半导体装置及系统的制作方法

文档序号:27018333发布日期:2021-10-23 05:24阅读:163来源:国知局
半导体装置及系统的制作方法

1.本发明涉及一种半导体装置。


背景技术:

2.以往,已知有在mosfet(metal oxide semiconductor field effective transistor,金属氧化物半导体场效应晶体管)等与温度检测用二极管之间设置有保护二极管的半导体装置(例如,参照专利文献1)。
3.现有技术文献
4.专利文献
5.专利文献1:日本特开2006

203446号公报


技术实现要素:

6.技术问题
7.对温度检测用二极管提供保护以免受到静电放电的影响。
8.技术方案
9.为了解决上述问题,在本发明的第一方式中,提供一种半导体装置,该半导体装置具备:半导体基板;温度感测部,其设置于半导体基板的正面;阳极焊盘和阴极焊盘,其与温度感测部电连接;正面电极,其被设定为预先确定的基准电位;以及双向二极管部,其以双向串联的方式电连接于阴极焊盘与正面电极之间。输出比较二极管部配置于阳极焊盘与阴极焊盘之间。温度感测部包括温度感测二极管,且输出比较二极管部包括与温度感测二极管反向并联地连接的二极管。
10.双向二极管部在正面可以配置于阳极焊盘与阴极焊盘之间。
11.双向二极管部可以包括双向连接的齐纳二极管。
12.正面电极可以具有:主金属部,其设置于正面;以及连接部,其将主金属部与双向二极管部连接。
13.半导体装置可以具备:晶体管部;以及栅极浇道,其设置于半导体基板的正面,且电连接于晶体管部的栅电极。连接部可以横穿栅极浇道的上方。
14.半导体装置可以还具备电流感测部。正面电极可以包括电连接于电流感测部的电流感测焊盘。
15.半导体装置可以具备设置于连接部的上方的保护膜。
16.保护膜可以含有聚酰亚胺。
17.保护膜可以具有在半导体基板的正面沿预先确定的方向延伸的延伸部。双向二极管部可以配置于比延伸部靠半导体基板的正面的外侧的位置。
18.双向二极管部可以具有第一二极管部以及与第一二极管部反向串联地连接的第二二极管部。第一二极管部和第二二极管部分别可以包括并联连接的多个二极管。
19.在本发明的第二方式中,提供一种系统,该系统具备:半导体装置;以及劣化检测
电路,其具有开关部和检测部,所述开关部电连接于半导体装置的温度感测部和输出比较二极管部,且针对温度感测部和输出比较二极管部的每一个切换通电方向来流通正向电流,所述检测部测定在向温度感测部输入了正向电流的情况下的输出电压与在向输出比较二极管部输入了正向电流的情况下的输出电压之间的电压差值。
20.检测部可以将电压差值与预先确定的阈值进行比较,在电压差值比阈值大的情况下,发送提示更换温度感测二极管的通知。
21.在本发明的第三方式中,提供一种半导体装置,该半导体装置具备:半导体基板;温度感测部,其设置于半导体基板的正面;阳极布线和阴极布线,其与温度感测部电连接;正面电极,其被设定为预先确定的基准电位;以及双向二极管部,其以双向串联的方式电连接于阴极布线与正面电极之间。双向二极管部在正面可以配置于阴极布线与正面电极之间。
22.双向二极管部可以以通过双向二极管部和温度感测部夹着阴极布线的方式配置。
23.在本发明的第四方式中,提供一种半导体装置,该半导体装置具备:半导体基板;温度感测部,其设置于半导体基板的正面;阳极焊盘和阴极焊盘,其与所述温度感测部电连接;电流感测部;电流感测焊盘,其被设定为预先确定的基准电位,且电连接于电流感测部;以及双向二极管部,其以双向串联的方式电连接于阴极焊盘与电流感测焊盘之间。双向二极管部在正面可以配置于电流感测焊盘与阴极焊盘之间。
24.应予说明,上述的发明概要并未列举出本发明的全部必要特征。此外,这些特征组的子组合也能够成为发明。
附图说明
25.图1示出实施例1的半导体装置100的正面的各构成要素的配置的一例。
26.图2示出半导体装置100的正面的栅极浇道48的配置的一例。
27.图3是设置在半导体装置100的正面的发射电极52的配置的一例。
28.图4示出半导体装置100的正面的双向二极管部210周边的放大图的一例。
29.图5是半导体装置100的俯视图的一例。
30.图6是半导体装置100的xz截面图的一例。
31.图7是半导体装置100的连接部205和双向二极管部210周边的截面图的一例。
32.图8是半导体装置100的等效电路图的一例。
33.图9a是提取温度感测部178与输出比较二极管部220之间的并联部分而得的电路图。
34.图9b示出由多晶硅构成的pn结二极管的随时间劣化的形式的一例。
35.图9c示出设置于半导体装置100的外部的劣化检测电路300的一例。
36.图10a示出双向二极管部210的一例。
37.图10b示出双向二极管部210的另一例。
38.图10c示出双向二极管部210的又一例。
39.图10d示出双向二极管部210的再一例。
40.图11a是设置于双向二极管部210的p型区和n型区的一例。
41.图11b是设置于双向二极管的p型区和n型区的另一例。
42.图11c是设置于双向二极管的p型区和n型区的又一例。
43.图12示出半导体装置100的正面的各构成要素的实施例2的配置的一例。
44.图13示出实施例2的半导体装置100的等效电路图。
45.图14示出实施例3的半导体装置100的正面的各构成要素的配置的一例。
46.图15示出实施例3的半导体装置100的正面的中央周边的放大图的一例。
47.图16示出实施例4的半导体装置100的正面的各构成要素的配置的一例。
48.符号说明
49.10:半导体基板,12:发射区,14:基区,16:蓄积区,18:漂移区,20:缓冲区,21:上表面,22:集电区,23:下表面,24:集电电极,30:虚设沟槽部,32:虚设绝缘膜,34:虚设导电部,38:层间绝缘膜,40:栅极沟槽部,42:栅极绝缘膜,44:栅极导电部,48:栅极浇道,50:栅极焊盘,52:发射电极,54:接触孔,60:台面部,70:晶体管部,80:二极管部,82:阴极区,90:分离部,92:保护膜,94:延伸部,100:半导体装置,102:端边,110:电流感测部,120:有源部,130:阱区,172:电流感测焊盘,174:阳极焊盘,176:阴极焊盘,178:温度感测部,180:阳极布线,182:阴极布线,183:温度感测布线,203:主金属部,205:连接部,210:双向二极管部,212:第一二极管部,214:第二二极管部,216:扩散区间布线,220:输出比较二极管部,230:镀覆层,232:感测焊盘布线,300:劣化检测电路,302:检测部,304:锁存电路,310:开关部,320:过热保护电路
具体实施方式
50.以下,通过发明的实施方式对本发明进行说明,但是以下的实施方式并不限定权利要求所涉及的发明。此外,在实施方式中所说明的特征的全部组合并不一定是发明的解决方案所必须的。
51.在本说明书中,将与半导体基板的深度方向平行的方向上的一侧称为“正”或“上”,将另一侧称为“背”或“下”。将基板、层或其他部件的两个主面中的一面称为上表面,将另一面称为下表面。“正”、“上”、“背”以及“下”的方向不限于重力方向或安装半导体装置时的方向。
52.在本说明书中,有时使用x轴、y轴以及z轴的正交坐标轴来说明技术事项。正交坐标轴仅确定构成要素的相对位置,并不限定特定的方向。例如,z轴不限定表示相对于地面的高度方向。应予说明,+z轴方向和

