一种用于深紫外LED光抽取效率提高的铝铑纳米颗粒阵列的制备方法与流程

文档序号:20036065发布日期:2020-02-28 11:11阅读:273来源:国知局

本发明涉及一种用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法,属于发光二极管领域。



背景技术:

发光二极管(led)作为继白炽灯和荧光灯后的新一代光源,具有使用寿命长、发热量低、响应速度快、环保、安全、体积小等显著优点。其中,波长在220~350nm之间的深紫外led(deepultravioletlightemittingdiode,duv-led)在生物医疗、防伪鉴定、水和空气净化、计算机数据存储和军事等领域有着重要的应用。然而,由于受到薄膜缺陷密度高、极性混杂、电极对光的吸收等因素的制约,造成光输出功率损失严重,从而制约了深紫外led外量子效率的进一步提高。与蓝光led相比,深紫外led的外量子效率处在一个很低的水平。而相比于提高内量子效率,光抽取效率的提高是有效增强led外量子效率的关键。

当特定波长的光照射到金属上时,金属中的电子将在电场的作用下发生集体振荡,这种效应就称之为表面等离子体激元效应(surfaceplasmonresonance,spr)。如果将金属制备成纳米颗粒,当特定波长的光照射到金属纳米颗粒上时,金属纳米颗粒中的电子将产生集体振荡,而这种振荡将被局域在相应的纳米颗粒中,称之为局域表面等离子体振荡(localizedsurfaceplasmonresonance,lspr)效应,相比于spr效应,由于金属纳米颗粒的表面曲率半径极小,lspr效应可以使得金属纳米颗粒表面附近空间中的局域电磁场得到极大的增强,这种效应最显著的光学表现就是增强光散射和光吸收,从而使金属纳米颗粒的吸收谱中产生强烈的共振吸收峰。lspr共振吸收峰的峰位对于纳米颗粒的大小,形状、颗粒间的间距、介电环境和介电特性非常的敏感,所以通过改变金属纳米颗粒的大小、形状、成分以及介电环境可以很有效地控制lspr效应。

制备表面等离激元的材料一般有金、银、铝等金属。金和银的表面等离激元共振峰一般位于近紫外-可见光波段。而金属铝(al)的表面等离激元共振峰可达250nm的深紫外波段,是目前所知与深紫外光耦合产生表面等离激元最有效的一种金属,为提高深紫外led外量子效率提供了理想的来源。

目前提高光抽取效率的方法,有:

如cn109524519a公开的一种氮化物量子阱结构发光二极管,由下至上依次包括:n型氮化物半导体、量子阱和p型氮化物半导体,量子阱为多量子阱结构,由垒层与阱层交叠构成,阱层由下至上包含有alxga1-xn层和inyal1-yn层,其中,0.9≥x≥0.4,0.35≥y≥0.04。该发明通过设计一种type-ii型能带排列的量子阱结构,提高te偏振的发光强度,从而提高沿c轴生长的深紫外led的光抽取效率。

或通过在完整的深紫外led上蒸镀一层铝薄膜来有效提高深紫外led的光抽取效率,但薄膜结构并非最有利于增强出光的结构,一方面薄膜无法和te波进行耦合,原有沿出射光锥出射的te波在穿透铝薄膜时将会发生很强的反射和吸收,从而只有很小部分能穿透铝膜而出射;另一方面虽然tm薄可以与薄膜进行耦合,但其耦合后在al/半导体界面处所产生的表面等离激元在穿透铝膜时将发生衰减。铝在空气中易被氧化,同时其热稳定性、化学稳定性均较差,无法实现高稳定性的器件。



技术实现要素:

针对上述技术问题,本发明的第一目的在于提供一种光抽取效率提高的深紫外led,第二目的在于提供用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法。大幅提高器件光抽取效率的同时,增强器件稳定性并降低生产成本。

为了实现上述第一目的,本发明的技术方案为:一种光抽取效率提高的深紫外led,其特征在于:在深紫外led表面沉积铝纳米颗粒阵列,在所述铝纳米颗粒阵列外进一步沉积有铑壳层。

