一种高灵敏度高线性度探测器的制作方法

文档序号:20913924发布日期:2020-05-29 13:16阅读:287来源:国知局
一种高灵敏度高线性度探测器的制作方法

本发明涉及半导体光电器件、生物探测以及光通信技术领域,具体涉及一种能够对蓝绿光进行探测且具有高灵敏度高线性度的探测器。



背景技术:

由于传统的无线通信方式很难在水下实现有效通信,可见光通信在水下通信方面的应用成为了全球研究的热点;在可见光通信中,由于蓝绿光的波长位于水的透射窗口,水对蓝绿光的吸收系数小,使得蓝绿光通信可在水下传输相对较远的距离,且可获得较高的传输速率。但由于海水中有机物和无机物的浓度更高,光子不可避免地与水分子和水中其他颗粒物质相互作用,吸收和散射仍然严重削弱了透射光信号,使光在海水中传输比在大气中的传输更易衰减,影响通信距离;因此,需要制备一种高响应度的蓝绿光探测器。

传统的pn结型光电二极管,由于没有内部增益,光电转换效率不高。雪崩光电二极管(apd)利用雪崩效应将光生自由载流子的数量放大,起到了增益的作用,使其同时具有探测光信号和放大电信号的功能,有较高的灵敏度,可接收极微弱信号光。蓝绿光属于短波光,穿透深度很浅,主要在探测器近表面吸收。传统的垂直结构探测器,表面一般为重掺杂,电子-空穴对一部分在表面被复合,光生载流子寿命短,不易被收集,降低了探测器对蓝绿光的响应度。



技术实现要素:

针对上述技术问题中存在的不足,为了要提高探测器在蓝绿光波段的响应度,本发明提供一种近表面吸收的高灵敏度高线性度探测器,具有高速、高灵敏度、高线性度和高集成度等优点。

本发明公开了一种高灵敏度高线性度探测器,自上至下包括接触电极、石墨烯透明导电电极、p-吸收区、倍增区、n+欧姆接触区和n+欧姆接触电极;

所述p-吸收区的掺杂浓度为1×1016~5×1017cm-3

作为本发明的进一步改进,所述探测器的材料为:si、ge、sic,insb,gan,si/ge,inp/ingaas或algaas/gaas材料体系。

作为本发明的进一步改进,所述接触电极为al、au、ti或al、au、ti中至少两种的合金。

作为本发明的进一步改进,所述石墨烯透明导电电极与p-吸收区的面积相等,所述p-吸收区的厚度为0.1~10μm。

作为本发明的进一步改进,所述石墨烯透明导电电极为cvd铜基或cvd镍基石墨烯,所述石墨烯透明导电电极为单层或多层石墨烯,所述石墨烯透明导电电极的透光率大于90%。

作为本发明的进一步改进,所述p-吸收区的掺杂分布为均匀掺杂或梯度掺杂;

所述梯度掺杂为从上至下掺杂浓度呈阶梯状下降,阶梯个数2~50,相邻两阶梯的掺杂浓度差>10%。

作为本发明的进一步改进,所述倍增区通过外延生长方法沉积至所述n+欧姆接触区上,所述倍增区的掺杂浓度为1×1014~5×1015cm-3、厚度小于1μm。

作为本发明的进一步改进,所述n+欧姆接触区的掺杂浓度是能与所述n+欧姆接触电极形成欧姆接触的重掺杂浓度,重掺杂浓度为1×1018~9×1019cm-3

作为本发明的进一步改进,所述探测器的探测波长范围为深紫外~远红外波段。

作为本发明的进一步改进,所述探测器用于水下光通信和生物探测的光接收器件的设计。

与现有技术相比,本发明的有益效果为:

本发明采用石墨烯作为透明导电电极,表面为p型轻掺杂的吸收区,电子空穴复合几率低,光生载流子寿命长,使得蓝绿光在器件表面可以被直接吸收生成电子空穴对,避免了在进入吸收区之前的损耗,有利于提高探测器在蓝绿光波段的响应度。

附图说明

图1为本发明一种实施例公开的高灵敏度高线性度探测器的三维结构示意图;

图2为本发明一种实施例公开的高灵敏度高线性度探测器的二维结构示意图;

图3为本发明一种实施例公开的探测器制备方法第一步后得到的结构示意图;

图4为本发明一种实施例公开的探测器制备方法第二步后得到的结构示意图;

图5为本发明一种实施例公开的探测器制备方法第三步后得到的结构示意图;

图6为本发明一种实施例公开的探测器制备方法第四步后得到的结构示意图;

图7为本发明一种实施例公开的探测器制备方法第五步后得到的结构示意图;

图8为本发明一种实施例公开的高线性度高灵敏度探测器的电场分布仿真图;

图9为本发明一种实施例公开的高线性度高灵敏度探测器的反向iv特性仿真图。

图中:

101、接触电极;102、石墨烯透明导电电极;103、p-吸收区;104、倍增区;105、n+欧姆接触区;106、n+欧姆接触电极。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。

下面结合附图对本发明做进一步的详细描述:

如图1、2所示,本发明提供一种高灵敏度高线性度探测器,包括接触电极101、石墨烯透明导电电极102、p-吸收区103、倍增区104、n+欧姆接触区105和n+欧姆接触电极106,接触电极101、石墨烯透明导电电极102、p-吸收区103、倍增区104、n+欧姆接触区105和n+欧姆接触电极106自上而下叠设;其中:

