晶圆支撑台的制作方法

文档序号:20500706发布日期:2020-04-21 22:44阅读:153来源:国知局
晶圆支撑台的制作方法

本发明涉及晶圆支撑台。



背景技术:

作为晶圆支撑台,已知如下技术:在具有晶圆载置面的圆板状的陶瓷基体的内部从晶圆载置面侧依次埋设有rf电极和加热电极。例如,在专利文献1中,作为这种晶圆支撑台,公开了在陶瓷基体内具备以相距晶圆搭载面的深度互相不同的方式埋设的圆形状rf电极及圆环状rf电极。在与该晶圆支撑台的晶圆载置面对置的位置配置有平板上部电极。而且,向由该平板上部电极和晶圆支撑台的两rf电极构成的平行平板电极间施加高频电力,产生等离子体。在专利文献1中说明了,在产生等离子体时,通过对圆形状rf电极和圆环状rf电极分别施加不同的高频电力,能够将等离子体的密度分布控制得良好。

现有技术文献

专利文献

专利文献1:日本专利第5896595号公报



技术实现要素:

发明所要解决的课题

但是,在产生等离子体时,不仅平板上部电极与圆形状rf电极的距离及平板上部电极与圆环状rf电极的距离不同,晶圆载置面与圆形状rf电极之间的介电体层(陶瓷基体)的厚度和晶圆载置面与圆环状rf电极之间的介电体层的厚度也不同。因此,等离子体的密度不均匀。

本发明鉴于这样的课题而做成,目的在于抑制因等离子体的密度不均匀而引起的问题的发生。

用于解决课题的方案

为了实现上述的目的的至少一个,本发明的晶圆支撑台采用了以下的结构。

即,本发明的晶圆支撑台在具有晶圆载置面的圆板状的陶瓷基体的内部埋设有rf电极和加热电极,其中,

上述rf电极由设于将上述晶圆载置面分割成多个而得到的每个区的多个rf区电极构成,

上述多个rf区电极分成相距晶圆载置面的距离不同的至少两层而设置,

上述加热电极由设于将上述晶圆载置面以与上述rf区电极相同的方式或不同的方式分割成多个而得到的每个区的多个加热区电极构成,

上述多个rf区电极通过设于上述陶瓷基体的背面的电极端子而与多个rf区电极用导体分别独立连接,

上述多个加热区电极通过设于上述陶瓷基体的上述背面的电极端子而与多个加热区电极用导体分别独立连接。

在该晶圆支撑台中,多个rf区电极及多个加热区电极通过设于陶瓷基体的与晶圆载置面相反的一侧的面(背面)的电极端子而与多个rf区电极用导体及多个加热电极用导体分别独立连接。因此,能够对每个rf区电极供给不同的高频电力,能够使载置于晶圆载置面的晶圆上的等离子体的密度某种程度上均匀。另一方面,多个rf区电极至少分成两层而设置,因此存在等离子体的密度不均匀的问题。但是,即使这样,由于能够对每个加热区电极供给不同的电力,因此能够对每个区的成膜性的偏差通过加热温度的调整进行补偿、调整。因此,能够抑制因等离子体的密度不均匀而引起的问题的发生。

在本发明的晶圆支撑台中,也可以是,就上述rf电极而言,作为上述多个rf区电极,包括与上述陶瓷基体为同心圆的圆形电极或将上述圆形电极分割成多个而得到的电极,还包括在上述圆形电极或将上述圆形电极分割成多个而得到的电极的外侧与上述陶瓷基体为同心圆的一个以上的圆环电极或将上述圆环电极的至少一个分割成多个而得到的电极。在陶瓷基体的内周部分和外周部分大多情况下等离子体的密度分布不同,因此优选这样分成圆形电极(或将圆形电极分割成多个而得到的电极)和一个以上的圆环电极(或将圆环电极分割成多个而得到的电极)。例如,作为rf区电极,可以设置与陶瓷基体为同心圆的圆形电极和在该圆形电极的外侧与陶瓷基体为同心圆的一个以上的圆环电极。或者,也可以设置将与陶瓷基体为同心圆的圆形电极对分而得到的一对半圆形电极和在该两个半圆形电极的外侧与陶瓷基体为同心圆的一个以上的圆环电极。或者,也可以将圆环电极分割成多个。

