低压断路器的制作方法

文档序号:23100839发布日期:2020-11-27 13:08阅读:128来源:国知局
低压断路器的制作方法

本发明涉及一种低压断路器,即,用于操作电压高达2000伏的应用。

已知其特征在于操作电压高达2000伏并且具有相对高标称值的、产生相应高功率水平的电流的低压工业电气系统通常使用在本领域中通常称为自动功率断路器的特定保护设备。

所述功率断路器包括一个或多个电极,电极的数量实际上决定了功率断路器的名称为单极断路器、两极断路器、三极断路器等。进而,每个电极包括至少两个触头,即固定触头和移动触头,它们可以相互耦合/解耦,并且电连接到与所述电极相关联的相导体或中性导体。一般而言,断路器的每个极的移动触头安装在旋转触头支撑轴上,该旋转触头支撑轴机械地连接到所述断路器的致动机构(例如弹簧型运动学系统),并允许在各个极之间传递运动。

这些断路器的设计旨在提供确保其所插入的电气系统以及与其连接的负载的正确操作所需的若干个特征。例如,它们确保各种用户所需的标称电流,允许相对于电路正确插入和断开负载,通过自动断开电路来保护负载免受异常事件(诸如过载和短路)的影响,以及允许通过电流隔离或断开合适的触头来断开受保护的电路,以实现负载相对于电源的完全隔离。

当前,根据各种工业实施例,可获得若干种低压功率断路器,其中,通常通过或多或少复杂的运动学机构来实现触头的断开。这种运动学致动机构通常利用预先存储在特殊的断开弹簧中的机械能,并且通常在发生电气故障的情况下由适当的保护设备(典型地为继电器)触发。

实际上,根据实施例,低压功率断路器的极通常包括至少一个固定触头,根据本领域中众所周知的实施例,该至少一个固定触头借助于适当配置的导体电连接到用于与电路连接的端子。极还包括移动触头和对应的支撑轴,该支撑轴在功能上连接到移动触头和断路器致动机构。所述致动机构通常包括具有断开弹簧的运动学系统,并允许在功能上将移动触头支撑轴连接到用于断路器的手动致动的杠杆。此外,断路器通常设有用于防止电气故障的保护设备,其典型地为继电器,当发生电气故障时它会跳闸,从而引起致动机构的致动,结果使触头支撑轴旋转并释放断路器。

在某些操作条件下,特别是当假定的短路电流可能呈现很高的值时,使用以传统方式利用可积聚在断开弹簧中以断开触头的能量的设备可能不是非常高效且经济。在这种情况下,典型的解决方案是诉诸特殊类型的自动断路器,这些断路器具有旨在提高其分断能力的技术方案。

在当前使用最广泛的技术方案中,一种典型的解决方案迫使电流遵循给定路径,使得当发生短路时,在固定触头和可移动触头之间会发生电动排斥力。这种排斥力产生有用的推力,该推力有助于提高移动触头相对于固定触头的分离速度。以这种方式,减少了干预时间并且防止了假定的短路电流达到其最大值。

还已知在低压功率断路器的每一极中具有至少一个电弧室,即,特别设计用于促进电弧中断的空间区域。电弧室可以是设在开关壳体中的简单区域,或者可以包括各种模块化的元件,例如,成形为类似于由装备有灭弧板的绝缘材料制成的壳体。

由于断开移动,触头之间的电压会引起空气的介电放电,从而导致在腔室中形成电弧。电弧由布置在腔室中的一系列灭弧金属板内部的电磁效应和流体动力学效应推动,这意味着通过冷却和分裂动作来熄灭所述电弧。

在电弧形成过程中,焦耳效应释放的能量非常高,并导致释放出热气,并增加了腔室内部的压力。虽然通常将热气通过一个或多个专门设计的排放通道排放到腔室外部,但释放的能量会在断路器内部导致高的热应力和机械应力。因此,期望减少干预时间并尽可能快地进行断开操作,以减少电弧放电现象。

