一种碳布负载CoTe/CoO/Co纳米片阵列电极材料及其应用的制作方法

文档序号:19934871发布日期:2020-02-14 22:27阅读:744来源:国知局
一种碳布负载CoTe/CoO/Co纳米片阵列电极材料及其应用的制作方法

本发明属于电化学储能器材料技术领域,具体涉及一种碳布负载cote/coo/co纳米片阵列电极材料及其应用。



背景技术:

随着人们对能源消耗的增加,开发各种能量转化及储能装备迫在眉睫。超级电容器作为一种典型的储能器件,具有高的能量密度,适应现代的快节奏生活,有着非常高的商用价值。从储能机理上电容器可以分为双电层电容器和赝电容器。双电层电容器依靠电极材料表面吸附电荷来存储能量,具有优异的长循环稳定性,然而电极的容量依赖其材料的比表面积,容量偏小,难以满足现代人们对储能器件的要求。相比于双电层电容器,赝电容器依靠电极材料的氧化还原反应来存储能量,具有较高的理论比容量,然而长循环稳定性较差。因此如何制备出具有高比容量、长循环稳定的赝电容器电极材料一直是研究的热点。

粉末样品需要通过导电剂、粘结剂等复杂工艺来制备电极,且粘结剂会导致材料与电解液、集流体的接触电阻增大,降低了材料的电化学性能,并且在充放电过程中,粉末样品容易从集流体上脱落,导致容量的快速衰减。相比于粉末样品,直接生长在集流体上的阵列能够发挥材料的最大利用率,降低材料的团聚,并且在快速充放电过程中,样品不易从集流体上脱落。过渡金属氧化物具有高的理论比容量,但电极材料的极化导致过渡金属氧化物在长循环过程中出现容量衰减过快,难以实现商业化应用。相比过渡金属氧化物,过渡金属碲化物具有更加稳定的结构,较高的电子迁移率,在长循环过程中表现优异。然而,目前过渡金属碲化物的制备,大多采用了高温烧结的方法,不易制备成直接生长在集流体上的阵列,因此,简单、有效的制备过渡金属碲化物阵列的方法亟待提出。



技术实现要素:

基于上述分析,本发明提供了一种碳布负载cote/coo/co纳米片阵列电极材料及其应用。该材料以co(oh)2纳米片阵列为牺牲模板,采用水热法进行制备,反应温度低,能耗低,保证了cote/coo/co阵列纳米片形貌的形成,充分发挥了材料的电化学性能,因此,该材料可用于制备赝电容器电极,用于电化学储能。

实现本发明上述目的所采用的技术方案为:

一种碳布负载cote/coo/co纳米片阵列的材料,由以下方法制备而成:

1、将碳布清洗干净,配制钴盐溶液;

2、碳布作为电沉积基底和工作电极,钴盐溶液为电解液,采用电沉积的方法将co(oh)2纳米片阵列沉积在碳布上,电沉积完成后,取出碳布清洗干净并干燥;

3、将te粉、nabh4与去离子水混合,te粉与nabh4的质量比为1-2.1:2-4,混合均匀,得到黑色液体,将黑色液体转移至水热釜中,把碳布浸没于黑色液体后,密闭水热釜,加热进行水热反应,反应完成后冷却至室温,取出碳布清洗干净并干燥,得到所述的碳布负载cote/coo/co纳米片阵列电极材料。

进一步,所述的钴盐为硝酸钴、氯化钴或硫酸钴。

进一步,步骤2中进行电沉积时,以ag/agcl为参比电极,pt丝为对电极,电压窗口为-1.2v至-0.8v,在20mvs-1的扫描速率下循环30段。

进一步,所述水热反应的温度为120-180℃,反应时间为6-72h。

进一步,步骤1中,清洗碳布时,先用乙醇清洗,再用去离子水清洗。

进一步,步骤2和3中,清洗碳布时,先用去离子水清洗,再用乙醇清洗。

一种碳布负载cote/coo/co纳米片阵列电极材料在电化学储能中的应用。

与现有技术相比,本发明的有益效果和优点在于:

