一种基于原子组装法制备镓基铟锡导电薄膜的方法

文档序号:24718073发布日期:2021-04-16 14:38阅读:169来源:国知局
一种基于原子组装法制备镓基铟锡导电薄膜的方法

1.本发明涉及先进电子材料技术领域,特别是一种基于原子组装法制备镓基铟锡导电薄膜的方法。


背景技术:

2.可拉伸电子器件是继刚性、柔性电子器件发展的新一代电子,本征可拉伸导电材料是促进该领域发展的核心材料之一,而传统的导电材料因自身杨氏模量高、伸长率低已难于满足可拉伸电子器件的使用要求。
3.镓基液态金属结合了电(电导率:3.4

6.7
×
104 s/cm)、热(热导率:16.5

29.3 w/m k)、机械和流体特性,且具有低毒安全与高稳定性。镓基液态金属的杨氏模量比常用高分子衬底低 5

6个数量级,比传统的刚性、高模量、本征低伸长率的金属与碳系导电材料要低 10

12个数量级,并且在拉伸 700%仍能保持稳定的电导率,制备成可拉伸导电元件后在受力产生各向异性形变(压缩、拉伸、弯曲)时仍能稳定地传输电势、电流信号,即表现为高电导

应变稳定性。已逐渐成为制备柔性通信基带、可拉伸电路、可拉伸电极等柔性电子器件的理想材料之一。然而,镓基液态金属合金因表面张力高(gain 和 gainsn 的表面张力(γ)分别高达 624 mn m

1 和 534 mn m
‑1),造成其成膜性差,无法直接将其制备成薄膜器件,已成限制其大规模商业化应用的技术难题。
4.针对上述所述的镓基液态金属因高表面张力而难于制备成薄膜导电元件,本发明公开了一种区别于传统的金属熔融冶炼法的镓液态金属的制备方法,该方法的特征在于通过原子组装法,然后热处理,实现从原子组装镓基液态金属的镓基铟锡导电薄膜,从而避免了传统冶炼法制备的液态金属因表面张力高难于成膜的技术难题。该技术解决镓基液态金属制备薄膜导电元件的重要技术瓶颈,具有重大的创新性和经济价值。


技术实现要素:

5.本发明要解决的技术问题在于提供一种基于原子组装法制备镓基铟锡导电薄膜的方法。
6.为了解决上述问题,本发明提供了一种基于原子组装法制备镓基铟锡导电薄膜的方法,由以下制备步骤:(1)用酒精擦拭清洗双蒸发源的真空镀膜机的蒸发槽。
7.(2)准备镓(ga)(纯度: 99.9%

99.9999%)、铟(in)(纯度: 99.9

99.9999%)和锡(sn)(纯度: 99.9

99.9999%),镓铟锡单质材料可以是颗粒、靶材等形态,待用。
8.(3)将其中的两种或三种靶材放入到真空镀膜机的各个电阻蒸发槽中,其中镓(ga)(纯度: 99.9%

99.9999%)为必需的组分,铟(in)(纯度: 99.9

99.9999%)和锡(sn)(纯度: 99.9

99.9999%)选择其中的一种加入或两种全部加入。
9.(4)将基材置于真空镀膜机的基片架上并固定,用于收集ga、in或ga、in、sn原子,其中,基材可为聚二甲基硅氧烷(pdms)、聚酰亚胺膜(pi)或玻璃等。
10.(5)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空,并将真空度降至 4
×
10
‑6mbar。
11.(6)调控热蒸发槽的电流(a),使 ga、in或ga、in、sn原子同时蒸发,将 ga、in或ga、in、sn原子杂化并同时沉积在基板的表面。
12.(7)调控沉积的时间,使得在基板的薄膜厚度为10

90000纳米之间,获得沉积ga、in或ga、in、sn原子杂化薄膜基材,待用。
13.(8)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同时,将步骤(7)获得的ga、in或ga、in、sn原子杂化薄膜基材从真空镀膜机中取出。
14.(9)将步骤(8)获得的ga、in或ga、in、sn原子杂化薄膜基材置于真空热处理炉中,抽真空并将热处理温度设置在180

250℃之间,加热时间为大于1小时,ga、in或ga、in、sn杂化原子在真空热处理炉中通过真空热处理合金化形成gainsn液态金属合金薄膜。
15.(10)关闭真空热处理炉的加热装置,待真空热处理炉的温度降至25