z轴方向为彼此反向的方向。在未记载正负而记载为z轴方向的情况下,是指与+z轴和

z轴平行的方向。此外,在本说明书中,有时将从+z轴方向观察的情况称为俯视。
53.在本说明书中,在称为“相同”或“相等”的情况下,也可以包括具有因制造偏差等引起的误差的情况。该误差为例如10%以内。
54.在本说明书中,将掺杂有杂质的掺杂区的导电型设为p型或n型进行说明。但是,各掺杂区的导电型也可以是各自相反的极性。此外,在本说明书中,在记载为p+型或n+型的情况下,是指掺杂浓度比p型或n型高,在记载为p

型或n

型的情况下,是指掺杂浓度比p型或n型低。
55.在本说明书中,掺杂浓度是指作为施主或受主活化而成的杂质的浓度。在本说明书中,有时将施主与受主的浓度差设为施主或受主中的多的一方的浓度。该浓度差可以通
过电压

电容测定法(c

v法)进行测定。另外,可以将通过扩展电阻测定法(sr法)测量的载流子浓度作为施主或受主的浓度。此外,在施主或受主的浓度分布具有峰的情况下,可以将该峰值作为该区域中的施主或受主的浓度。在存在施主或受主的区域中的施主或受主的浓度大致均匀的情况下等,可以将该区域中的施主浓度或受主浓度的平均值作为施主浓度或受主浓度。
56.图1示出实施例1的半导体装置100的正面的各构成要素的配置的一例。半导体装置100具备:半导体基板10、栅极焊盘50、电流感测焊盘172、温度感测部178、与温度感测部178电连接的阳极焊盘174和阴极焊盘176、双向二极管部210以及输出比较二极管部220。
57.半导体基板10具有端边102。在本说明书中,将图1的俯视时的半导体基板10的一个端边102

1的方向设为x轴,将垂直于x轴的方向设为y轴。在本例中,x轴取沿端边102

1的方向。此外,将相对于x轴方向和y轴方向垂直,且呈右手系的方向称为z轴方向。本例的温度感测部178设置于半导体基板10的+z轴方向。
58.半导体基板10由硅或化合物半导体等半导体材料设置。在半导体基板10中,将设置温度感测部178的一侧称为正面,将对置的一侧的表面称为背面。在本说明书中,将连结半导体基板10的正面与背面的方向称为深度方向。本例的半导体基板10在正面具有大致矩形的形状,但是也可以具有不同的形状。
59.半导体基板10在正面具有有源部120。有源部120是在将半导体装置100设为导通状态的情况下在半导体基板10的正面与背面之间,供主电流沿深度方向流通的区域。有源部120的后述的栅极导电部44通过后述的栅极浇道48而连接于栅极焊盘50。
60.有源部120可以被分割为有源部120