在本发明的晶圆支撑台中,也可以是,从上述晶圆载置面观察上述陶瓷基体时,在上述rf区电极彼此之间的间隙配置有至少一个上述加热区电极。在施加的rf电力增大的情况下,若使间隙间隔较大,则能够抑制rf的干涉,是有利的,但在不存在rf电极的间隙部分,等离子体密度减少,面内的等离子体密度变得不均匀。因此,通过在该间隙区域配置加热区电极,能够对因等离子体密度的不均匀而产生的成膜性的偏差通过温度分布即加热温度的调整进行补偿、调整,是有效的。该情况下,也可以是,配置于上述间隙的上述加热区电极为与上述间隙的形状对应的形状的间隙加热区电极。这样,容易通过间隙加热区电极独立地控制间隙的温度,能够对间隙附近的成膜性的不均通过调整间隙加热区电极的温度进行补偿、调整。

或者,在本发明的晶圆支撑台中,也可以是配置为在从上述晶圆载置面观察上述陶瓷基体时,上述多个rf区电极的形状和上述多个加热区电极的形状一致。这样,能够将各rf区电极通过与之对应的加热区电极独立地进行温度控制。在此,所谓“加热区电极的形状”,例如在由线圈构成加热区电极的情况下,是指该线圈蔓延的区域的形状。

在本发明的晶圆支撑台中,也可以是,上述多个rf区电极包括与上述陶瓷基体为同心圆的圆形电极和在上述圆形电极的外侧与上述陶瓷基体为同心圆的一个以上的圆环电极,构成上述加热电极的上述多个加热区电极设于同一平面上,就上述多个rf区电极相距上述加热电极的高度而言,越靠近上述陶瓷基体的中心的rf区电极越高(或低)。该情况下,也可以使各rf区电极上的上述陶瓷基体的厚度(也就是介电体层厚度)相同。

本发明的晶圆支撑台也可以是,具备接合于上述陶瓷基体的与上述晶圆载置面相反的一侧的面的中央区域的中空的陶瓷轴,上述多个rf区电极用导体及上述加热电极用导体配置于上述陶瓷轴的内部。

在本发明的晶圆支撑台中,上述多个rf区电极均可以以相距晶圆载置面的距离不同的方式分成多层而设置,虽然为多层,但也可以在相同层设置两个以上的rf区电极。另外,上述多个加热区电极也可以设于同一平面上,也可以设置为相距晶圆载置面的距离不同。此外,rf区电极的形状、数量、加热区电极的形状、数量能够任意决定。

附图说明

图1是表示等离子体发生装置10的概略结构的立体图。

图2是图1的a-a剖视图。

图3是图1的b-b剖视图。

图4是表示rf电极23及加热电极30的配置的立体图。

图5是表示另一例的rf电极23及加热电极30的配置的立体图。

图6是表示另一例的rf电极23及加热电极30的配置的立体图。

图7是表示另一例的rf电极23及加热电极30的配置的立体图。

图8是表示rf电极23的另一例的俯视图。

图9是表示rf电极23的另一例的俯视图。

图10是具备陶瓷基体422的晶圆支撑台的剖视图。

图11是具备陶瓷基体522的晶圆支撑台的剖视图。

图12是具备陶瓷基体622的晶圆支撑台的剖视图。

具体实施方式

以下,参照附图,对本发明的优选的实施方式进行说明。图1是等离子体发生装置10的立体图,图2是图1的a-a剖视图,图3是图1的b-b剖视图,图4是表示rf电极23及加热电极30的配置的立体图。

如图1所示,等离子体发生装置10具备晶圆支撑台20和上部电极50。

晶圆支撑台20用于支撑并加热利用等离子体进行cvd、蚀刻等的晶圆w,且安装于未图示的半导体工艺用的腔室的内部。该晶圆支撑台20具备陶瓷基体22和中空的陶瓷轴29。

