上述n型algan半导体材料的一种外延制备方法,所述n型掺杂algan单层通过同时开启al源,ga源、n源和掺杂源来实现,u型非掺杂algan层通过开启al源,ga源、n源和关闭掺杂源来实现。

进一步,外延生长的al组分可通过给定al源通入量,调节ga源通入量来实现;也可通过给定ga源通入量,调节al源的通入量来实现。具体的,所述n型algan半导体外延层的al组分范围为20%~100%。

进一步,所述n型algan半导体外延层通过循环生长n个周期的n型掺杂algan层和u型非掺杂algan层的交替叠层,直至累计n个周期的厚度达到期望值。

与现有技术相比,本发明的有益效果为:

本发明提供的一种n型algan半导体薄膜材料及其外延制备方法,其外延层由多个周期的n型掺杂algan单层和u型非掺杂algan单层的交替叠层构成,n型掺杂algan层为u型非掺杂algan层提供了电子;u型非掺杂algan层为扩散电子提供了散射少、迁移率高的传输通道。在优化结构下,这种周期交替叠层结构中u型单层中电子迁移率的提升高于n型单层电子浓度扩散后单个周期内有效平均电子浓度的下降,因此相比于普通的均匀掺杂结构,具有更高的电导率;同时,由于调制掺杂使得外延层中的应力状态周期性变化,使层中位错弯曲、闭合,可减少贯穿位错数量,改善晶体质量。

附图说明

图1为本发明的结构示意图。

图2为本发明实施例1中制备n型algan半导体材料的外延结构示意图1。

图3为本发明实施例1中制备n型al0.65ga0.35n半导体材料的si源开启、关闭周期的生长时序示意图。

图4本发明实施例1中制备的n型algan半导体材料的外延结构示意图2。

图5本发明实施例2中制备的n型algan半导体材料的外延结构示意图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明实施方式作进一步详细地说明。

实施例1

如图1所示,为本发明提供的一种n型algan半导体材料的结构示意图,其中,所述n型algan外延层100由若干周期的交替叠层构成,每个周期包括一个n型掺杂algan单层101和一个u型非掺杂algan单层102。如图2所示,为本实施例具体提供的一种n型al0.65ga0.35n半导体外延层材料,包括c面蓝宝石衬底201和由下往上生长在衬底201上的低温aln成核层202、高aln缓冲层203以及n型al0.65ga0.35n外延层,所述n型algan外延层由n=30周期的n型掺杂al0.65ga0.35n单层204和非故意掺杂(undoped,简写为u)al0.65ga0.35n单层205交替叠层组成。

进一步的,所述的al0.65ga0.35n的n型掺杂杂质为si源。在外延制备过程中,其n型掺杂通过同时开启ga源、al源、n源和si源来实现,具体的,采用如图3所示的生长时序示意图实现。

进一步的,所述n型al0.65ga0.35n半导体薄膜材料的外延制备采用金属有机物化学气相沉积(mocvd)方法,具体包括以下步骤:

步骤1:选用c面蓝宝石作为衬底,并将衬底置于1080℃的h2环境中刻蚀表面氧化物或污渍10分钟,然后在氨气(nh3)环境氮化;

步骤2:在衬底201上外延生长aln成核层202,在其生长中al源采用三甲基铝(tmal),n源采用nh3,生长前先将生长温度降低到780℃,然后在高v/iii比(nh3与tmal的摩尔比)条件下通过控制生长源的通入时间,外延生长30nm的低温aln成核层;

步骤3:外延生长高温aln缓冲层203,在其生长前先将生长温度升高至1100℃,然后在低v/iii条件下,通过控制生长源的通入时间,生长400nm非故意掺杂的aln材料。其中,aln材料采用周期脉冲nh3生长,以促进al原子迁移,提高其结晶质量;

步骤4:生长n型al0.65ga0.35n外延层204,al组分65%由事先通过tmal流量与tmal加上tmga流量之和的摩尔比调整确定,按确定过的流量通入al源tmal、ga源三甲基镓(tmga)和n源nh3,在生长过程中,持续通入杂质浓度为5×1018cm-3的si源硅烷(sih4),并通过控制生长源的通入时间,生长厚度为8nm的n型均匀掺杂al0.65ga0.35n层;

步骤5:生长交替叠层结构中u型al0.65ga0.35n外延层205,在n型掺杂al0.65ga0.35n单层204生长完成后,其它生长条件不做改变,仅关闭n型掺杂源sih4,通过控制生长源的通入时间,生长厚度为8nm的u型al0.65ga0.35n单层。

步骤6:重复步骤4和步骤5,循环次数为25次,从而获得总厚度为400nm的n型al0.65ga0.35n外延层,生长的n型al0.65ga0.35n外延层具体结构如图4所示。

实施例2

本实施例和实施例1的区别在于,本实施例中n型al0.7ga0.3n薄膜采用分子束外延(mbe)方法生长,且单个周期内u型非掺杂al0.7ga0.3n层的厚度为6nm,n型掺杂al0.7ga0.3n层的厚度为4nm。所述n型al0.7ga0.3n半导体薄膜材料的外延制备方法,具体包括以下步骤:

步骤1:选用(0001)面6h-sic作为衬底301,并将其置于反应腔体;

步骤2:在衬底301上外延生长aln缓冲层302,在其生长中al源采用纯度为5n的al金属,n源由高纯氮气经射频等离子体炉产生,,生长前先将生长温度降低到800℃,然后在较高v/iii比(n源与al源的摩尔比)条件下通过控制生长源的通入时间,外延生长40nm的aln缓冲层;

步骤3:外延生长高温aln过渡层303,在其生长前先将生长温度升高至850℃,然后在较低v/iii条件下,通过控制生长源的通入时间,生长400nm非故意掺杂的aln材料。其中,aln材料采用周期脉冲n源生长,以促进al原子迁移,提高其结晶质量;

步骤4:生长n型al07ga0.3n外延层304,al组分70%由事先通过al源流量与al源加上ga源流量之和的摩尔比调整确定,按确定过的流量通入al源、ga源(高纯6n的ga金属)和n源,在生长过程中,持续通入杂质浓度为5×1018cm-3的si源(高纯悬浮区熔si),并通过控制生长源的通入时间,生长厚度为4nm的n型均匀掺杂al0.7ga0.3n层;

步骤5:生长交替叠层结构中u型al0.7ga0.3n外延层305,在304层生长完成后,其它生长条件不做改变,仅关闭n型掺杂源,通过控制生长源的通入时间,生长厚度为6nm的u型al0.7ga0.3n单层。

步骤6:重复步骤4和步骤5,循环次数为30次,从而获得总厚度为300nm的n型al0.7ga0.3n外延层,生长的n型al0.7ga0.3n外延层具体结构如图5所示。

显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1