1、有源部120

2、有源部120

3、有源部120

4、有源部120

5以及有源部120

6而配置。特别地,有源部120

1、有源部120

2以及有源部120

3可以被分离部90沿x轴方向分开,同样地,有源部120

4、有源部120

5以及有源部120

6可以被分离部90沿x轴方向分开。在本例中,被配置为沿x轴方向分隔开的有源部120

1、有源部120

2以及有源部120

3通过后述的发射电极52而彼此电连接。同样地,有源部120

4、有源部120

5以及有源部120

6也通过后述的发射电极52而彼此电连接。
61.在有源部120可以设置有包括igbt(绝缘栅双极型晶体管)等晶体管元件的晶体管部70。有源部120还可以设置有包括fwd(续流二极管)等二极管元件的二极管部80。在有源部120设置igbt和fwd的情况下,晶体管部70和二极管部80形成rc

igbt(reverse conducting igbt,逆导型igbt)。有源部120可以是设置有晶体管部70和二极管部80中的至少一种的区域。
62.在本例中,在有源部120中,在配置晶体管部70的区域标记符号“i”,在配置二极管部80的区域标记符号“f”。晶体管部70和二极管部80可以在有源部120的各区域中,沿x轴方向交替地排列配置。
63.但是,本例的晶体管部70和二极管部80的配置为例示,也可以为不同的配置。例如,在有源部120

3中,二极管部80也可以配置于x轴方向负侧。
64.半导体装置100在正面,在比有源部120靠外侧的位置具有p+型的阱区130。在更靠外侧的位置具有边缘终端结构部。边缘终端结构部具有例如包围有源部120而被设置为环状的保护环、场板以及将它们进行组合而成的结构。
65.温度感测部178可以配置于宽幅部,该宽幅部设置在半导体基板10的正面的中央
附近。在宽幅部不设置有源部120。如果将半导体基板10的有源部120集成化,则由于来自形成于有源部120的开关元件的发热而半导体基板10的中央部易于变热。通过在中央附近的宽幅部设置温度感测部178,从而能够监视晶体管部70的温度。由此,能够防止晶体管部70超过作为通常工作温度范围的结温tj而过热。
66.温度感测部178可以通过温度感测二极管而设置。作为一例,温度感测部178通过肖特基二极管而设置。此外,温度感测部178还可以通过介由绝缘膜设置于半导体基板10的上方的、由多晶硅构成的pn结二极管而设置。
67.在温度感测二极管的阳极和阴极分别连接有金属制的阳极布线180和阴极布线182。阳极布线180和阴极布线182为包含铝等金属的布线。
68.阴极焊盘176介由阴极布线182连接于温度感测部178。阳极焊盘174介由阳极布线180连接于温度感测部178。阴极焊盘176和阳极焊盘174为包含铝等金属的电极。
69.电流感测焊盘172电连接于电流感测部110。电流感测焊盘172为正面电极的一例。电流感测部110具有与有源部120的晶体管部70相同的结构,并模拟晶体管部70的工作。在电流感测部110流通与在晶体管部70流通的电流成比例的电流。由此,能够监视在晶体管部70流通的电流。
70.应予说明,与晶体管部70不同,在电流感测部110未设置后述的发射区12。由此,电流感测部110不作为晶体管工作。在电流感测部110设置栅极沟槽部。电流感测部110的栅极沟槽部电连接于栅极浇道48。
71.双向二极管部210在半导体装置110的正面,配置于阳极焊盘174与阴极焊盘176之间。双向二极管部210包括以双向串联的方式电连接于阳极焊盘174与阴极焊盘176之间的二极管。双向二极管部210防止温度感测部178因静电放电(electro

static discharge,esd)而产生损伤。
72.输出比较二极管部220设置于阳极焊盘174与阴极焊盘176之间。输出比较二极管部220电连接于阳极焊盘174和阴极焊盘176。输出比较二极管部220包括如下输出比较二极管,即该输出比较二极管具有与温度感测部178的温度感测二极管的pn结的方向反向并联连接的pn结的方向。
73.输出比较二极管部220的输出比较二极管可以除了pn结的方向以外具有与温度感测部178的二极管相同的设计。在半导体装置100的工作时,在输出比较二极管部220不进行电流通电。针对每个预先确定的周期,进行在图9a中后述的输出比较动作。在输出比较动作时,在输出比较二极管部220进行电流通电。通过输出比较动作,能够掌握温度感测部178的温度感测二极管的更换时期。
74.还可以与输出比较二极管部220并联地设置正向与输出比较二极管部220相同的保护二极管。在该情况下,保护二极管在温度感测部178的工作时,防止因噪声等而发生对温度感测部178施加过电压或流入过电流的情况。
75.图2示出半导体装置100的正面的栅极浇道48的配置的一例。栅极浇道48配置于在半导体基板10的正面由虚线所示的位置。
76.栅极浇道48是由聚酰亚胺等绝缘膜覆盖添加有杂质的多晶硅、或金属等导电材料而形成的布线。栅极浇道48可以电连接于栅极焊盘50。进一步地,栅极浇道48连接于配置在有源部120的晶体管部70的后述的栅极导电部44,且将栅极导电部44设定为栅极电位。栅极
导电部44对应于晶体管部70的栅电极。由此,晶体管部70的晶体管导通。
77.栅极浇道48可以配置于有源部120周边的阱区130的上方。栅极浇道48可以被配置为在被有源部120