在这方面,已知为低压功率断路器提供快动跳闸设备,以便减少短路情况下的干预时间。

例如,已知使用基于磁性原理的跳闸设备来检测超过某个阈值的电流浪涌,然后确定触头的快速释放和断路器的断开。因此,干预并不直接与电弧的发展有关,而是与电流升高到某个水平以上有关。

从ep0455564中还已知使用一种超压致动器,该超压致动器在电弧室中由于电弧而产生超压时,由承受该超压的活塞引起断路器跳闸轴的致动。干预阈值由弹簧的力决定,该弹簧的力在正常操作期间将活塞保持在非操作位置,并在压力升高到某个水平以上时被压缩,从而使活塞作用在断路器跳闸轴上。致动设备的活塞在断路器的所有阶段都是共用的,并且直接作用在断路器跳闸轴上。

在当前的现有技术中,用于快速断开功率断路器的现有解决方案具有若干种缺点,这是需要克服的。

特别地,在断路器的快速跳闸机构基于与电路串联的磁路的情况下,第一个缺点是,在没有电弧放电现象的情况下也可能发生干预。换言之,快速跳闸机构的动作不是直接由电弧的形成决定的,而是由电流浪涌给出的辅助证据确定的,从而在没有电弧的情况下引起不希望的跳闸动作。此外,由于它是基于非线性现象的,因此快速跳闸机构的适当的尺寸设置和校准非常困难且复杂,尤其是在涉及不想要的摩擦、卡住和公差匹配方面。

对于ep0455564中公开的系统,第一个缺点是,可能由于电弧而在各个极的电弧室中产生的超压不会直接作用在致动活塞上,而是通过排气歧管,该排气歧管使各个电弧室与单个致动活塞相连通,从而使断路器的设计复杂化,并使系统的可靠性降低并且动作起来较不迅速。

ep0455564的系统的另一个问题是,只能通过适当地确定活塞所作用的弹簧的力的大小来确定快速跳闸设备的干预阈值,从而很难进行校准。而且,弹簧特性可能由于例如老化现象或由于其它因素(诸如温度或多或少的突然变化)而随时间变化,从而使系统可靠性降低。

ep0455564的设备的另一个问题是,在设备中使用的用于设置干预阈值并使活塞回到原始位置的弹簧可能是系统的精密部件、容易破裂和故障,这会对设备的功能和可靠性产生不利影响。