如图2所示,陶瓷基体22为陶瓷制(例如,氧化铝制或氮化铝制)的圆板状部件。该陶瓷基体22的表面为可载置晶圆w的晶圆载置面22a。在陶瓷基体22的与晶圆载置面22a相反的一侧的面(被面)22b的中央接合有陶瓷轴29。如图2~图4所示,在陶瓷基体22埋设有rf电极23和加热电极30。rf电极23和加热电极30从靠近晶圆载置面22a的一方依次埋设。

rf电极23与晶圆载置面22a平行(包括实质上平行的情况,以下同样)设置。rf电极23包括设于从陶瓷基体22的中心到预定半径(例如,陶瓷基体22的半径的一半以上)的圆21(参照图3)的内侧的区的第一rf区电极24、和设于该圆21的外侧的区的第二rf区电极25。也就是,第一rf区电极24及第二rf区电极25设于将晶圆载置面22a分割成多个而得到的每个区。第一rf区电极24是与陶瓷基体22为同心圆的圆形电极。第二rf区电极25是与陶瓷基体22为同心圆的圆环电极,且从第一rf区电极24分离。第一rf区电极24及第二rf区电极25以在陶瓷基体22的内部成为不同的高度(相距晶圆载置面22a的距离)的方式埋设。在此,以第一rf区电极24靠近晶圆载置面22a的方式设置。第一rf区电极24设置为与向陶瓷基体22投影陶瓷轴29得到的圆形的中央区域22c(图2及图3的双点划线)重复,第二rf区电极25设置于脱离中央区域22c的位置。第一rf区电极24及第二rf区电极25均由导电性的网格片构成。

如图2所示,第一rf区电极24在背面大致中央连接有电极端子24a。电极端子24a设置成从陶瓷基体22的背面22b露出于外部。第一rf区电极24经由电极端子24a连接于第一rf区电极用导体34。第一rf区电极用导体34经陶瓷轴29的中空内部及下部开口连接于第一交流电源44。

如图2及图4所示,第二rf区电极25具有由导电性的网格片构成的连接用导体27。连接用导体27从圆环状的第二rf区电极25的中心呈放射状设置,且配置成与电极端子24a不干涉。电极端子25a以从陶瓷基体22的背面22b露出于外部的方式设于连接用导体27。电极端子25a也配置成与电极端子24a不干涉。第二rf区电极25经由连接用导体27及电极端子25a而与第二rf区电极用导体35连接。第二rf区电极用导体35经陶瓷轴29的中空内部及下部开口连接于第二交流电源45。

加热电极30与晶圆载置面22a平行设置。加热电极30包括设于上述的圆21(参照图3)的内侧的区的第一加热区电极31和设于该圆21的外侧的区的第二加热区电极32。也就是,第一加热区电极31及第二加热区电极32设于将晶圆载置面22a与第一rf区电极24及第二rf区电极25同样地分割成两个的每个区。第一加热区电极31和第二加热区电极32在陶瓷基体22的内部以成为相同高度的方式(也就是位于同一平面上)分离地埋设。

第一加热区电极31具有两个电极端子31a、31b,且从一方的电极端子31a遍及整个圆21的内侧的圆形区域以一笔划线的要领将线圈配置到另一方的电极端子31b而成。各电极端子31a、31b经由各第一加热区电极用导体36连接于第一加热电源47。此外,在图2中,为了便于说明仅示出了一方的电极端子31a。第一加热区电极31设置为俯视时与第一rf区电极24重复。

第二加热区电极32具有两个电极端子32a、32b,且从一方的电极端子32a遍及整个圆21的外侧的圆环区域以一笔划线的要领将线圈配置到另一方的电极端子32b而成。各电极端子32a、32b经由各第二加热区电极用导体37连接于第二加热电源48。此外,在图2中,为了便于说明,仅示出了一方的电极端子32a。第二加热区电极32设置成俯视下与第二rf区电极25重复。

rf电极23、连接用导体27以及加热电极30的材质可以相同也可以不同。作为材质,只要具有导电性就不特别限定,例如,可以列举mo、w、nb、mo化合物、w化合物或nb化合物。其中,优选与陶瓷基体22的膨胀系数差小的材质。