1和有源部120

2所夹的、半导体基板10的中央附近的宽幅部中包围温度感测部178。
78.栅极焊盘50电连接于外部的控制端子。栅极焊盘50利用铝等金属的导体而设置。栅极焊盘50可以通过引线键合而与外部连接。
79.图3是设置于半导体装置100的正面的发射电极52的配置的一例。发射电极52利用铝等金属的导体而设置。发射电极52被设定为作为预先确定的基准电位的发射极电位。发射极电位也可以设定为接地电位。发射电极52也与电流感测焊盘172同样地,是正面电极的一例。
80.发射电极52配置于由斜线所示的区域。发射电极52具有被设置为覆盖整个有源部120的主金属部203。进一步地,在将有源部120

1、有源部120

2以及有源部120

3沿x轴方向彼此分离的分离部90的上方的区域也设置发射电极52,且通过发射电极52将有源部120

1、有源部120

2以及有源部120

3彼此电连接。同样地,有源部120

4、有源部120

5以及有源部120

6也通过发射电极52而彼此电连接。
81.进一步地,发射电极52具有将主金属部203与双向二极管部210连接的连接部205。连接部205可以与发射电极52一体地设置。双向二极管部210的一端电连接于阴极焊盘176,另一端介由连接部205电连接于发射电极52。进一步地,对于连接部205周边的结构将在后面进行描述。
82.图4示出半导体装置100的正面的双向二极管部210周边的放大图的一例。图4是图3的区域a的放大图的一例。双向二极管部210包括以阴极对置的方式通过双向串联电连接的2个二极管组。2个二极管组分别包括1个以上的二极管。
83.在本例的双向二极管部210中,每10个串联电连接的二极管的阴极对置。特别地,本例的双向二极管部210包括双向连接的齐纳二极管。通过以使二极管中的掺杂剂扩散区的掺杂浓度成为高浓度的方式进行设置从而成为齐纳二极管。但是,双向二极管部210具有的二极管不限于齐纳二极管。作为一例,双向二极管部210的扩散区中的掺杂剂在p型区中可以为硼,在n型区中可以为砷。
84.在齐纳二极管中,p型区与n型区之间的带能(band energy)之差大。在施加了反向偏置的电压的情况下,在低的电压下,电子在耗尽层引起隧道迁移,从而产生齐纳击穿。在齐纳击穿现象中,与自由电子被加速而贯穿耗尽层的雪崩击穿现象相比,在击穿电压下呈现急剧的电流变化。换言之,齐纳二极管在施加了一定电压以上的电压的情况下易于使电流急剧地流通,成为低电阻。这在发射极电位接地的情况下,对应于使由静电放电引起的电压向接地电位释放。
85.由此,在产生了静电放电的情况下,在成为了低电阻的情况下,能够向齐纳二极管释放电流,保护元件以免受到由静电放电引起的过电压或过电流的影响。此外,齐纳二极管存在极性,因此,通过将齐纳二极管反向串联地双向连接,能够针对正负两种电压浪涌而提供抗过电压或过电流的保护。
86.本例的双向二极管部210配置于阳极焊盘174与阴极焊盘176之间的区域。在静电放电对元件造成影响,且将设置在半导体基板10的比有源部120靠外侧的位置的p+型的阱
区130与阴极焊盘176连接的情况下,温度感测部178的电阻变大,使温度感测部178的温度感测特性变差。本例的双向二极管部210设置于接近阴极焊盘176的位置,因此,双向二极管部210能够在阴极焊盘176周边迅速地执行伴随着齐纳击穿的动作。因此,能够适时地保护温度感测部178以免受到静电放电的影响,并良好地保持温度感测部178的特性。
87.此外,通过双向二极管部210配置于阳极焊盘174与阴极焊盘176之间的区域,从而也能够在减小半导体装置100的尺寸的情况下有效活用空间。进一步地,使阳极布线180和阴极布线182的长度保持较短,并保持低自感。
88.本例的将双向二极管部210与发射电极52的主金属部203连接的连接部205以横穿栅极浇道48的上方的方式延伸。通过本例的连接部205的配置,能够确保主金属部203和有源部120的设置范围够宽阔。
89.本例的输出比较二极管部220具有串联连接的3个二极管。但是,只要是串联连接的二极管即可,并不限定二极管的个数。输出比较二极管部220可以配置于阳极焊盘174与阴极焊盘176之间。输出比较二极管部220的扩散区所具有的pn结的正向以相对于与输出比较二极管部220并联的温度感测部178的温度感测二极管所具有的pn结的正向成为反向的方式进行配置。输出比较二极管部220可以是除了将连接方向设为反向并联之外,具有与温度感测部178相同的结构的二极管。
90.图5为半导体装置100的俯视图的一例。是在半导体装置100的正面配置了发射电极52之后,进一步地配置有保护膜92和镀覆层230的图。
91.镀覆层230配置于斜线的区域。镀覆层230包含适合焊接的镍等金属。镀覆层230可以设置于有源部120的上方。
92.在镀覆层230的区域c设置连接于半导体装置100的主端子的金属布线层,且通过无铅焊料等电连接。作为一例,金属布线层为含铜等金属的引线框架。本例的区域c具有矩形形状,但区域c的形状为例示,并不限定于矩形。
93.保护膜92在半导体基板10的正面,设置于分离部90的上方。延伸部94沿着分离部90在预先确定的方向上延伸。本例的延伸部94沿y轴方向延伸。延伸部94可以具有棱状(肋状)的形状而进行延伸。作为一例,保护膜92含有聚酰亚胺等绝缘材料。各焊盘能够通过引线键合等而与外部连接,因此,保护膜92可以设置于电流感测焊盘172、阳极焊盘174以及阴极焊盘176的上表面。
94.双向二极管部210可以配置于比延伸部94靠半导体基板10的正面的外侧的位置。通过延伸部94具有棱状(肋状)的形状,从而在设置焊料到镀覆层230时,能够防止焊料侵入到双向二极管部210。在焊料被设置为不对称的情况下,在半导体装置100会产生应力集中、伴随应力集中的翘曲、以及电极剥离等。通过防止焊料的流出,能够防止由焊料引起的应力集中,并防止电极剥离。由此,半导体装置100的可靠性提高。
95.进一步地,保护膜92设置于连接部205的上方。保护膜92防止焊料向连接部205以及通过连接部205向双向二极管部210流入。由此,能够防止向被设置为宽度比主金属部203窄的连接部205流入焊料且产生应力集中这一情形。因此,半导体装置100的可靠性提高。
96.图6是半导体装置100的xz截面图的一例。本例是图5的d