此外,一般而言,具有已知类型的快动跳闸设备的低压功率断路器由相对大量的零件形成,这些零件的生产相对复杂,难以组装,并且增加了其制造成本。

因此,本公开旨在提供一种设有快动跳闸设备的低压功率断路器,其使得克服至少一些上述缺点。

特别地,本发明旨在提供一种设有快动跳闸设备的低压功率断路器,其中跳闸动作直接通过在电弧室之一中形成电弧来确定。

此外,本发明旨在提供一种设有快动跳闸设备的低压功率断路器,其中跳闸设备的响应与电弧的发展线性相关。

此外,本发明旨在提供一种设有快动跳闸设备的低压功率断路器,其中可以由每个极以独立的方式确定跳闸动作。

另外,本发明旨在提供一种设有快动跳闸设备的低压功率断路器,该断路器对于ac和dc电流均有效。

此外,本发明旨在提供一种设有快动跳闸设备的低压功率断路器,其中不需要或至少减少了校准操作。

另外,本发明旨在提供一种设有快动跳闸设备的低压功率断路器,该断路器是可靠的并且相对容易以有竞争力的成本生产。

因此,本发明涉及一种低压断路器,该低压断路器包括:对于每个极的至少一个固定触头,该固定触头电连接到用于与电路连接的端子;以及对应的移动触头,该移动触头可借助于所述移动触头的旋转相对于所述固定触头关联/分离。低压断路器还包括与所述固定触头和所有极共用的旋转触头支撑轴对应定位的电弧室,其在功能上连接到断路器的致动机构。在本发明的断路器中,所述致动机构包括可操作地连接到致动杆以进行断开/闭合操作的运动学系统,并设有断开弹簧和用于使所述运动学系统释放并允许其从闭合位置移动到断开位置的跳闸轴。本发明的断路器的特征在于,其对于每个极包括快动跳闸设备,该快动跳闸设备包括插入在与对应的极的电弧室连接的第一通道中的柱塞,所述第一通道位于所述至少一个固定触头附近,其纵向轴线垂直于所述旋转触头支撑轴的轴线,所述柱塞具有承受所述电弧室压力的第一操作表面以及第二操作表面,所述快动跳闸设备还包括跳闸杆,该跳闸杆具有与所述跳闸轴配合的第一部分和与所述柱塞的第二操作表面配合的第二部分。

如在下面的描述中更好地解释的,由于本发明的发明的低压断路器的特定结构,可以避免或至少大大减少上述问题。

实际上,包括在当前公开的断路器中的快动跳闸设备的结构使得其对电弧室中由于电弧的发展而产生的超压以直接且线性的方式反应。

此外,不同于例如在ep0455564中公开的基于超压的现有技术系统,快动跳闸设备的干预阈值不是由在断路器的操作寿命期间或由于环境(例如,温度)条件而可能变化的弹簧的特性来确定的,而是在断路器的设计阶段期间固定并且保持恒定。

换言之,可以在断路器的设计阶段期间通过适当设计和确定插入柱塞的通道、柱塞本身、跳闸杆和跳闸轴之间的机械联接的尺寸来调整干预阈值。然后,由于本发明的快动跳闸设备基本上没有老化现象,因此系统的性能在断路器的整个操作寿命中保持基本恒定。

而且,由于本发明的断路器的每个极都设有独立于彼此而动作的对应的快动跳闸设备,因此该系统更加可靠并且能够快速动作,而与其中放置有该系统的电路的类型(ac或dc)无关。

在本发明的优选实施例中,跳闸杆和跳闸轴可旋转地安装在相应的旋转轴线上,所述跳闸杆、所述跳闸轴和所述旋转触头支撑轴的旋转轴线彼此平行,并且垂直于所述第一通道的纵向轴线。以这种方式,可以实现断路器的非常紧凑和有效的设计。此外,由于第一通道位于电弧室的顶部、靠近固定触头,因此柱塞会立即承受由电弧室中的电弧产生的超压,从而确保系统在电弧发展的情况下迅速响应,从而使整个系统的设计复杂度最小化并提高了其可靠性。

实际上,如下面的描述中更好地解释的,在本发明的断路器的典型实施例中,在由所述电弧室内的电弧产生的超压的作用下,柱塞在所述第一通道中在第一静止位置和第二操作位置之间可滑动地移动,其中在第二操作位置中,柱塞推压所述跳闸杆的第二部分。由于柱塞对其的作用,跳闸杆从正常操作位置移动到跳闸位置,在该跳闸位置,所述跳闸杆(尤其是所述跳闸杆的第二部分)作用在所述跳闸轴上,从而确定释放所述运动学系统。

为了恢复柱塞的正常的非操作位置,所述柱塞也可在所述通道中在所述第二操作位置与所述第一静止位置之间滑动地移动。方便地,在本发明的断路器的典型实施例中,当所述运动学系统从断开位置移动到闭合位置时,在所述跳闸杆的作用下发生柱塞的这种反向移动。

优选地,跳闸轴可以方便地设有与跳闸杆的第二部分配合的操作表面,以便在跳闸和闭合操作期间都能够与跳闸杆相互作用。

如前所述,可以确定柱塞、跳闸杆的第一部分和第二部分以及可能的跳闸轴的操作表面的设计和尺寸以使其具有期望的干预阈值和时间。

为了确保在电弧室中产生电弧之后对电弧室进行适当的排气,根据本发明的低压断路器有利地包括第二排气通道,该第二排气通道与所述第一通道分开并且使所述电弧室与断路器外部连通。