陶瓷轴29是由与陶瓷基体22相同的陶瓷构成的圆筒状部件。陶瓷轴29的上部端面通过扩散接合或tcb(thermalcompressionbonding)而接合于陶瓷基体22的背面22b。所谓tcb是指如下公知的方法:在接合对象的两个部件之间夹入金属接合材料,在加热为金属接合材料的固相线温度以下的温度的状态下,加压接合两个部件。

如图1所示,上部电极50固定于与陶瓷基体22的晶圆载置面22a对置的上方位置(例如未图示的腔室的顶棚面)。该上部电极50接地。

接下来,对等离子体发生装置10的使用例进行说明。在未图示的腔室内配置等离子体发生装置10,在晶圆载置面22a载置晶圆w。然后,对第一rf区电极24从第一交流电源44供给高频电力,对第二rf区电极25从第二交流电源45供给高频电力。由此,在上部电极50与由埋设于陶瓷基体22的rf电极23构成的平行平板电极间产生等离子体,利用该等离子体对晶圆w实施cvd成膜,或者实施蚀刻等。另外,基于未图示的热电偶的检测信号求出晶圆w的温度,以使该温度成为设定温度(例如350℃或300℃)的方式通过第一加热电源47控制对第一加热区电极31施加的电压,通过第二加热电源48控制对第二加热区电极32施加的电压。

在以上详细叙述的晶圆支撑台20中,能够对第一rf区电极24及第二rf区电极25分别供给不同的高频电力(例如,相同频率且不同瓦数的电力或不同频率且相同瓦数的电力,或者不同频率且不同瓦数的电力等),能够使载置于晶圆载置面22a的晶圆w上的等离子体的密度某种程度上均匀。另一方面,第一rf区电极24及第二rf区电极25设置成多层,因此有时等离子体的密度不均匀。但是,即使如此,由于能够对第一rf区电极31及第二加热区电极32分别供给不同的电力,因此能够通过加热温度的调整来对每个区的成膜性的偏差进行补偿、调整。因此,能够抑制因等离子体的密度不均匀而引起的问题的发生。

另外,在陶瓷基体22的内周部分和外周部分,大多等离子体的密度分布不同,因此优选如上述地将rf电极23分成内周侧的圆形电极(第一rf区电极24)和外周侧的圆环电极(第二rf区电极25)。

而且,配置为在从晶圆载置面22a观察陶瓷基体22时(也就是俯视时),第一rf区电极24及第二rf区电极25和第一加热区电极31及第二加热区电极32一致。因此,能够对各rf区电极24、25通过与之对应的加热区电极31、32独立进行温度控制。

此外,本发明丝毫不限于上述的实施方式,当然,只要在本发明的技术性的范围内,可以以各种形式实施。

例如,在上述的实施方式中,配置成俯视下第一rf区电极24及第二rf区电极25的形状和第一加热区电极31及第二加热区电极32的形状一致,但也可以配置为成为彼此相似的形状。另外,如图5所示,也可以配置成,在俯视时,第一加热区电极131及第二加热区电极132的一方(在此,第二加热区电极132)与显现于第一rf区电极24及第二rf区电极25彼此之间的圆环形状的间隙g重叠。图5中,对与上述的实施方式相同的结构要素标注了相同的符号。图5中,为了便于说明,省略了各rf区电极24、25的连接用导体、rf区电极用导体、电源,也省略了各加热区电极131、132的加热区电极用导体、电源。另外,各加热区电极131、132省略了配线图案,仅示出了配置线圈的区域。在施加的rf电力较大的情况下,若使间隙g的间隔大,则能够抑制rf的干涉,是有利的,但是,存在如下情况:在不存在rf电极的间隙g的部分,等离子体密度减少,面内的等离子体密度不均匀。因此,通过配置成第二加热区电极132与该间隙g的区域重复,能够对因等离子体密度的不均匀而产生的成膜性的偏差通过温度分布即加热温度的调整进行补偿、调整。而且,如图6所示,也可以在俯视时,在出现于第一rf区电极24及第二rf区电极25彼此之间的圆环形状的间隙g设置与该间隙g对应的形状(在此,与间隙g想用的形状)的间隙加热区电极183。该情况下,第一加热区电极181及第二加热区电极182的形状分别与第一rf区电极24及第二rf区电极25的形状大致一致。由此,例如,即使在使第一rf区电极24及第二rf区电极25彼此之间的间隙g的间隔增大时,也能够容易地通过间隙加热区电极183独立地控制间隙g的温度。即,能够对间隙附近的成膜性的偏差通过调整间隙加热区电极183的温度而进行补偿、调整。

