用于激光切割的具有三维光电子组件的器件和用激光切割这种器件的方法与流程

文档序号:31122850发布日期:2022-08-13 02:02阅读:53来源:国知局
用于激光切割的具有三维光电子组件的器件和用激光切割这种器件的方法与流程
用于激光切割的具有三维光电子组件的器件和用激光切割这种器件的方法
1.本专利申请主张法国专利申请fr19/15605的优先权,该专利申请在此纳入作为参考。
技术领域
2.本发明一般地涉及用于激光切割的具有三维光电子组件的器件和用激光切割这种器件的方法。


背景技术:

3.对于某些应用,需要能够通过支撑件,对位于对激光基本透明的第一支撑件上的物体进行激光切割,例如,将物体与第一支撑件分离并将物体转移到第二支撑件上。为此,吸收激光的层通常介于待分离的物体和第一支撑件之间,并且激光束聚焦在该吸收层上,吸收层的烧蚀导致将物体与第一支撑件分离。吸收层例如对应于金属层,特别是金层。
4.在物体是光电子电路的情况下,需要第一支撑件对应于其上形成有光电子电路的衬底。这能够避免必须将光电子电路转移到第一支撑件上。在这种情况下,吸收层对应于形成有光电子电路的层。然而,当光电子电路包括三维光电子组件,特别是三维发光二极管时,形成这些三维光电子组件的方法可能对吸收层施加额外的限制。实际上,形成三维光电子组件的方法可包括具有由于外延步骤所需的温度,不能直接在金属吸收层上实现的三维半导体元件的外延生长步骤。然而,这样难以形成由非金属材料制成的吸收层(此材料与该层上的三维半导体元件的外延生长兼容,并且还具有所需的吸收特性)。尤其是在具体出于成本原因或技术可行性原因而导致吸收层的厚度受到限制时会出现此情况。然后可能需要增加用于获得吸收层烧蚀的激光的功率,这可能导致靠近吸收层的区域劣化,尤其是形成要分离的光电子电路的一部分的区域,这种情况是不希望发生的。


技术实现要素:

5.因此,实施例的目标是至少部分地克服上述用于激光切割的具有三维光电子组件的器件和上述用激光切割这种器件的方法的缺点。
6.实施例的目标是使激光束通过器件的一部分聚焦到器件的待去除区域上。
7.实施例的另一目标是使靠近待去除区域的面积不被处理损坏。
8.实施例的另一目标是使器件制造方法不包括将一个元件转移到另一元件上的步骤。
9.实施例的另一目标是使器件制造方法包括外延沉积步骤。
10.一个实施例提供了一种被配置为用激光进行处理的器件,包括对所述激光透明的支撑件和至少一个光电子电路,所述光电子电路包括具有用有源层覆盖的三维半导体元件的至少一个光电子组件,所述三维半导体元件包括结合到所述支撑件的基底,所述器件包括吸收所述激光的区域,其位于所述支撑件上并围绕所述基底。
11.根据一个实施例,所述吸收区包括光子晶体。
12.根据一个实施例,所述光子晶体是二维光子晶体。
13.根据一个实施例,所述光子晶体包括由第一材料制成的基层和由不同于所述第一材料的第二材料制成的柱格栅,每个柱在所述基层中跨所述基层的至少一部分厚度延伸。
14.根据一个实施例,所述第一材料对所述激光的吸收系数小于1。
15.根据一个实施例,所述第一材料对所述激光的吸收系数介于1到10之间。
16.根据一个实施例,所述第二材料对所述激光的吸收系数小于1。
17.根据一个实施例,所述吸收区包括围绕所述基底的吸收层,所述吸收层由对所述激光的吸收系数介于1到10之间的第三材料制成。
18.根据一个实施例,所述器件包括介于所述吸收层和所述支撑件之间的电绝缘层。
19.根据一个实施例,所述器件包括介于所述吸收层和所述三维半导体元件之间的电绝缘层。
20.根据一个实施例,所述支撑件包括对所述激光透明的衬底和由第四材料制成的垫,所述第四材料有利于介于所述衬底和所述三维半导体元件的所述基底之间的所述三维半导体元件的生长。