上述方案中:所述深紫外led可采用波长在220nm-300nm之间的深紫外led。

相比于蒸镀铝薄膜,本发明在深紫外led上沉积一层铝纳米颗粒可以更好地与多种波导模式(tm和te模式)的光之间发生耦合,并且在lsp复合时,也不会发生穿透金属时所产生的衰减,更有利于深紫外led光抽取效率的提高,从而提高外量子效率。在铝纳米颗粒阵列外沉积铑壳层,铑金属(rh)与深紫外光的耦合效率仅次于al,且其热稳定性、化学稳定性、抗氧化性均极佳。

本发明的第二目的是这样实现的:一种用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法,其特征在于:首先在深紫外led表面沉积铝纳米颗粒阵列,然后在同一台设备或不同的设备中进一步沉积铑壳层。

采用电子束蒸发(e-beam)、热蒸发、脉冲激光沉积方法中的一种沉积铝纳米颗粒阵列以及铑壳层。制备工艺简单,可控。铝核的尺寸、密度可依据不同的蒸镀方法由沉积时衬底与粒子流之间的倾斜角度;蒸镀后原位退火温度、时间参数控制。铑壳层的厚度可依据不同的沉积方法由沉积功率、温度和时间控制。

有益效果:本发明方法制得铝铑核壳结构纳米颗粒阵列,纳米颗粒尺寸密度可调控,有利于制备电学/光电器件。采用铝纳米颗粒阵列+铑壳层的结构可在大幅提高器件光抽取效率的同时,增强器件稳定性并降低生产成本。同时,本制备方法条件简单,不需要复杂设备,在规模化工业生产中具有良好的应用前景。

具体实施方式

下面通过实施例,对本发明作进一步说明:

实施例1

(1)led放置:在e-beam生长腔体中,放入带有倾角的纸质楔形台或其他楔形绝缘体作为样品台,然后将led放置于样品台上。

(2)制备铝纳米颗粒阵列核层:将材料铝置于高真空环境中(e-beam生长腔体内真空度为5*10-6torr),随后用高能电子束轰击铝靶材,使之表面产生很高的温度后由固态直接升华到气态,并沉积在衬底上。生长过程中工作压强为10-5torr,生长温度为25-30℃即在常温下生长,生长速率设定为0.1nm/s,生长时间为50s。

(3)制备铑壳层:在同一生长腔内沉积铑壳层,随后用高能电子束轰击膜料铑,使之表面产生很高的温度后由固态直接升华到气态,并沉积在衬底上。生长过程中工作压强为10-5torr,生长温度为25-30℃即在常温下生长,生长速率设定为0.1nm/s,生长时间为20s。

实施例2

(1)led放置:在热蒸发设备生长腔体中,放入平面样品台,然后将led放置于样品台上。

(2)制备铝纳米颗粒阵列核层:将材料铝置于高真空环境中,随后加热至蒸发,并沉积在衬底上。生长速率设定为1nm/s,生长时间为10s。停止蒸镀铝,提高衬底温度至350℃,热退火10分钟以形成铝纳米颗粒阵列核层。

(3)制备铑壳层:将制备了铝纳米颗粒阵列核层的深紫外led在惰性气体保护下转移至电子束蒸发设备生长腔体中沉积铑壳层,随后用高能电子束轰击膜料铑,使之表面产生很高的温度后由固态直接升华到气态,并沉积在衬底上。生长过程中工作压强为10-5torr,生长温度为25-30℃即在常温下生长,生长速率设定为0.1nm/s,生长时间为30s。

实施例3

(1)led放置:在激光脉冲沉积(pld)设备生长腔体中,放入平面样品台,然后将led放置于样品台上。

(2)制备铝纳米颗粒阵列核层:将材料铝置于高真空环境中,利用脉冲激光轰击铝靶材,使之蒸发并沉积在衬底上。生长速率设定为0.5nm/s,生长时间为20s。提高衬底温度至350℃,热退火10分钟以形成铝纳米颗粒阵列核层。

(3)制备铑壳层:将制备了铝纳米颗粒阵列核层的深紫外led在真空保护下转移至电子束蒸发设备生长腔体中沉积铑壳层,随后用高能电子束轰击膜料铑,使之表面产生很高的温度后由固态直接升华到气态,并沉积在衬底上。生长过程中工作压强为10-5torr,生长温度为25-30℃即在常温下生长,生长速率设定为0.1nm/s,生长时间为40s。

本发明不局限于上述实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1