d’截面的一例。
97.晶体管部70在半导体基板10的正面具有多个虚设沟槽部30和多个栅极沟槽部40,二极管部80具有多个虚设沟槽部30。此外,半导体基板10在多个沟槽部彼此之间具有作为
掺杂剂扩散区的台面部60。台面部60介由接触孔54与发射电极连接。
98.虚设沟槽部30具有虚设绝缘膜32和虚设导电部34。虚设导电部34介由后述的接触孔电连接于发射电极52,并被设定为发射极电位。
99.栅极沟槽部40包括由金属等导体构成的栅极导电部44、以及设置于栅极导电部44与有源部120之间的栅极绝缘膜42。栅极导电部44通过层间绝缘膜38而与发射电极52绝缘。栅极导电部44通过栅极浇道48电连接于栅极焊盘50,并被设定为栅极电位。栅极导电部44对应于晶体管部70的栅电极。作为一例,栅极电位可以是比发射极电位高的电位。
100.晶体管部70从半导体基板10的正面侧起具有第一导电型的发射区12、第二导电型的基区14、设置于基区14的下方的第一导电型的漂移区18、以及第二导电型的集电区22。其中,发射区12可以不覆盖半导体基板10的正面的整个台面部60,而仅覆盖接近虚设沟槽部30和栅极沟槽部40的区域。在发射电极12不覆盖半导体基板10的正面的台面部60的区域中,基区14可以在正面露出。
101.此外,本例的晶体管部70具有设置于基区14与漂移区18之间的第一导电型的蓄积区16。通过设置蓄积区16,能够提高载流子向基区14的ie效果(injection enhancement effect,注入促进效果),并降低导通电压。但是,也可以省略蓄积区16。
102.作为一例,发射区12具有n+型的极性类型。即,在本例中,示出了将第一导电型设为n型,将第二导电型设为p型的例子,但是也可以将第一导电型设为p型,将第二导电型设为n型。在该情况下,各实施例中的基板、层、区域等的导电型分别成为相反的极性。
103.本例的基区14具有p

型的极性。在栅极导电部44被设定为栅极电位的情况下,在基区14中,电子被吸引到栅极沟槽部40侧。在基区14的与栅极沟槽部40接触的区域形成n型的沟道,作为晶体管进行驱动。
104.在二极管部80中,在半导体基板10的上表面21侧设置有p

型的基区14。在本例的二极管部80未设置有蓄积区16。在另一例中,也可以在二极管部80也设置有蓄积区16。
105.在晶体管部70中的蓄积区16的下方以及在二极管部80中的基区14的下方设置n

型的漂移区18。在晶体管部70和二极管部80这双方中,在漂移区18下设置有n型的缓冲区20。缓冲区20可以作为防止从基区14的下表面扩展的耗尽层到达p+型的集电区22和n+型的阴极区82的场截止层而发挥功能。
106.在晶体管部70中,在缓冲区20下设置p+型的集电区22。在二极管部80中,在缓冲区20下设置n+型的阴极区82。
107.集电区22和阴极区82的下侧的表面相当于半导体基板10的下表面23。在半导体基板10的下表面23设置集电电极24。集电电极24由金属等导电材料设置。
108.图7是半导体装置100的连接部205和双向二极管部210周边的截面图的一例。本例为图4的b

b’截面和图5的e

e’截面的一例。
109.在本例中,在阱区130的附近的有源部120设置有晶体管部70,但是也可以在该区域设置有二极管部80。在有源部120的上方设置发射电极52,且在更上方设置镀覆层230。另一方面,在连接部205和双向二极管部210的上方设置保护膜92。阱区130的下方的扩散区可以具有与晶体管部70相同的结构。
110.发射电极52具有连接部205。本例的连接部205横穿栅极浇道48的上方。连接部205的端部与扩散区间布线216连接,所述扩散区间布线216连接于双向二极管部210的阳极。双
向二极管部210的扩散区间布线216连接于反向串联地连接的对置的阴极。栅极浇道48和双向二极管部210的扩散区可以利用层间绝缘膜38绝缘。
111.图8是半导体装置100的等效电路图的一例。本例的半导体装置100具有如下结构,即在晶体管部70的集电极连接有将栅极电位设为共用的电流感测部110的集电极。本例的晶体管部70和二极管部80具有rc