21.根据一个实施例,所述吸收区围绕所述垫。
22.根据一个实施例,所述第四材料是元素周期表iv、v或vi族的过渡金属的氮化物、碳化物或硼化物或这些化合物的组合或其中所述第四材料为氮化铝、氧化铝、硼、氮化硼、钛、氮化钛、钽、氮化钽、铪、氮化铪、铌、氮化铌、锆、硼酸锆、氮化锆、碳化硅、碳氮化钽、氮化镁或这些化合物中至少两种的混合物。
23.根据一个实施例,所述第四材料与所述第二材料相同。
24.根据一个实施例,所述支撑件包括第一和第二相对的表面,所述激光旨在从所述第一表面穿过所述支撑件到达所述第二表面,所述吸收区至少部分地覆盖所述第二表面。
25.根据一个实施例,所述器件包括所述光电子组件的多个副本,所述光电子组件的所述基底结合到所述支撑件。
26.一个实施例还提供了一种制造诸如前面定义的所述器件的方法,包括在所述支撑件上外延生长所述三维半导体元件。
27.一个实施例还提供了一种诸如前面定义的所述器件的激光处理的方法,所述方法包括通过所述支撑件使所述吸收区暴露于所述激光束。
28.根据一个实施例,所述方法包括将所述光电子电路结合到插座,所述光电子电路仍然耦合到所述支撑件,并且用所述激光破坏所述吸收区的至少一部分。
附图说明
29.上述特征和优点以及其他特征和优点将在以下参考附图以举例说明而非限制的方式给出的具体实施例的描述中进行详细描述,其中:
30.图1示出了包括吸收区的器件的激光处理系统的实施例;
31.图2是图1的器件的吸收区的实施例的部分简化放大图;
32.图3是图1的器件的吸收区的另一实施例的部分简化放大图;
33.图4是图3所示的器件的部分简化顶视图,具有横截面;
34.图5是图1的器件的吸收的另一实施例的部分简化放大图;
35.图6示出了图3或5的器件的吸收区的光子晶体的柱的布置;
36.图7示出了图3或5的器件的吸收区的光子晶体的柱的另一布置;
37.图8示出了图5的器件的吸收区的吸收根据光子晶体的柱间距与入射激光波长的比率的变化曲线;
38.图9示出了图5的器件的吸收区的吸收根据柱填充因子以及光子晶体的柱间距与入射激光波长的比率的灰阶深度图;
39.图10示出了图5的器件的吸收区的吸收根据柱填充因子以及根据光子晶体的柱间距与入射激光波长的比率的另一灰阶深度图;
40.图11示出了图5的器件的吸收区的吸收根据对应于柱填充因子的第一值的光子晶体层的柱高度以及根据光子晶体的柱间距与入射激光波长的比率的变化曲线;
41.图12示出了图5的器件的吸收区的吸收根据对应于柱填充因子的第二值的光子晶体层的柱高度以及根据光子晶体的柱间距与入射激光波长的比率的变化曲线;
42.图13是图1的器件的光电子组件的实施例的部分简化截面图;
43.图14是图1的器件的光电子组件的另一实施例的部分简化截面图;
44.图15示出了在图1的器件的激光切割方法的实施例的一步骤中获得的结构;
45.图16示出了在激光切割方法的另一步骤中获得的结构;
46.图17示出了在激光切割方法的另一步骤中获得的结构;
47.图18示出了在激光切割方法的另一步骤中获得的结构;
48.图19示出了在制造图5的器件的方法的实施例的一步骤中获得的结构;
49.图20示出了在制造方法的另一步骤中获得的结构;
50.图21示出了在制造方法的另一步骤中获得的结构;
51.图22示出了在制造方法的另一步骤中获得的结构;
52.图23示出了在制造方法的另一步骤中获得的结构;
53.图24示出了在制造方法的另一步骤中获得的结构;以及
54.图25示出了在制造方法的另一步骤中获得的结构。
具体实施方式
55.相似的特征在各个附图中用相似的附图标记表示。特别地,在各个实施例中共同的结构和/或功能特征可以具有相同的附图标记并且可以具有相同的结构、尺寸和材料特性。为了清楚起见,仅详细说明和描述了对理解本文描述的实施例有用的步骤和元件。具体地,激光源是本领域技术人员公知的,并且在下文中不进行详细描述。