上述的实施方式中将各加热区电极31、32设于同一平面上,但是也可以设置成彼此的高度(相距晶圆载置面22a的距离)不同。例如,可以使各加热区电极31、32的高度对照各rf区电极24、25的高度。

在上述的实施方式中,将rf电极23有不同的高度的第一rf区电极24及第二rf区电极25构成,但是也可以将rf电极由不用的高度的三个以上的rf区电极构成。图7表示由不同的高度的第一~第三rf区电极124~126构成rf电极23的例。图7中,对与上述的实施方式相同的结构要素标注相同的符号。图7中,为了便于说明,省略了各rf区电极124~126的连接用导体、rf区电极用导体、电源,也省略了各加热区电极231~233的加热区电极用导体、电源。另外,各加热区电极231~233省略了配线图案,仅示出了配置线圈的区域。这些加热区电极231~233设于同一平面上。第一rf区电极124是与陶瓷基体22为同心圆的圆形电极,第二rf区电极125及第三rf区电极126是与陶瓷基体22为同心圆的圆环电极。第一~第三rf区电极124~126从靠近晶圆载置面22a的一侧依次排列第一rf区电极124、第二rf区电极125以及第三rf区电极126。构成加热电极30的第一~第三加热区电极231~233设为,在俯视时与第一~第三rf区电极124~126一致。通过该结构,也可得到与上述的实施方式同样的效果。特别地,能够对第一~第三rf区电极124~126分别供给不同的高频电力,因此能够将等离子体的密度分布控制得更良好。另外,能够对第一~第三加热区电极231~233分别供给不同的电力,因此能够对每个区的成膜性的偏差通过加热温度的调整进行补偿、调整。

此外,构成rf电极23的第一~第三rf区电极124~126相距加热电极30的高度h1~h3分别能够任意设定。例如,可以如图7所示地,中心部的第一rf区电极124相距加热电极30的高度最高,且随着朝向外周而相距加热电极30的高度降低(h1>h2>h3)。或者,也可以与之相反地,中心部的第一rf区电极124相距加热电极30的高度最低,且随着朝向外周而相距加热电极30的高度增高(h1<h2<h3)。或者,也可以设为h1>h2<h3、或者设为h1<h2>h3等,自由设定各rf区电极124~126的高度h1~h3。

在上述的实施方式中,rf电极23由圆形电极的第一rf区电极24和圆环电极的第二rf区电极25构成,但是也可以将作为圆环电极的第二rf区电极25分割成多个并对各分割电极独立地连接交流电源,也可以将作为圆形电极的第一rf区电极24分割成多个并对各分割电极独立地连接交流电源。这样,能够更容易地控制,以使等离子体的密度分布更良好。图8示例将构成rf电极23的第二rf区电极25分割成三个圆弧状电极251~253的情况。此外,圆弧状电极251~253可以是全部相同的高度,也可以为分别为不相同的高度,也可以两个为相同高度且一个为不同高度。图9示例将构成rf电极23的第二rf区电极25分割成三个圆弧状电极251~253,再将第一rf区电极24分割成两个半圆形电极241、242的情况。此外,半圆形电极241、242可以为相同高度,也可以分别为不同高度。

