一种光伏组件背板用复合膜、光伏组件背板及光伏组件的制作方法

文档序号:24627042发布日期:2021-04-09 20:35阅读:132来源:国知局
一种光伏组件背板用复合膜、光伏组件背板及光伏组件的制作方法

本发明属于太阳能电池技术领域,特别涉及一种光伏组件背板用复合膜、光伏组件背板及光伏组件。



背景技术:

太阳能是最重要的清洁和可再生能源之一,太阳能电池组件(或称光伏组件)是将太阳能转化为电能的重要设备。

目前,光伏组件一般采用的是白色背板,但是随着光伏组件应用领域的不断扩展,对组件的各方面要求也不断提高。一些电站对组件的外观要求比较高,尤其是商业区的电站,全黑光伏组件(即采用黑色背板)的外观一致性与美观性越来越被大众所接受,各大企业也开始生产研究全黑组件。

全黑组件虽然外观美观,但全黑背板对光基本全吸收,无法充分利用组件接收的可见光,造成组件功率衰减较大,其功率要比结构相同、使用白色背板的组件低11~12w。另外,在光伏组件中,背板起着保护光伏组件中电池片的作用,因而,全黑组件背板的耐候性也有进一步改进的需求。



技术实现要素:

本发明的目的在于提供一种光伏组件背板用复合膜、光伏组件背板及光伏组件。

为解决上述技术问题,本发明的第一方面提供了一种光伏组件背板用复合膜,所述复合膜包括层叠的白膜层和黑膜层,以质量百分含量计,所述白膜层包含:氟碳树脂60%~90%、钛白粉1%~10%、聚甲基丙烯酸甲酯0%~20%、耐低温增韧剂0%~5%、紫外吸收剂0.1%~2%、抗氧剂0.1%~2%、消光剂0.1%-2%;以质量百分含量计,所述黑膜层包含:氟碳树脂60%~90%、碳黑和/或金属黑1%~10%、钛白粉0%~5%、聚甲基丙烯酸甲酯0%~20%、耐低温增韧剂0%~5%、紫外吸收剂0.1%~2%、抗氧剂0.1%~2%、消光剂0.1%-2%。

本发明的第二方面提供了一种光伏组件背板,该光伏组件背板包括本发明第一方面提供的光伏组件背板用复合膜。可选的,本发明提供的光伏组件背板依次包括层叠的内涂层、pet支撑层和外保护层,所述外保护层包括本发明第一方面提供的光伏组件背板用复合膜,且所述光伏组件背板用复合膜的白膜层靠近所述pet支撑层。

本发明的第三方面提供了一种光伏组件,该光伏组件包括层压件及边框;所述层压件依次包括层叠的透明盖板、第一胶膜、太阳能电池片、第二胶膜以及本发明第二方面提供的光伏组件背板,且所述光伏组件背板的内涂层靠近所述第二胶膜;所述边框位于所述层压件的侧面对所述层压件进行封边。

相对于现有技术而言,本发明所提供的光伏组件背板用复合膜,包括了层叠的白膜层和黑膜层,将该种复合膜应用于光伏组件背板及光伏组件中时,复合膜作为光伏组件背板外侧面的保护层,并以白膜层在内、黑膜层在外。背板最外层的黑膜层保证了光伏组件整体的黑色外观;而黑膜层内的白膜层的作用,则是使穿过太阳能电池片的入射光得以通过该白膜层的反射重新被太阳能电池吸收,转换成电能,提高光伏组件的输出功率。因此,使用了本发明所提供的复合膜及背板的光伏组件,对太阳能的利用率达到最大化。不但如此,本发明所提供的复合膜作为光伏组件背板外侧面的保护层,在保证光伏组件的全黑外观、并提高光伏组件的输出功率的同时,还显著提高了背板及光伏组件的耐候性。