1、本发明的电极材料制备方法简单,只需两步反应,反应温度低,能耗低,原料来源广泛且价格低廉,因而制备成本低,适合工业化生产。

2、本发明的cote/coo/co纳米片阵列直接生长在碳布基底上,省去了导电剂、粘结剂等复杂的制备工艺。

3、本发明将cote/coo/co纳米片阵列垂直生长在碳布基底上,降低了cote/coo/co纳米片的自团聚;在充放电过程中,cote/coo/co纳米片和电解液的接触面积大,同时,垂直生长的cote/coo/co纳米片阵列和碳布的充分接触也有利于电荷的快速传输。

4、电化学测试表明,本发明制备的cote/coo/co纳米片阵列材料具有优异的循环稳定性,在4000次快速充放电后,电极比容量仍然保留了初始值的95.2%,远高于已报道的大部分赝电容材料,比如:cos@nico2s4(3000次循环后保留了电容初始值的71.7%,j.mater.chem.a,2015,3,24033);coo@co3o4(4000次循环后保留了电容初始值的58.6%,chemicalengineeringjournal327(2017)100–108);coo/co9s8(2000次循环后保留了电容初始值的75.8%,j.mater.chem.a,2017,5,18448);co3o4/pani(2000次循环后保留了电容初始值的90%,appliedsurfacescience441(2018)194–203)。可见我们制备的碳布负载cote/coo/co纳米片阵列可作为持续高效的储能材料使用,具有极高的发展和应用前景。

附图说明

图1为实施例1、实施例2沉积在碳布上的co(oh)2纳米片阵列低倍sem图。

图2为实施例1、实施例2沉积在碳布上的co(oh)2纳米片阵列高倍sem图。

图3为实施例1制备的碳布负载cote/coo/co纳米片阵列电极材料低倍sem图。

图4为实施例1制备的碳布负载cote/coo/co纳米片阵列电极材料高倍sem图。

图5为实施例1制备的碳布负载cote/coo/co纳米片阵列电极材料的xrd图。

图6为实施例1制备的cote/coo/co纳米片阵列电极材料o元素的xps光谱图。

图7为实施例1制备的co(oh)2纳米片阵列电极材料o元素的xps光谱图。

图8为实施例1制备的cote/coo/co纳米片阵列电极材料的tem图。

图9为实施例1制备的cote/coo/co纳米片阵列电极材料的hrtem图。

图10为实施例1制备的cote/coo/co纳米片阵列电极材料表面钴元素分布图。

图11为实施例1制备的cote/coo/co纳米片阵列电极材料表面氧元素分布图。

图12为实施例1制备的cote/coo/co纳米片阵列电极材料表面碲元素分布图。

图13为实施例1制备的cote/coo/co纳米片阵列电极材料的循环伏安曲线图。

图14为实施例1制备的cote/coo/co纳米片阵列电极材料的恒电流充放电曲线图。

图15为实施例1制备的cote/coo/co纳米片阵列电极材料的倍率性能图。

图16为实施例1制备的cote/coo/co纳米片阵列电极材料的循环稳定性能图。

图17为实施例2制备的cote/coo/co纳米片阵列电极材料的xrd图。

具体实施方式

下面结合具体实施例对本发明的技术方案进行详细说明,但以下实施例不用来限制本发明的范围。

实施例1

1、将碳布裁剪成大小规整的长方形,随后将碳布先用乙醇清洗三次,再用去离子水清洗三次,备用;

2、将co(no3)2·6h2o加入去离子水中,配制成0.1m的co(no3)2·6h2o溶液;

3、采用循环伏安法将co(oh)2沉积在碳布上,以碳布作为电沉积基底和工作电极、ag/agcl为工作电极、pt丝为对电极,以co(no3)2溶液为电解液,电压窗口为-0.8v~-1.2v,在20mvs-1的扫描速率循环30段,电沉积完成后,取出碳布先用去离子水清洗三次,再用乙醇清洗三次,接着烘干备用;