在上述的实施方式中,示例了陶瓷基体22的表面平坦,但也可以采用图10所示的阶梯型的陶瓷基体422。图10中,对与上述的实施方式相同的结构要素标注相同符号。陶瓷基体422的表面在外周部具有圆环状的台阶面422a。台阶面422a比晶圆载置面22a低一级。该陶瓷基体422中,也可以使内侧的从第一rf区电极(圆形电极)24到晶圆载置面22a的介电体厚度和外侧的从第二rf区电极(圆环电极)25到台阶面422a的介电体厚度相同。这样,能够将内外的等离子体密度均匀化。或者,也可以采用图11所示的兜型的陶瓷基体522。图11中,对与上述的实施方式相同的结构要素标注了相同的符号。陶瓷基体522的表面在外周部具有圆环状的台阶面522a。台阶面522a比晶圆载置面22a高一级。rf电极23由内侧的第一rf区电极(圆形电极)24和外侧的第二rf区电极(圆环电极)525构成。第二rf区电极525经由连接用导体527、电极端子25a以及第二rf区电极用导体35连接于第二交流电源(参照图2)。另外,第二rf区电极525配置于比第一rf区电极24更高的位置。在陶瓷基体522中,也可以使从第一rf区电极24到晶圆载置面22a的介电体厚度和外侧的从第二rf区电极525到台阶面522a的介电体厚度相同。这样,能够使内外的等离子体密度均匀化。

另外,在图7中也示例了陶瓷基体22的表面为平面,但也可以采用图12所示的带圆环槽的陶瓷基体622。图12中,对与上述的实施方式相同的结构要素标注相同的符号。陶瓷基体622的表面具有与陶瓷基体622为同心圆的圆环槽622a。rf电极23包括内侧的第一rf区电极(圆形电极)624、外侧的第二rf区电极(圆环电极)625、以及其外侧的第三rf区电极(圆环电极)626。第二rf区电极625经由连接用导体627、电极端子25a以及第二rf区电极用导体35连接于第二交流电源45(参照图2)。第三rf区电极626经由连接用导体628、电极端子626a以及第三rf区电极用导体636连接于第三交流电源(省略图示)。可以是从第一rf区电极24到晶圆载置面22a的介电体厚度、从第二rf区电极625到圆环溝622a的底面的介电体厚度、以及从第三rf区电极626到晶圆载置面22a的介电体厚度相同。这样,能够将内外的等离子体密度均匀化。

在上述的实施方式和图7的方式中,使rf电极23的分割数和加热电极30的分割数相同,但是也可以使两者的分割数不同。

在上述的实施方式中,第一rf区电极24及第二rf区电极25、连接用导体27均由导电性的网格片构成,但不特别地限定为网格片,例如,也可以使用导电性均匀的片材(金属箔等)。

上述的实施方式中,可以通过对rf电极23施加电压而将晶圆w吸引于晶圆载置面22a。另外,也可以在陶瓷基体22进一步埋设静电电极,通过对该静电电极施加电压而将晶圆w吸引于晶圆载置面22a。

在上述的实施方式中示出了晶圆支撑台20的制造方法的一例,但晶圆支撑台20的制造方法不特别限定于此,也可以通过其它公知的制造方法制造晶圆支撑台20。例如,可以根据日本特开2012-89694号公报记载的制造方法制造晶圆支撑台20。

本申请基于2018年7月4日申请的日本国专利申请第2018-127620号主张优先权,并将其全部内容通过引用并入本说明书。

生产上的可利用性

本发明可用于对晶圆进行等离子体处理时。

【符号说明】

10—等离子体发生装置,20—晶圆支撑台,21—圆,22—陶瓷基体,22a—晶圆载置面,22b—背面,22c—中央区域,23—rf电极,24、124—第一rf区电极,24a—电极端子,25、125—第二rf区电极,25a—电极端子,27—连接用导体,29—陶瓷轴,30—加热电极,31、131、181、231—第一加热区电极,31a、31b—电极端子,32、132、182、232—第二加热区电极,32a、32b—电极端子,34—第一rf区电极用导体,35—第二rf区电极用导体,36—第一加热区电极用导体,37—第二加热区电极用导体,44—第一交流电源,45—第二交流电源,47—第一加热电源,48—第二加热电源,50—上部电极,126—第三rf区电极,183—间隙加热区电极,233—第三加热区电极,241、242—半圆形电极,251~253—圆弧状电极,422、522、622—陶瓷基体,422a、522a—台阶面,525—第二rf区电极,527—连接用导体,622a—圆环槽,624~626—第一~第三rf区电极,626a—电极端子,627、628—连接用导体,636—第三rf区电极用导体。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1