igbt。
112.本例的双向二极管部210的一端连接于晶体管部70的发射极,另一端连接于温度感测部178的阴极。本例的双向二极管部210的电连接不会对温度感测部178的读取电压的值造成影响。在本例中,双向二极管部210的电路符号作为齐纳二极管示出。但是,双向二极管部210的二极管不限定于齐纳二极管。
113.对于温度感测部178,配置有包含反向并联地电连接的二极管的输出比较二极管部220。温度感测部178的两端可以连接于具有检测温度感测部178的电流和电压并计算温度的功能的电路。
114.在安装于半导体装置100的情况下,在双向二极管部210与温度感测部178之间的布线存在电阻和自感。进一步地,在双向二极管部210与温度感测部178的阴极之间的距离长的情况下,从静电放电的发生起算到双向二极管部210进行齐纳动作为止可能产生时间差。
115.本实施例的半导体装置100通过在阳极焊盘174与阴极焊盘176之间配置双向二极管部210从而保证迅速的齐纳动作。此外,在半导体装置100中,在芯片上设置电路元件的情况下,即使减小芯片尺寸,也通过在该位置设置双向二极管部210而在电路布局上也减小对其他元件造成的影响。此外,关于本例的双向二极管部210和输出比较二极管部220的配置而言,能够将温度感测部178的保护元件与大电流流通的有源部120分隔而配置。由此,能够保持电路的可靠性并且提高半导体装置100的esd耐量。
116.图9a是提取温度感测部178与输出比较二极管部220之间的并联部分而得的电路图。对本例的输出比较二极管部220的输出比较动作的一例进行说明。
117.在开始半导体装置100的工作时,沿温度感测部178的温度感测二极管的正向流通预先确定的大小的电流。测定该情况下的温度感测部178的输出电压vf
int

118.切换电流的输入方向,沿输出比较二极管部220的输出比较二极管的正向流通预先确定的大小的电流。该电流的大小可以与在温度感测部178流通的电流相同,也可以与在温度感测部178流通的电流不同。测定该情况下的输出比较二极管的输出电压。
119.测定温度感测二极管的输出电压与输出比较二极管的输出电压之间的电压差值。由此,进行电压差值的初始值δv
int
的校正。作为一例,δv
int
被设定为0。
120.如果驱动半导体装置100,则温度感测部178检测半导体基板10上的温度。温度感测部178通过预先确定的恒定电流持续通电而驱动。在温度感测部178为由多晶硅构成的pn结二极管的情况下,通过长时间的使用而伴随着通电产生多晶的复合过程。由此,进一步地生成晶体缺陷,并且晶体缺陷量增加。晶体缺陷的生成速度与为了驱动温度感测部178而通电的电流的大小成比例。
121.因此,在连续驱动了温度感测部178的情况下,温度感测部178内的晶体缺陷增大,且输出电压vf降低。能够在温度感测部178对于预先确定的电流的输入的输出电压vf的变动量δvf的比例超过了预先确定的阈值的情况下,规定为温度感测部178达到了寿命。作为
一例,阈值设定为2%。
122.在测定连续驱动了温度感测部178时的温度感测部178的输出电压vf变化的情况下,输出比较二极管部220在驱动过程中不被通电。由此,对于输出比较二极管部220而言,不产生由半导体装置100的驱动引起的输出电压的变动。因此,能够将输出比较二极管部220的输出电压保持为大致恒定值。由此,能够将输出比较二极管部220的输出电压作为获取输出电压之差时的恒定的基准值而进行输出比较。
123.为了测定温度感测部178的输出电压vf的变动量的比例,对于被连续地通电驱动了的温度感测部178,沿正向流通预先确定的大小的电流。测定该情况下的温度感测部178的输出电压vf。
124.再次切换电流的输入方向,沿输出比较二极管部220的输出比较二极管的正向流通预先确定的大小的电流。测定输出比较二极管部220的输出电压。
125.测定温度感测二极管的输出电压与输出比较二极管的输出电压之间的电压差值δv。通过从δv减去δv
int
从而能够导出由输出电压的随时间变化所引起的变动量δvf。δvf相对于vf
int
的比例δvf/vf
int
成为输出电压vf的变动量的比例。
126.进行δvf/vf
int
是否超过预先确定的阈值的判定。在该值超过了阈值的情况下,电压差值δvf作为超过了阈值的值,发送提示更换温度感测二极管的通知。由此,用户能够更换已到寿命的温度感测二极管。
127.图9b示出由多晶硅构成的pn结二极管的随时间劣化的形式的一例。在温度感测部178为由多晶硅构成的pn结二极管的情况下,利用通电驱动增加晶体缺陷。
128.在本例中,图表的横轴以按每次时间的指数增加而标度刻度的对数标尺示出。在纵轴上,示出在将温度感测二极管的输出电压vf的初始值标度为1的情况下的输出电压vf的相对值。
129.在本例中,在温度感测二极管的输出电压vf的输出电压的变动的大小为2%以上的情况下,规定为温度感测二极管达到了寿命。例如,在驱动电流为100ma的情况下输出电压vf降低2%是时间的值示出为80的时刻。
130.为了驱动温度感测部178而通电的电流值的大小与晶体缺陷的生成速度成比例。因此,温度感测二极管的驱动电流的大小的指数与温度感测二极管的寿命之间存在负的相关关系。
131.通过减小驱动电流,能够延长温度感测部178的寿命。另一方面,如果减小驱动电流,则存在不能忽视从双向二极管部210产生的噪声的影响的权衡关系。通过增大驱动电流,即使在存在噪声的影响的情况下,也能够保证温度感测二极管的测量灵敏度。
132.因此,通过设置输出比较二极管部220来检测温度感测二极管的寿命,用户能够用实际产品判断温度感测二极管的更换时期。由此,即使在增大温度感测部178的测量灵敏度的情况下,用户也能够根据寿命来更换温度感测二极管。因此,能够消除准备过长寿命的产品作为温度感测二极管的要求,能够使用小的产品。由此,能够进一步地将半导体装置100细微化,增大温度感测二极管的测量灵敏度设计的自由度。
133.图9c示出设置于半导体装置100的外部的劣化检测电路300的一例。劣化检测电路300具备:检测部302