在本发明的典型实施例中,低压断路器对于每个极包括第一和第二固定触头以及相应对应的第一和第二移动触头,第一和第二移动触头可借助于所述第一和第二移动触头的旋转相对于所述固定触头关联/分离。然后,分别与所述第一和第二固定触头对应地定位第一和第二电弧室。

在这种双中断实施例中,快动跳闸设备方便地仅与电弧室之一相关联。实际上,快动跳闸设备的柱塞插入第一通道中,该第一通道仅与所述第一和第二电弧室中的一个连接。为了使断路器的设计尽可能简单,与快动跳闸设备可操作地相关联的电弧室是位于更靠近断路器的跳闸轴的电弧室。

根据本发明的低压断路器的特别优选的实施例,所述跳闸杆可枢转地固定在所述断路器的固定部分上。因此,通过绕断路器固定部分上的枢轴点旋转跳闸杆来进行系统的致动。

优选地,所述跳闸杆具有中央主体,该中央主体可枢转地固定在所述断路器的固定部分上。所述跳闸杆的第一部分可以有利地是所述中央主体的成形表面(例如,凸轮表面),而所述跳闸杆的第二部分可以有利地是从所述中央主体突出的臂。

在这种情况下,柱塞动作(被电弧产生的超压推入电弧室)在从所述中央主体突出的臂上引起所述跳闸杆在第一方向上的旋转,使得所述中央主体的成形表面推动所述跳闸轴,从而导致断路器的运动学系统的释放。为此,跳闸轴可以方便地设有与跳闸杆的中央主体的成形表面配合的操作表面。

然后,为了恢复低压断路器的原始状态,在所述跳闸轴在所述中央主体的成形表面上的作用下,所述跳闸杆沿着与所述第一方向相反的第二方向旋转。作为这种旋转的结果,从所述中央主体突出的臂在所述柱塞的第二操作表面上推动并将其从所述第二操作位置移回到所述第一静止位置。

在本发明的低压断路器的典型实施例中,快动跳闸设备的柱塞具有基本上圆柱形主体,其以基本上气密的方式插入到所述第一通道中。但是,根据断路器的需要和设计,柱塞的形状和尺寸确定可以有所不同。

根据对附图中通过示例的方式示出的本发明的低压功率断路器的优选但非排他性实施例的描述,本发明的其它特征和优点将更加清楚,其中:

图1是根据本发明的低压功率断路器的透视图;

图2是根据本发明的低压功率断路器的极在第一操作状态下的剖视图;

图3是根据本发明的低压功率断路器的极在第二操作状态下的剖视图;

图4是根据本发明的低压功率断路器的快动跳闸设备在图3所示的第二操作状态下的放大图;

图5是根据本发明的低压功率断路器的极在第三操作状态下的剖视图。

参考附图,由参考数字1表示的本发明的低压功率断路器在其更一般的定义中包括容纳有若干个极3、4、5的壳体2。在断路器1的前侧,设有用于执行断路器1的断开和闭合操作的致动杆6。

断路器1的每个极3、4、5包括:至少一个固定触头,该至少一个固定触头电连接到用于与电路连接的端子;以及对应的移动触头,该移动触头可借助于所述移动触头的旋转相对于所述固定触头关联/分离。

每个极3、4、5还包括与所述固定触头对应地定位的电弧室。

在图2-5所示的实施例中,低压断路器是双中断断路器,并且对于每个极3、4、5,包括第一固定触头20和第二固定触头30以及相应的对应第一移动触头21和第二移动触头31,这些移动触头可以借助于所述第一移动触头21和第二移动触头31的旋转与所述固定触头20和30连接和分离。

相应地,断路器1还包括第一电弧室40和第二电弧室41,其分别与所述第一固定触头20和第二固定触头30对应地定位。

本发明的低压功率断路器1还包括旋转触头支撑轴50,该旋转触头支撑轴50为所有极3、4、5所共有,并且支撑移动触头并使之运动。旋转触头支撑轴50在功能上连接到断路器1的致动机构。