30℃后,向真空热处理炉中充入空气,达到真空热处理炉中的气压与大气压相同时取出ga、in或ga、in、sn原子杂化薄膜基材,完成镓基铟锡导电薄膜的制备。
16.本发明的有益效果是:本发明所述一种基于原子组装法制备镓基铟锡导电薄膜的方法,该方法创新性的采用原子沉积方法,通过将高纯度的ga、in或ga、in、sn靶材放置在真空镀膜机的蒸发槽中,在真空中通过加热将镓基液态金属的各组份形成原子沉积在基材上,以此形成原子均匀杂化的薄膜状态,然后经过热处理形成液态金属镓基铟锡导电薄膜,镓基液态金属的各组份是指必须具有镓、铟、锡其中两种及两种以上的组合,其中镓为必须组分,将各组分放置在高于各组份熔点以上温度的真空热处理炉中,经过热处理后,在基材上形成镓基液态金属杂化原子的镓基铟锡导电薄膜,该方法解决了现有镓基液态金属因高表面能而难于成膜,造成镓基液态金属难于加工成薄膜导电元器件的难题,并可实现规模、批量化生产,并具有大规模应用于可拉伸导电元器件中的可能,具有非常优异的应用前景。
附图说明
17.下面结合附图对本发明的具体实施方式作进一步详细的说明,其中:图1为本发明一种基于原子组装法制备镓基铟锡导电薄膜的方法其制备步骤(6)的结构示意图;图2为本发明一种基于原子组装法制备镓基铟锡导电薄膜的方法其制备步骤(8)的结构示意图;图3为本发明一种基于原子组装法制备镓基铟锡导电薄膜的方法其制备步骤(9)热处理前的结构示意图;图4为本发明一种基于原子组装法制备镓基铟锡导电薄膜的方法其制备步骤(9)热处理后的结构示意图;图5为本发明一种基于原子组装法制备镓基铟锡导电薄膜的方法其制备步骤(10)完成制备镓基铟锡导电薄膜的结构示意图。
具体实施方式
18.一种基于原子组装法制备镓基铟锡导电薄膜的方法,由以下制备步骤:
(1)用酒精擦拭清洗双蒸发源的真空镀膜机的蒸发槽。
19.(2)准备镓(ga)(纯度: 99.9%

99.9999%)、铟(in)(纯度: 99.9

99.9999%)和锡(sn)(纯度: 99.9

99.9999%),镓铟锡单质材料可以是颗粒、靶材等形态,待用。
20.(3)将其中的两种或三种靶材放入到真空镀膜机的各个电阻蒸发槽中,其中镓(ga)(纯度: 99.9%

99.9999%)为必需的组分,铟(in)(纯度: 99.9

99.9999%)和锡(sn)(纯度: 99.9

99.9999%)选择其中的一种加入或两种全部加入。
21.(4)将基材置于真空镀膜机的基片架上并固定,用于收集ga、in或ga、in、sn原子,其中,基材可为聚二甲基硅氧烷(pdms)、聚酰亚胺膜(pi)或玻璃等。
22.(5)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空,并将真空度降至 4
×
10
‑6mbar。
23.(6)调控热蒸发槽的电流(a),使 ga、in或ga、in、sn原子同时蒸发,将 ga、in或ga、in、sn原子杂化并同时沉积在基板的表面。
24.(7)调控沉积的时间,使得在基板的薄膜厚度为10

90000纳米之间,获得沉积ga、in或ga、in、sn原子杂化薄膜基材,待用。
25.(8)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同时,将步骤(7)获得的ga、in或ga、in、sn原子杂化薄膜基材从真空镀膜机中取出。
26.(9)将步骤(8)获得的ga、in或ga、in、sn原子杂化薄膜基材置于真空热处理炉中,抽真空并将热处理温度设置在180

250℃之间,加热时间为大于1小时,ga、in或ga、in、sn杂化原子在真空热处理炉中通过真空热处理合金化形成gainsn液态金属合金薄膜。
27.(10)关闭真空热处理炉的加热装置,待真空热处理炉的温度降至25

30℃后,向真空热处理炉中充入空气,达到真空热处理炉中的气压与大气压相同时取出ga、in或ga、in、sn原子杂化薄膜基材,完成镓基铟锡导电薄膜的制备。
28.上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1