本发明提供的光伏组件背板用复合膜中,以质量百分含量计,所述白膜层包含:氟碳树脂80%~90%、钛白粉2%~5%、聚甲基丙烯酸甲酯2%~10%、耐低温增韧剂3%~5%、紫外吸收剂0.5%~1%、抗氧剂0.5%~1%、消光剂0.5%-1%;以质量百分含量计,所述黑膜层包含:氟碳树脂80%~90%、碳黑和/或金属黑2%~8%、钛白粉0.5%~1%、聚甲基丙烯酸甲酯2%~10%、耐低温增韧剂3%-5%、紫外吸收剂0.5%~1%、抗氧剂0.5%~1%、消光剂0.5%-1%。

本发明提供的光伏组件背板用复合膜的厚度为25~50μm,优选为35~42μm。可选地,本发明提供的光伏组件背板用复合膜中,所述黑膜层的厚度为10~20μm,优选为12~15μm。可选地,本发明提供的光伏组件背板用复合膜中,所述白膜层的厚度为15~30μm,优选为23~28μm。

通过调整本发明的光伏组件背板用复合膜的膜层组成厚度,可实现对背板外观、反射率、耐候性的有效调节,在本发明所提供的优选范围下,以最小的背板厚度使光伏组件具有全黑外观、及极佳的功率和耐候性。

本发明提供的光伏组件背板用复合膜中,所述黑膜层中包含的金属黑选自铜铬黑、铬铁黑、氧化铁黑中的至少一种。

相对于碳黑而言,在黑膜层中加入金属黑的优势在于:碳黑在红外波段基本处于全吸收状态,无反射能力;而金属黑可以反射红外波段的光,可显著提升红外波段光的利用效率。

本发明提供的光伏组件背板用复合膜,还包括所述白膜层和所述黑膜层之间的透明胶粘层,所述胶粘层选自环氧树脂或聚氨酯。

本发明提供的光伏组件背板用复合膜中,所述黑膜层和所述白膜层中包含的氟碳树脂包括聚氟乙烯、聚偏氟乙烯、乙烯-四氟乙烯共聚物中的至少一种。

本发明在黑膜层和白膜层中同时使用了大量的氟碳树脂,氟碳树脂的使用对黑膜层和白膜层的耐候性具有很好的提升作用。

附图说明

图1为根据本发明一实施方式的光伏组件背板用复合膜的结构示意图;

图2为根据本发明一实施方式的光伏组件背板的结构示意图;

图3为根据本发明一实施方式的光伏组件中的层压件的结构示意图。

具体实施方式

为了能够更清楚理解本发明的目的、特点和优势,下面结合附图对本发明的实施方式进行详细描述。

光伏组件背板用复合膜

本发明的部分实施方式提供了一种光伏组件背板用复合膜,图1为本发明的部分实施方式的光伏组件背板用复合膜的结构示意图。如图1所示,所述光伏组件背板用复合膜10包括层叠的白膜层101和黑膜层102。以质量百分含量计,所述白膜层包含:氟碳树脂60%~90%、钛白粉1%~10%、聚甲基丙烯酸甲酯0%~20%、耐低温增韧剂0%~5%、紫外吸收剂0.1%~2%、抗氧剂0.1%~2%、消光剂0.1%-2%;以质量百分含量计,所述黑膜层包含:氟碳树脂60%~90%、碳黑和/或金属黑1%~10%、钛白粉0%~5%、聚甲基丙烯酸甲酯0%~20%、耐低温增韧剂0%~5%、紫外吸收剂0.1%~2%、抗氧剂0.1%~2%、消光剂0.1%-2%。

本发明所提供的光伏组件背板用复合膜,包括了层叠的白膜层和黑膜层,将复合膜应用于光伏组件背板及光伏组件中时,复合膜作为光伏组件背板外侧面的保护层,并以白膜层在内、黑膜层在外。基于本发明所提供的白膜层和黑膜层的组份及配比,该复合膜具有如下技术效果:黑膜层保证了光伏组件背板的黑色外观;同时,该种具有黑色外观的背板不会对穿过太阳能电池片的入射光中的红外波段光全吸收,而是在白膜层的作用下将这部分红外波段光反射、使其重新被太阳能电池片吸收,进而转换成电能,提高光伏组件的输出功率。在本发明的实施方式所提供的复合膜的作用下,使光伏组件对太阳能的利用率达到最大化。不但如此,本发明的实施方式所提供的复合膜作为光伏组件背板外侧面的保护层,还使背板及光伏组件的耐候性得到显著提高。