56.在以下描述中,当提及限定绝对位置的术语时,例如术语“前”、“后”、“顶”、“底”、“左”、“右”等,或提及限定相对位置的术语时,例如术语“上”、“下”、“上部”、“下部”等,除非另有所指,否则指示图形的取向。除非另有所指,否则表述“大约”、“近似”、“基本上”和“约为”表示在10%以内,优选地在5%以内。此外,这里认为术语“绝缘的”和“传导的”分别表示“电绝缘的”和“导电的”。
57.在以下描述中,层的内透射率对应于从层出来的辐射强度与进入层的辐射强度的比率。该层的吸收等于1与内透射率之差。在以下描述中,当通过层的辐射的吸收小于60%
时,该层被认为对辐射透明。在以下描述中,当层中的辐射吸收高于60%时,该层被认为对辐射具有吸收性。在以下描述中,认为激光对应于单色辐射。实际上,激光可以具有以中心波长为中心的窄波长范围,称为激光波长。在以下描述中,材料的折射率对应于材料在用于激光处理的激光波长处的折射率。将吸收系数k称为有关材料的光学指数的虚部。根据关系α=4πk/λ,它与材料的线性吸收α相关联。
58.将描述用于激光切割在衬底上形成的光电子电路的实施例。术语“光电子电路”用于表示包括能够将电信号转换为电磁辐射或做出相反转换的光电子组件的电路,尤其是专用于检测、测量或发射电磁辐射的电路,或专用于光伏应用的电路。
59.包括三维光电子组件(即,包括三维半导体元件的光电子组件,特别是微米级或纳米级组件),以及形成在每个三维元件的表面上的有源区的光电子电路在本文中更具体地考虑。从中发射由光电子组件提供的大部分电磁辐射或从中捕获由光电子组件接收到的大部分电磁辐射的区域被称为光电子组件的有源区。三维元件的示例包括微米线、纳米线、微米级或纳米级圆锥形元件、或微米级或纳米级锥形元件。在以下描述中,描述了包括微米线或纳米线的光电子组件的实施例。然后,这些实施例可以针对微米线或纳米线之外的三维元件实现,例如金字塔形三维元件。
60.术语“微米线”或“纳米线”表示具有沿优选方向的细长形状的三维结构,具有至少两个被称为次维度的维度,范围为5nm至5μm,优选地为50nm至2.5μm,被称为主维度或高度的第三维度,至少等于最大次维度的1倍,优选地大至少5倍,更优选地大至少10倍。在某些实施例中,次维度可以小于或等于大约1μm,优选地在100nm至1μm范围内,更优选地在100nm至300nm范围内。在某些实施例中,每条微米线或纳米线的高度可以大于或等于500nm,优选地在1μm至50μm范围内。在以下描述中,术语“线”用于表示“微米线或纳米线”并且线延伸的优选方向在下文中称为线的“轴”。
61.图1是器件20的激光切割系统10的实施例的部分简化截面图。
62.切割系统10包括激光源12和具有光轴d的光学聚焦装置14。源12能够向聚焦装置14提供入射激光束16,聚焦装置14输出会聚激光束18。光学聚焦装置14可包括一个光学组件、两个光学组件或多于两个光学组件,例如对应于透镜的光学组件。优选地,入射激光束16基本上沿着光学装置14的光轴d准直。
63.器件20包括支撑件22,支撑件22包括两个相对的表面24、26。激光束18通过表面24穿透到支撑件22中。根据一个实施例,表面24和26是平行的。根据一个实施例,表面24和26是平面的。支撑件22的厚度可以介于50μm至3mm之间。可在支撑件22的表面24上提供用于激光的抗反射层(未示出)。支撑件22可具有单层结构或多层结构。特别地,支撑件22可包括单块衬底和在表面26的一侧覆盖衬底的层或层堆叠,衬底对应于支撑件22的大部分厚度,例如支撑件22的90vol.%以上。根据一个实施例,衬底由半导体制成。半导体材料可以是硅、锗或这些化合物中的至少两种的混合物。优选地,衬底由硅制成,更优选地由单晶硅制成。根据另一实施例,衬底至少部分地由非半导体材料(例如绝缘材料,特别是蓝宝石)或导电材料制成。