4、称量77mgte粉并分散于50ml去离子水中,在磁力搅拌下快速加入110mgnabh4粉末,继续搅拌2min,得到黑色液体;

5、将黑色液体转移至聚四氟乙烯内胆中,将步骤3得到的碳布浸没于黑色液体中,并把聚四氟乙烯内胆密封在反应釜内,随后将反应釜放置于电热鼓风干燥箱中,开启电热鼓风干燥箱对反应釜进行加热,当反应釜内黑色液体的温度达到160风时,保持黑色液体的温度为160持进行水热反应12h,反应结束后,取出反应釜自然冷却至室温;

6、打开反应釜,取出碳布先用去离子水清洗三次,再用乙醇清洗三次,接着烘干,得到所述的cote/coo/co纳米片阵列电极材料。

将本实施例步骤3沉积co(oh)2的碳布用扫描电子显微镜进行扫描,当放大5000倍时,所得的扫描电子显微镜图如图1所示,当放大60000倍时,所得的扫描电子显微镜图如图2所示,由图1和图2可以看出,co(oh)2呈现出纳米片结构,且均匀、垂直生长在碳布基底上。

将本实施例制备的cote/coo/co纳米片阵列电极材料用扫描电子显微镜进行扫描,当放大5000倍时,所得的扫描电子显微镜图如图3所示,当放大60000倍时,所得的扫描电子显微镜图如图4所示,由图3和图4可以看出,cote/coo/co纳米片阵列均匀且垂直生长在碳布上,保留了co(oh)2纳米片的微观形貌,呈现出纳米片状,片与片之间距离合理,且具有更多的孔洞,有利于维持电极材料结构以及电解液的渗透,保证了cote/coo/co纳米片阵列电极材料的电容性能和循环稳定性。

将本实施例制备的cote/coo/co纳米片阵列电极材料进行xrd分析,所得的xrd如图5所示,由图5可知,本实施例制得的电极材料包括cote(jcpds:34-0420)和co(jcpds:15-0806)。

对本实施例制备的cote/coo/co纳米片阵列电极材料的表面o元素进行x射线光电子能谱检测,所得o元素的光谱如图6所示,通过160℃水热反应12小时后,纳米片阵列表面的o元素光谱峰位置在530.18ev和532.38ev,分别对应于coo和材料表面的吸附水,而电沉积制备co(oh)2的o元素光谱峰位置在531.63ev,如图7所示。明显地,在160℃的条件下,水热出现了脱羟基现象,并且xps测试表明水热后羟基氧消失,co(oh)2已经全部转变为coo,结合xrd测试结果可推断,水热后生成的阵列是cote/coo/co,且coo为非晶态。

将本实施例制备的cote/coo/co纳米片阵列电极材料用透射电子显微镜和高分辨率的透射电镜分别进行扫描,所得的tem图如图8所示,所得的hrtem图如图9所示。从图8可以看出,co(oh)2纳米片阵列在水热后,有部分转变成了非晶态,我们推测是coo,这和xps、xrd的测试结果相符,非晶态coo具有更稳定的结构和更多的活性位点,在储能领域中具有更优的表现;图9显示出0.27nm和0.19nm的晶面间距,与cote(jcpds:34-0420)的(002)和(110)晶面间距一致,通过测量可得(002)和(110)晶面夹角为90°,和理论值相符;另外,图9还显示出的0.17nm晶面间距,和零价co(jcpsd:15-0806)的(200)面间距一致,这些结果表明,通过简单的水热反应后,我们成功制备出了cote/coo/co复合纳米片阵列。

对本实施例制备的cote/coo/co纳米片阵列电极材料的表面进行元素分布检测,所得钴元素的分布图如图10所示、氧元素的分布图如图11所示、碲元素的分布图如图12所示,从图10-图12可以看出,co、te、o三种元素均匀分布在电极材料表面。