根据低压断路器的已知实施例,所述致动机构通常包括运动学系统,该运动学系统可操作地连接到致动杆6以进行断开/闭合操作,并且设有断开弹簧和用于使所述运动学系统解锁并允许其自动从闭合位置移动到断开位置的跳闸轴60。致动机构及其各种元件(例如,其具有断开弹簧和跳闸轴的运动学系统)的运作在本领域中是众所周知的,因此将不再详细描述。

通过在其每个极3、4、5中存在具有先前未公开的特性和性能的快动跳闸设备100来给出本发明的低压功率断路器1的基本特征。

在下面的描述中,将参考断路器的极3来描述快动跳闸设备100,但是断路器1的极4、5的设置是相同的。而且,图1的断路器1是三极断路器,但是本发明也可应用于具有不同极数的断路器。

参考图2-5,本发明的断路器1的快动跳闸设备100包括柱塞101,该柱塞101被插入到连接到对应的极3的电弧室40的第一通道102中。

如附图所示,第一通道102位于固定触头20附近,并且其纵向轴线垂直于所述旋转触头支撑轴50的轴线。以这种方式,确保了柱塞101对由电弧产生的超压的迅速响应。

柱塞102具有面对电弧室40并承受所述电弧室40的压力的第一操作表面103,以及与所述第一操作表面103相对的第二操作表面(104)。

快动跳闸设备100还包括跳闸杆110,根据下文中将更好地描述的操作原理,该跳闸杆110具有与所述跳闸轴60配合的第一部分111和与所述柱塞101的第二操作表面104配合的第二部分112。

实际上,在本发明的低压断路器1中,在由于电弧而在所述电弧室40内产生的超压的作用下,柱塞101可在所述第一通道102内滑动移动。柱塞101的移动发生在第一静止位置和第二操作位置之间,在该第二操作位置中,柱塞101被推入到第一通道101中并且推向所述跳闸杆110的第二部分112。

进而,在柱塞101的作用下,跳闸杆110从非操作位置移动到跳闸位置,在该跳闸位置,所述跳闸杆110作用在断路器的运动学系统的跳闸轴60上,从而使得所述运动学系统解锁并且从闭合位置自动转到断开位置。

根据非常有效的设计方案,跳闸杆110和跳闸轴60可旋转地安装在相应的旋转轴线上。特别地,所述跳闸杆110、所述跳闸轴60和所述旋转触头支撑轴50的旋转轴线彼此平行并且垂直于所述第一通道102的纵向轴线,从而实现非常紧凑和简单的设计结构,这种结构允许最小化运动链(柱塞101-跳闸杆110-跳闸轴60)上的机械应力并确保其快速响应。

实际上,根据该解决方案,柱塞101在第一通道102内沿着垂直于所述跳闸杆110、所述跳闸轴60和所述旋转触头支撑轴50的旋转轴线的方向移动。由于第一通道102位于电弧室的顶部,靠近固定触头,因此它也靠近跳闸杆110,从而使整个系统的设计复杂度最小化并提高了其可靠性。

为了恢复正常操作状态,当所述运动学系统从断开位置移动到闭合位置时,在所述跳闸杆110的作用下,柱塞101也可在所述第一通道102中在所述第二操作位置和所述第一静止位置之间滑动移动。

实际上,当发生电弧并且在电弧室40内产生超压时,柱塞101被推向跳闸杆110,因此跳闸杆110作用在跳闸轴60上,从而导致断路器1的运动学系统解锁。

相反,当通过作用在致动杆6上而使断路器1闭合时,运动学系统从断开位置移动到闭合位置,并且跳闸轴60和跳闸杆110也是如此。在这种移动期间,跳闸杆110作用在柱塞101上,从而使其回到其第一静止位置。

如附图所示,电弧室40有利地包括与所述第一通道102分离的第二排气通道45。实际上,第二排气通道45是电弧室40向断路器1外部的主要排气开口,并且方便地与只是用于快动跳闸设备100的操作通道的第一通道102保持分离。可以根据需要设计第二排气通道45的形状和尺寸。另外,取决于需要,可以有更多的排气通道。