本发明的部分实施方式中,以质量百分含量计,所述白膜层包含:氟碳树脂80%~90%、钛白粉2%~5%、聚甲基丙烯酸甲酯2%~10%、耐低温增韧剂3%~5%、紫外吸收剂0.5%~1%、抗氧剂0.5%~1%、消光剂0.5%-1%;以质量百分含量计,所述黑膜层包含:氟碳树脂80%~90%、碳黑和/或金属黑2%~8%、钛白粉0.5%~1%、聚甲基丙烯酸甲酯2%~10%、耐低温增韧剂3%-5%、紫外吸收剂0.5%~1%、抗氧剂0.5%~1%、消光剂0.5%-1%。

在本发明的实施方式中,白膜层中的氟碳树脂与钛白粉的质量百分含量,黑膜层中的氟碳树脂与碳黑(和/或金属黑)的质量百分含量,对于背板的黑色外观、反射率和耐候性具有重要作用。本发明的部分实施方式通过对上述组份的质量百分含量的优选,进一步提升光伏组件背板用复合膜的技术效果。

在本发明的部分实施方式中,光伏组件背板用复合膜的厚度为25~50μm,优选为35~42μm。

在本发明的部分实施方式中,黑膜层的厚度为10~20μm,优选为12~15μm。

在本发明的部分实施方式中,白膜层的厚度为15~30μm,优选为23~28μm。

进一步地,本发明的部分实施方式通过调整复合膜中的白膜层和黑膜层的厚度及复合膜的总厚度,可实现对背板外观、反射率、耐候性的有效调节,从而以最小的背板厚度、背板成本,达到最佳的全黑外观、较高的功率和优异的耐候性。

在本发明的部分实施方式中,黑膜层中包含的金属黑选自铜铬黑、铬铁黑、氧化铁黑中的至少一种。

相对于碳黑而言,在黑膜层中加入金属黑的优势在于:碳黑在红外波段基本处于全吸收状态,无反射能力;而金属黑可以反射红外波段的光,可显著提升红外波段光的利用效率。

本发明的部分实施方式中所提供的光伏组件背板用复合膜,还包括所述白膜层和所述黑膜层之间的透明胶粘层,所述胶粘层选自环氧树脂或聚氨酯。

本发明的部分实施方式中所提供的光伏组件背板用复合膜,所述黑膜层和所述白膜层中包含的氟碳树脂包括聚氟乙烯、聚偏氟乙烯、乙烯-四氟乙烯共聚物中的至少一种。

在本发明的部分实施方式中,所述耐低温增韧剂可选自核壳结构的丙烯酸酯类、甲基丙烯酸酯类弹性体、液体丁腈橡胶等常规的耐低温增韧剂。这些耐低温增韧剂均可通过商业渠道购买。

在本发明的部分实施方式中,所述紫外吸收剂可选自三嗪类、苯并三氮唑类、二苯甲酮类等常规的紫外吸收剂。这些紫外吸收剂均可通过商业渠道购买。

在本发明的部分实施方式中,所述抗氧剂可选自受阻酚、亚磷酸酯等常规的抗氧剂。这些抗氧剂均可通过商业渠道购买。

在本发明的部分实施方式中,所述消光剂可选自二氧化硅颗粒、聚四氟乙烯微粉、硫酸钡颗粒等常规的消光剂。这些消光剂均可通过商业渠道购买。

光伏组件背板

本发明的部分实施方式提供一种光伏组件背板,该光伏组件背板包括本发明第一方面提供的光伏组件背板用复合膜。

图2为本发明的部分实施方式的光伏组件背板的结构示意图。如图2所示,光伏组件背板1依次包括层叠的内涂层12、pet支撑层11和外保护层10,所述外保护层10包括本发明第一方面提供的光伏组件背板用复合膜,且所述光伏组件背板用复合膜的白膜层101靠近所述pet支撑层11,所述光伏组件背板用复合膜的黑膜层102层叠于所述白膜层101远离所述pet支撑层11的表面。