a至检测部302

d、锁存电路304、开关部310、以及过热保护电路320。劣化检测电路300的端子的一端连接于输入电压vdd和接地电压gnd。
134.本例的劣化检测电路300具备4个检测部302,但是检测部302和开关部310的切换数不限于4个。半导体装置100和劣化检测电路300可以整合在1个系统。
135.开关部310具有多个开关。开关部310通过切换多个开关,通过检测部302

a至检测部302

d中的任一个向半导体装置100的温度感测部178的阴极和阳极导通电流或切换导通的电流的正负。
136.在驱动半导体装置100时,开关部310介由检测部302

a使电流沿温度感测部178的正向导通。在该情况下,过热保护电路320中的检测部302

a发挥功能,来测定温度感测部178的输出电压vf。通过测定输出电压vf,来检测半导体装置100是否过热。
137.作为一例,检测部302

b和检测部302

c用于输出比较动作。检测部302

b在输出比较动作中,检测在温度感测部178流通正向电流时的输出电压vf。检测部302

c在输出比较动作中,检测在输出比较二极管部220流通正向电流时的输出电压。
138.锁存电路304用于保持输出电压vf以及输出比较二极管部220的输出电压。锁存电路304向检测部302

d发送各个电压。
139.检测部302

d为了检测电压差值δvf而使用。检测部302

d将电压差值与预先确定的阈值进行比较,在电压差值比阈值大的情况下,发送提示更换温度感测二极管的通知。
140.图10a示出双向二极管部210的一例。双向二极管部210包括反向串联地电连接的第一二极管部212和第二二极管部214。本例的第一二极管部212和第二二极管部214分别具有二极管。该二极管在电路图中用齐纳二极管的电路符号示出。
141.双向二极管部210在第一二极管部212和第二二极管部214中分别具有一个齐纳二极管。第一二极管部212的阴极与第二二极管部214的阴极彼此对置。
142.图10b示出双向二极管部210的另一例。关于双向二极管部210而言,第一二极管部212的阳极与第二二极管部214的阳极彼此对置。在图10a和图10b中的任一双向二极管部210中,均能够提供抗静电放电的保护。
143.图10c示出双向二极管部210的又一例。双向二极管部210与图4中的构成相同。第一二极管部212和第二二极管部214分别具有10个齐纳二极管。第一二极管部212的二极管串联地电连接。
144.图10d示出双向二极管部210的再一例。在双向二极管部210中,第一二极管部212和第二二极管部214分别具有10个齐纳二极管。在第一二极管部212和第二二极管部214中,两列各5个二极管并联连接。如本例那样,第一二极管部212和第二二极管部214分别可以包括并联连接的多个二极管。第一二极管部212和第二二极管部214的并联数量可以为3以上。进一步地,并联连接的布线上的各二极管的数量也可以为多个。
145.在向图10c的双向二极管部210和图10d的双向二极管部施加了相同电压的情况下,在图10d的双向二极管部210流通的电流值成为在图10c的双向二极管部210流通的电流值的大约2倍。在发生了静电放电的情况下,图10d的双向二极管部210也比图10c的双向二极管部210易于瞬间地流通电流。因此,图10d的双向二极管部210具有比图10c的双向二极管部210高的esd耐量。
146.图11a是设置于双向二极管部210的p型区和n型区的一例。本例的双向二极管部210具有与图4中的双向二极管部210的例子相同的结构。图4的例子的双向二极管部210与等效电路图一并示出。
147.本例的双向二极管部210的第一二极管部212和第二二极管部214分别包括每10个串联设置的二极管。第一二极管部212的阴极与第二二极管部214的阴极具有对置的结构。扩散区间布线216越过层间绝缘膜38而将p型区与n型区电连接。
148.图11b是设置于双向二极管的p型区和n型区的另一例。具有与图10d的双向二极管部210的电路的例子相同的结构。通过设定扩散区的极性和扩散区间布线216,从而能够调整双向二极管部210内的二极管的并联数和每个并联布线上的二极管数。
149.在本例中,第一二极管部212具有并联数量为2的布线。第一二极管部212在并联的布线上分别具有5个二极管。第二二极管部214也具有相同的结构。
150.图11c是设置于双向二极管的p型区和n型区的又一例。在本例的双向二极管部210中,第一二极管部212和第二二极管部214分别具有5个齐纳二极管。
151.本例的双向二极管部210具有的二极管沿y轴方向具有长的宽度,且pn结区的面积比图11a的双向二极管部210的pn结区的面积大。因此,本例的双向二极管部210流通比图11a的双向二极管部210多的电流,且esd耐量也变大。
152.图12示出实施例2的半导体装置100的正面的各构成要素的配置的一例。在本例中,特别地,对与实施例1之间的不同之处进行描述。
153.在本例中,双向二极管部210通过感测焊盘布线232电连接于电流感测焊盘172和阴极焊盘176。在本例中,连接于双向二极管部210的正面电极对应于电流感测焊盘172。即,正面电极可以包含连接于电流感测部110的电流感测焊盘172。
154.在本例中,也是双向二极管部210配置于阳极焊盘174与阴极焊盘176之间,因此,能够适时地保护温度感测部178以免受到静电放电的影响,良好地保持温度感测部178的特性,并且即使减小半导体装置100的芯片尺寸,也能够保持电路的可靠性并且提高半导体装置100的esd耐量。在本例中,双向二极管部210能够对于温度感测部178提供抗静电放电的保护,并且对于电流感测部110也提供抗静电放电的保护。
155.图13示出实施例2的半导体装置100的等效电路图。双向二极管部210的一端电连接于电流感测部110的发射电极,另一端连接于温度感测部178的阴极。
156.图14示出实施例3的半导体装置100的正面的各构成要素的配置的一例。在本例中,双向二极管部210被配置为在半导体装置100的中央附近与温度感测部178相邻。本例的半导体装置100具有与图8的实施例1相同的等效电路。本例的半导体装置100具有与实施例1相同的等效电路。在本例中,特别地,参照后述的放大图来对与实施例1之间的不同之处进行描述。
157.图15是实施例3的半导体装置100的正面的中央附近的放大图的一例。本例是图14的区域f的放大图的一例。
158.本例的双向二极管部210包括以双向串联的方式电连接于阴极布线182与作为正面电极的发射电极52之间的二极管。本例的双向二极管部210在半导体装置100的正面的y轴方向上,配置于阴极布线182与发射电极52之间。此外,双向二极管部210在x轴方向上以通过双向二极管部210和温度感测部178夹着阴极布线182的方式配置。
159.在本例中,阴极布线182电连接于温度感测部178的串联地配置的温度感测二极管的阴极侧n型区。阳极布线180电连接于温度感测二极管的阳极侧p型区。阴极布线182和阳极布线180可以以
“コ”
字形弯曲的方式延伸。温度感测部178的有源区之间可以由温度感测
布线183连接。
160.本例的阴极布线182也电连接于双向二极管部210的一端。本例的双向二极管部210的另一端电连接于从有源部120