本发明的接触电极101设置在石墨烯透明导电电极102上;其中,接触电极为al、au、ti或al、au、ti中至少两种的合金,接触电极101仅起到连接石墨烯透明导电电极102的作用,不影响光的接收面积。

本发明的石墨烯透明导电电极102覆盖在p-吸收区103表面上,且石墨烯透明导电电极102面积等于p-吸收区103的面积;其中,石墨烯透明导电电极102可为cvd铜基或cvd镍基石墨烯,石墨烯透明导电电极可为单层或多层石墨烯,石墨烯透明导电电极的透光率大于90%。

本发明的p-吸收区103位于倍增区104上方;p-吸收区103掺杂浓度为1×1016~5×1017cm-3、厚度为0.1~10μm;其中,p-吸收区103的掺杂分布为均匀掺杂或梯度掺杂;梯度掺杂为从上至下掺杂浓度呈阶梯状下降,阶梯个数2~50,相邻两阶梯的掺杂浓度差>10%。

本发明的倍增区104通过外延生长方法沉积至n+欧姆接触区105上,倍增区104的掺杂浓度为1×1014~5×1015cm-3、厚度小于1μm。

本发明的n+欧姆接触电极106通过磁控溅射或蒸发镀膜等方法在n+欧姆接触区105背面制备而成;其中,n+欧姆接触区105的掺杂浓度是能与n+欧姆接触电极106形成欧姆接触的重掺杂浓度,重掺杂浓度为1×1018~9×1019cm-3

本发明探测器的材料为:si、ge、sic,insb,gan,si/ge,inp/ingaas或algaas/gaas材料体系,探测器的探测波长范围为深紫外~远红外波段,探测器的结构可用于水下光通信和生物探测的光接收器件的设计。

本发明高灵敏度高线性度探测器的工作原理为:

低掺杂浓度的p-吸收区103靠近石墨烯透明导电电极102,雪崩区在器件内部。当光从石墨烯表面垂直入射时,在器件正上方入射的光子透过石墨烯透明导电电极102被p-吸收区103吸收,产生可以自由移动的光生电子空穴对;在电场的作用下光生空穴向石墨烯透明导电电极102移动,直接被石墨烯透明导电电极102收集,不会进入倍增区104,光生电子经过漂移到达倍增区104。当反偏电压增大到雪崩击穿电压的90%-95%时,触发雪崩。雪崩效应产生的电子在电场的作用下快速漂移到一侧的n+欧姆接触区105,进而被n+欧姆接触电极106收集,空穴漂移至石墨烯透明导电电极102,形成电信号。

本发明高灵敏度高线性度探测器的制备方法为:

第一步:选取重掺杂的n型硅片作为衬底,即n+欧姆接触区105,其掺杂浓度为1×1019cm-3,厚度为300-400μm。使用h2so4:h2o2=3:1的溶液对硅片表面进行清洗,时间为30min,然后用去离子水冲洗干净,再超声清洗1min,氮气吹干后放入烘箱烘5min;在洁净的硅片表面外延生长一层浓度为1×1014cm-3(接近本征)的p型硅,作为倍增区104,厚度为0.4μm,如图3所示。

第二步:接着在倍增区104表面外延一层轻掺杂的p-吸收区103,掺杂浓度为5×1016cm-3,厚度为0.4μm。如图4所示。

第三步:在n+欧姆接触区105背面通过磁控溅射或蒸发镀膜等方法制备一层100nm~500nm厚的金属作为器件的n+欧姆接触电极106,然后450℃,30s快速退火使n+欧姆接触电极106和n+欧姆接触区105之间形成良好的欧姆接触,如图5所示。

第四步:在p-吸收区103表面转移一层石墨烯作为透明导电电极102。石墨烯采用cvd方法生长在铜基底上,用旋涂的方式把pmma均匀的涂在铜基底石墨烯的表面,放在120℃的热板上烘30min,使pmma和石墨烯结合紧密。然后放在氯化铁溶液里腐蚀1.5h左右去除铜基底,并用清水将带有pmma的石墨烯薄膜轻轻漂洗干净后转移到p-吸收区103表面,自然晾干。最后用丙酮去除pmma并将片子轻轻清洗干净后n2吹干,如图6所示。

第五步:光刻电极图形,电子束蒸发金属,通过剥离工艺形成接触电极101,如图7所示。

实验:

对上述示例探测器进行电场分布和反向iv特性仿真,仿真结果如图8和图9所示。

从图8的电场分布图中可以看出,本实施例公开的高线性度高灵敏度探测器在25v左右达到雪崩击穿的临界电场,雪崩电压较低,低的雪崩击穿电压有利于增加器件稳定性;另外吸收区的电场强度值足以使载流子的漂移速度达到饱和,可把吸收区产生的电子快速漂移到倍增区,有利于提高探测器的响应速度。

从图9的反向iv特性图中可以看出,本实施例公开的高线性度高灵敏度探测器对于波长为400nm的可见光,其倍增系数可达到300,说明本发明所述的高线性度高灵敏度探测器可以极大的提高短波长光的响应度。

本发明的优点为:

本发明采用石墨烯作为透明导电电极,表面为p型轻掺杂的吸收区,电子空穴复合几率低,光生载流子寿命长,使得蓝绿光在器件表面可以被直接吸收生成电子空穴对,避免了在进入吸收区之前的损耗,有利于提高探测器在蓝绿光波段的响应度。

本发明设计针对全si器件,同时ge、sic,insb,gan,si/ge,inp/ingaas或algaas/gaas材料器件亦可适用。

本发明设计适用于高速、高灵敏度、高线性度及高集成度的探测器的设计。

以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1