64.器件20包括至少部分地覆盖表面26的吸收区28和至少部分地通过吸收区28结合到支撑件22并且需要与支撑件22分离的至少一个光电子电路30。根据一个实施例,光电子电路30与吸收区28接触并且在吸收区28的与支撑件22相对的一侧上接合到吸收区28。作为
示例,多个光电子电路30在图1中被示为接合到吸收区28。在图1中,吸收区28被示为在表面26上是连续的。作为变体,吸收区28可以仅存在于每个光电子电路30和支撑件22之间,并且可以不存在于光电子电路30之间。
65.切割方法可包括处理系统10和器件20之间的相对位移,使得激光束18扫过整个待去除的吸收区28。在切割操作期间,光学装置14的光轴d优选地垂直于表面24。
66.激光的波长根据形成支撑件22的衬底的材料具体选择,使得衬底对激光透明。
67.根据一个实施例,特别是当支撑件22的衬底是半导体时,激光束18的波长大于对应于形成支撑件22的衬底的材料的带隙的波长,优选地大至少500nm,更优选地大至少700nm。这有利地能够在激光束18穿过衬底期间减少激光束18和衬底之间的相互作用。根据一个实施例,激光束18的波长小于2,500nm与对应于形成衬底的材料的带隙的波长之和。这有利地能够更容易地提供形成小尺寸激光点的激光束。
68.在支撑件22的衬底是半导体衬底的情况下,激光可以是红外激光,并且激光束18的波长可以在从200nm至10μm范围内。具体地,在支撑件22的衬底由具有1.14-ev的带隙(对应于1.1μm波长)的锗制成的情况下,激光束18的波长被选择为等于大约2μm。在支撑件22的衬底由具有0.661-ev的带隙(对应于1.87μm波长)的锗制成的情况下,激光束18的波长被选择为等于大约2μm或2.35μm。
69.在支撑件22的衬底由蓝宝石制成的情况下,激光束18的波长可介于300nm至5μm之间。
70.根据一个实施例,处理系统10以一个脉冲、两个脉冲或多于两个脉冲的形式发射激光束18,每个脉冲的持续时间介于0.1ps至1,000ns之间。每个脉冲的激光束的峰值功率介于10kw至100mw之间。
71.图2是器件20的实施例的放大截面图。
72.器件20的支撑件22在图2中从底部到顶部包括:
[0073]-衬底32;以及
[0074]-种子结构34,其有利于线的生长并覆盖衬底32。种子结构34的上表面对应于先前描述的支撑件22的表面26。种子结构34可包括有利于线生长的单个种子层,有利于线生成的层堆叠,至少其上层是种子层。在图2中作为示例示出的种子结构34对应于两个种子层36和38的堆叠,层36介于衬底32和种子层38之间。
[0075]
吸收区28位于种子结构34上,优选地与种子结构34接触。吸收区28包括吸收激光的层40和优选地介于吸收层40和种子结构34之间的至少一个中间层42。吸收层40对激光的吸收大于90%。根据一个实施例,吸收层40对线性状态下的激光波长的吸收系数k介于1至10之间。
[0076]
吸收层40例如由难熔金属或金属氮化物制成,特别是钛(ti)、钨(w)、钼(mo)、钽(ta)或这些金属的氮化物,或这些金属或这些氮化物中的至少两种的混合物或合金。吸收层40的厚度可介于5nm至500nm之间。在本实施例中,中间层42形成完全围绕吸收层40的绝缘护套44的一部分。根据一个实施例,中间层42的厚度大于5nm,例如介于5nm至500nm之间。中间层42由绝缘材料制成,例如二氧化硅(sio2)或氮化硅(sin)。可能不存在的中间层42能够防止吸收层40与种子结构34的上层机械接触。以避免在形成吸收层40的材料和种子结构34的上层之间形成合金或混合物,特别是在制造光电子电路30的方法期间。