2的晶体管部70沿z轴方向延伸的连接部205。
161.栅极浇道48的配置由虚线示出。栅极浇道48可以连接于栅极沟槽部40的栅极导电部44。另一方面,虚设沟槽部30的虚设导电部34介由接触孔连接于发射电极52。
162.镀覆层230设置于有源部120,且在除了有源部120以外的部分设置保护膜92。由此,能够通过镀覆使得布线不联结。
163.根据本例的配置,双向二极管部210配置于温度感测部178的附近。温度感测二极管的有源区和有源部120之间的层间绝缘膜38易受静电放电的影响。通过本例的配置,双向二极管部210针对温度感测部178的易受静电放电的影响的部位,能够通过迅速的齐纳动作而适时地提供静电保护。
164.在有源部120中,用矩形形状设置晶体管部70和二极管部80的形状降低制造上的工时和成本。在使用矩形形状的晶体管部70和二极管部80并将用于设置温度感测部178的宽幅部设置在中央的情况下,在温度感测部178的周边易产生空间。本例的双向二极管部210的配置能够有效地活用温度感测部178周边的空间。因此,本例能够提供应对半导体装置100的芯片尺寸的降低的、可靠性高的半导体装置100的静电保护。
165.图16示出实施例4的半导体装置100的正面的各构成要素的配置的一例。本例的半导体装置100具有与图13的实施例2相同的等效电路。在本例中,特别地,对与实施例2之间的不同之处进行描述。
166.在本例中,通过将温度感测部178的有源区的极性设为与实施例4相反,从而阴极焊盘176和阳极焊盘174的配置与实施例4相反。但是,阴极焊盘176和阳极焊盘174的配置的替换可以通过变更阳极布线180和阴极布线182的配置而进行。
167.在本例中,双向二极管部210在半导体基板10的正面,配置于电流感测焊盘172与阴极焊盘176之间。与实施例2同样地,双向二极管部210电连接于电流感测焊盘172和阴极焊盘176。可以通过从电流感测焊盘172的正面电极延伸的连接部205进行。
168.在连接部205的上表面设置保护膜92。由此,焊料难以从镀覆层流入到连接部205和双向二极管部210。由此,能够防止应力集中至连接部205。
169.以上,使用实施方式对本发明进行了说明,但是本发明的技术范围并不限于上述实施方式所记载的范围。在上述实施方式中,对本领域技术人员来说可以对上述实施方式进行各种变更或改进是显而易见的。根据权利要求书的记载可明了进行了那样的变更或改进的方式也可以包括在本发明的技术范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1