光伏组件

本发明的部分实施方式提供一种光伏组件,该光伏组件包括层压件及边框,图3为本发明的部分实施方式中的层压件的结构示意图。如图3所示,所述层压件依次包括层叠的透明盖板5、第一胶膜4、太阳能电池片3、第二胶膜2以及本发明第二方面提供的光伏组件背板1,且所述光伏组件背板1的内涂层靠近所述第二胶膜;所述边框位于所述层压件的侧面对所述层压件进行封边。

本领域技术人员可选择常规方法进行本发明实施方式中的光伏组件背板用复合膜、光伏组件背板及光伏组件的制备,以下为一些举例。

在本发明的部分实施方式中,可以在挤出机中通过多流道的配合共挤制备得到本发明的光伏组件背板用复合膜:将氟碳树脂60%~90%、钛白粉1%~10%、聚甲基丙烯酸甲酯0%~20%、耐低温增韧剂0%~5%、紫外吸收剂0.1%~2%、抗氧剂0.1%~2%、消光剂0.1%-2%,混合搅拌熔融,挤出造粒得到白色粒子。将氟碳树脂60%~90%、碳黑和/或金属黑1%~10%、钛白粉0%~5%、聚甲基丙烯酸甲酯0%~20%、耐低温增韧剂0%~5%、紫外吸收剂0.1%~2%、抗氧剂0.1%~2%、消光剂0.1%-2%,混合搅拌熔融,挤出造粒得到黑色粒子。黑、白粒子分别在挤出机的不同流道中高温熔融后输送到多流道共挤出机头,通过控制黑、白在流道中的流出速度挤出得到不同厚度比例的复合膜。

以上制备方法以共挤工艺为举例,当然,本领域技术人员也可采用吹塑法、流延法等控制不同流道流速来控制黑白膜比例。制备过程中的工艺参数可参照常规氟膜的制造工艺,在此不做详细阐述。

在本发明的部分实施方式中,也可采用吹塑法、流延法等常规方法分别制备白膜层及黑膜层,然后通过环氧树脂或聚氨酯将黑膜层黏贴在白膜层表面,得到本发明的光伏组件背板用复合膜。

当制备得到光伏组件背板用复合膜之后,可通过电晕处理,将复合膜粘贴在pet支撑层的外表面,制备得到背板,该背板可应用于任意光伏组件。

示例

以下结合具体实施例、对比例进一步说明本申请的优势。所用材料未注明生产厂商者,均为可以通过市售购买获得的常规产品。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。

实施例1~10、对比例1~8

(1)制备光伏组件背板用复合膜:将氟碳树脂(pvdf)、钛白粉、聚甲基丙烯酸甲酯、耐低温增韧剂(丙烯酸酯弹性体)、紫外吸收剂(三嗪类、苯并三氮唑类)、抗氧剂(受阻酚)、消光剂(二氧化硅颗粒),混合搅拌熔融,挤出造粒得到白色粒子。将氟碳树脂(pvdf)、碳黑和/或金属黑、钛白粉、聚甲基丙烯酸甲酯、耐低温增韧剂(丙烯酸酯弹性体)、紫外吸收剂(三嗪类、苯并三氮唑类)、抗氧剂(受阻酚)、消光剂(二氧化硅颗粒),混合搅拌熔融,挤出造粒得到黑色粒子。黑、白粒子分别在挤出机的不同流道中经高温熔融后输送到多流道共挤出机头,通过控制黑、白在流道中的流出速度,挤出得到不同厚度组成的复合膜。