如前所述,在附图2-5所示的实施例中,低压断路器1对于每个极3、4、5包括第一固定触头20和第二固定触头30以及相应的对应第一移动触头21和第二移动触头31,这些移动触头可以借助于所述第一移动触头21和第二移动触头31的旋转与所述固定触头20、30耦合和解耦。

还存在第一电弧室40和第二电弧室41,它们分别与所述第一固定触头20和第二固定触头30相应地定位。快动跳闸设备100方便地仅与电弧室之一相关联,特别是与电弧室40相关联,该电弧室40是更靠近跳闸轴60的电弧室。因此,快动跳闸设备100的柱塞101被插入到第一通道102中,该第一通道102连接到所述第一电弧室40。

从机械角度来看,所示实施例中的跳闸杆110可枢转地固定在所述断路器1的固定部分上。

特别地,跳闸杆110具有中央主体113,该中央主体113可枢转地固定在断路器1的固定部分上。所述跳闸杆110的第一部分111是中央主体113的成形表面(在实施例中示为凸轮形表面),而跳闸杆110的第二部分112是从所述中央主体113突出的臂。

现在将参考附图2-5描述断路器1的运作,特别是本发明的典型实施例中的快动跳闸设备100的运作。

参考图2,在断路器1的闭合状态下,移动触头21和31耦合到对应的固定触头20、30,并且电流流入到电路中。对于每对触头,电流在可移动触头中在相对于固定触头相反的方向上流动。

在短路的情况下,电流突然增加,并且由在固定触头和移动触头中沿着两个相反方向流动的电流产生的排斥力导致移动触头21和31与对应的固定触头20和30分离。在这样的条件下,在电弧室40和41内部产生电弧,其中电弧室内的压力对应地急剧增加。

特别地,参考图3和图4,电弧室40内的超压使得与所述电弧室40对应地定位的快动跳闸设备100的跳闸动作开始。

实际上,柱塞101通过在其第一操作表面103上的超压所施加的作用而被推入通道102内。然后,由于所述柱塞101对从跳闸杆110的中央主体113突出的臂112的作用,所述跳闸杆110沿着第一方向(即,在所示实施例中为逆时针方向)旋转。在这样的旋转期间,跳闸杆110的中央主体113的凸轮形表面111在跳闸轴60上推动,从而使其顺时针方向旋转并且使断路器的运动学系统解锁。

图5示出了当断路器1的跳闸动作完成时系统的位置。

当低压断路器1闭合(例如,通过作用在致动杆6上)时,运动学系统被操作以使旋转触头支撑轴50逆时针旋转并使移动触头21和31与对应的固定触头20和30接触。同时,跳闸轴逆时针旋转以锁定机构。

在这样的旋转期间,跳闸轴60在跳闸杆110的中央主体113的凸轮形表面111上推动。在跳闸轴60在中央主体113的凸轮形表面111上的作用下,所述跳闸杆110沿着与所述第一方向相反的第二方向(即,在所示实施例中为顺时针方向)旋转。在这样的旋转期间,从跳闸杆110的中央主体113突出的臂112推压所述柱塞101的第二操作表面104,并将其从所述第二操作位置移回到所述第一静止位置(即,图2的情况)。

从上面的描述可以清楚地看出,本发明的低压功率断路器完全达到了预期的目的,并解决了现有电气柜的上述突出问题。

实际上,如前所述,在本发明的低压功率断路器中,操作快动跳闸设备直接链接到腔室中的电弧形成并线性地依赖于该电弧形成。而且,设备基本上没有老化现象,比现有系统更可靠,并且不需要复杂的校准处理。

可以对如此构思的低压功率断路器进行几种变型,所有这些变型都落入所附权利要求的范围内。实际上,根据要求和现有技术,所使用的材料以及可能的尺寸和形状可以是任意的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1