将本实施例制备的cote/coo/co纳米片阵列电极材料在2-20mvs-1的扫描速率下进行循环伏安测试,所得的循环伏安曲线如图13所示,由图13可知,在不同的扫描速度下,cote/coo/co阵列的cv曲线没有出现明显的极化,表明cote/coo/co具有优异的电子传输性,且cv曲线具有明显的氧化还原峰,表明电极材料具有典型的赝电容效应。

将本实施例制备的cote/coo/co纳米片阵列电极材料在5~40macm-2的不同电流密度下进行恒电流充放电测试,结果如图14所示。由图14可知,在不同电流密度下,恒电流充放电曲线均具有较好的对称性,表明所制得的cote/coo/co纳米片阵列电极材料在充放电过程中,具有稳定的可逆过程,而且根据5macm-2的电流密度下的放电曲线进行计算面积比电容c(c=∫idt/sδv,其中i是电流,dt是放电时间,s是电极材料面积,δv是放电电压窗口)可得,电极材料的面积比电容高达1728mfcm-2

将本实施例制备的cote/coo/co纳米片阵列电极材料进行不同电流密度下的比电容测试,电压窗口为-0.1~0.5v,所得的倍率性能图如图15所示。从图15可见,在40macm-2的大电流下,电极材料依然具有706mfcm-2的面积比电容,随着电流密度的增加,比容量衰减不大,表明所制得的cote/coo/co纳米片阵列电极材料具有良好的倍率性能。

将本实施例制备的cote/coo/co纳米片阵列电极材料进行循环的稳定性测试(4000圈),电压窗口为-0.1~0.5v、电流密度为40macm-2,所得的循环稳定性能图示于图16,由图可知,在长达4000次循环后,电极的电容量保留了初始电容量的95.2%,由此表明,cote/coo/co纳米片阵列电极材料具有优异的循环稳定性,远高于很多已报道的赝电容材料,具有成为商业材料的潜力。

实施例2

1、将碳布裁剪成大小规整的长方形,随后将碳布先用乙醇清洗三次,再用去离子水清洗三次,备用;

2、将co(no3)2·6h2o加入去离子水中,配制成0.1m的co(no3)2·6h2o溶液;

3、采用循环伏安法将co(oh)2沉积在碳布上,以碳布作为电沉积基底和工作电极、ag/agcl为工作电极、pt丝为对电极,以co(no3)2溶液为电解液,电压窗口为-0.8v~-1.2v,20mvs-1的扫描速率循环30段,电解完成后,取出碳布先用乙醇清洗三次,再用去离子水清洗三次,接着烘干备用;

4、称量77mgte粉并分散于50ml去离子水中,在磁力搅拌下快速加入110mgnabh4粉末,继续搅拌2min,得到黑色液体;

5、将黑色液体转移至聚四氟乙烯内胆中,将步骤3得到的碳布浸没于黑色液体中,随后把聚四氟乙烯内胆密封在反应釜内,随后将反应釜放置于电热鼓风干燥箱中,开启电热鼓风干燥箱对反应釜进行加热,当反应釜内黑色液体的温度达到160℃时,保持黑色液体的温度为160℃进行水热反应72h,反应结束后,取出反应釜自然冷却至室温;

6、打开反应釜,取出碳布先用去离子水清洗三次,再用乙醇清洗三次,接着烘干,得到所述的cote/coo/co纳米片阵列电极材料。

将本实施例1制备的cote/coo/co纳米片阵列电极材料进行xrd分析,所得的xrd图如图17所示,由图17可知,当水热反应时间延长至72h时,cote/coo/co纳米片阵列电极材料中零价co(jcpds:15-0806)的衍射峰变强,由此表明,当水热反应时间延长后,cote/coo/co纳米片阵列电极材料中零价co含量增加。可以可见,通过控制步骤6的水热反应时间,我们可以调控cote、coo、co三种物质的比例,实现电极材料电化学性能的最优化。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1