(2)对制备得到的复合膜进行电晕处理,从而将其粘贴在光伏组件背板的pet支撑层的外表面,制备得到光伏组件背板。光伏组件背板依次包括层叠的内涂层、pet支撑层和光伏组件背板用复合膜的白膜层和光伏组件背板用复合膜的黑膜层。

(3)将制备得到的背板制备光伏组件。光伏组件包括层压件及边框,所述层压件依次包括层叠的透明盖板、第一胶膜、太阳能电池片、第二胶膜以及光伏组件背板,且光伏组件背板的内涂层靠近第二胶膜;所述边框位于所述层压件的侧面对所述层压件进行封边。

另外,本申请还提供了对比例7、8,其中,对比例7为采用全白背板的光伏组件,对比例8为采用全黑背板的光伏组件。

实施例1~10、对比例1~8中的光伏组件背板膜的技术参数如表1~2所示所示。其中,表1为白膜层各组分的质量百分比含量及厚度,表2为黑膜层各组分的质量百分比含量及厚度。

表1

表2

对实施例1~10、对比例1~8中的光伏组件,进行背板外观观察、背板红外反射率检测、氟膜耐候性测试、背板耐候性、光伏组件功率检测。检测方法如下:

(1)背板外观观察:在自然光下,检查背板的空气面是否全黑及平整。

(2)背板红外反射率检测:采用紫外分光光度计,检测860-1100nm红外光反射率。

(3)光伏组件功率检测:采用组件iv测试仪,按照iec61215标准测试

(4)氟膜耐侯性:氟膜分别放进相应的实验箱,按照iec61215测试规范做uv120、uv30+dh1000、uv60+tc200、dh2000、pct96测试,测试完成后裁成10cm*1cm的小条,使用万能材料测试机测试td方向的断裂延伸率

(5)背板耐侯性:背板搭配电池及其他辅材封装成mini小组件,分别做加严序列老化测试(tc200、dh200+uv30+hf10+uv30+tc200),测试完成后观察背板氟膜层是否开裂

检测结果如表3所示。

表3

从表3数据可知,实施例2各项填料配比制得的氟膜性能最优。该黑白膜具有黑、白两层,黑色层保证组件全黑的外观,同时采用金属黑填料来替代传统碳黑可有效提升背板反光能力,此外内层的白膜也具有良好的红外反光能力。因此该方法值得的黑白膜具有和白膜相当的反光能力,从而保证组件功率和全白膜组件相当,较常规碳黑填料全黑组件功率提升~9w。在耐候性方面,常规碳黑填料制得的全黑氟膜耐候性能较差,而白膜耐候性能较优。黑白膜由于白色层的加入提高了膜的耐候性能,使其具有和白膜相当的水平。

从实施例1~3、对比例1~2可以看到,白膜层中氟碳树脂和钛白粉的质量百分含量,对膜的力学性能、耐候性和反光率存在影响,因此白膜层中氟碳树脂的质量百分含量优选在80%~90%之间,钛白粉的质量百分含量优选在2%~5%之间。

实施例4中,以碳黑替代了实施例2中的金属黑,由于碳黑对红外波段反光性相比于金属黑明显下降,因而组件功率较实施例2减少约9w。

从实施例5~7、对比例3~4可以看到,当黑膜层的厚度过小,导致外观黑色表面夹杂白色条纹;而当黑膜层的厚度过大,随着黑膜层厚度的增加,成本提升,但对膜性能提升及组件功率增加已无较大意义。因而,黑膜层的厚度为10~20μm,优选为12~15μm。

从实施例8~10、对比例5~6可以看到,当白膜层的厚度过小,导致膜层反射率、耐候性和器件功率不佳;而当白膜层的厚度过大,随着白膜层厚度的增加,成本提升,但对膜性能提升及组件功率增加已无较大意义。因而,白膜层的厚度为15~30μm,优选为23~28μm。

上述实例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1