[0077]
光电子电路30包括至少一个三维光电子组件50,图2示出一个三维光电子组件50。三维光电子组件50包括线52,三维光电子组件50的其他元件未在图2中示出并且在下文中进一步详细描述。吸收区28包括用于每个光电子组件50的开口54。线52的基底53通过开口54放置在种子结构34上并且与种子结构34接触.光电子电路30还包括覆盖吸收区28和覆盖线52的下部的绝缘层56。绝缘层56可以特别地在围绕线52的开口54中延伸。在吸收层40和线52之间存在绝缘护套44,并且可能存在绝缘层56,尤其能够在形成线52期间防止吸收层40的侧面产生寄生核。
[0078]
图3是器件20的另一实施例的放大截面图,图4是具有图3的沿平面iv-iv的截面的顶视图。
[0079]
图3所示的器件20包括图2所示的器件20的所有元件,不同之处在于吸收区28包括光子晶体60。优选地,光子晶体60对应于二维光子晶体。根据一个实施例,光子晶体60的传播模式对应于激光的波长。在该实施例中,通过下文更详细描述的机制在光子晶体60的水平上执行激光的吸收。
[0080]
此外,在图2所示的器件20中,种子结构34对于每条线52包括种子垫62,该种子垫62具有放置在其上的线52的基底53并且优选地与线52的基底53接触。种子结构34还可包括层36,其上放置有种子垫62,该种子垫优选地与层36接触,如图3所示,或者包括至少两层的堆叠,其上放置有种子垫62,该种子垫优选地与此堆叠接触。在本实施例中,支撑件22的表面26对应于种子结构34的上表面。
[0081]
光子晶体60包括由第一材料制成的层64(以下称为基层),第一材料在激光波长处具有第一折射率,另外还包括放置在该基层上的由第二材料制成的柱66,第二材料在激光波长处具有第二折射率。根据一个实施例,每个柱66基本上沿着垂直于表面26的中心轴延伸(沿着垂直于表面26测量的高度l延伸)。两个相邻柱66的中心轴之间的距离称为“a”(间距)。优选地,第二折射率大于第一折射率。第一材料可以对激光18透明。第一材料可以是绝缘材料。第二材料可以对激光18透明。在本实施例中,柱66由与种子垫62相同的材料制成并且与种子垫62同时形成。如图4所示,种子垫62然后可以部分地与相邻的柱66合并。根据在一个实施例中,光子晶体60的柱66可以由先前描述的用于吸收层40的材料之一制成。在这种情况下,柱66进一步起到吸收层40的作用,如下文将更详细地描述。在一个变体中,光子晶体60的基层64由先前描述的用于吸收层40的材料之一制成。在这种情况下,基层64还起到吸收层40的作用,这将在下文中更详细地描述。
[0082]
图5是器件20的另一实施例的放大截面图。图5所示的器件20包括图3所示的器件20的所有元件和图2所示的器件20的所有元件,即,吸收区28包括吸收激光的层40和光子晶体60,吸收层40位于光子晶体60的与衬底32相对的一侧。如图5所示,器件20可包括介于吸收层40和光子晶体60之间的中间层42。作为变体,中间层42可以不存在。激光的吸收可以通过下面更详细描述的机制在吸收层40的水平上进行,也可以在光子晶体60的水平上进行。作为变体,可以仅在吸收层40的水平而不是在光子晶体60的水平上执行激光的吸收,然后,如下文更详细描述的,光子晶体60能够增加激光在吸收层40中存在的持续时间。
[0083]
在关于图3至5描述的实施例中,每个柱66的高度l可介于100nm至1μm之间,优选地介于250nm至500nm之间。如图3和图5所示,柱66的高度l可以等于基层64的厚度。作为变体,基层64的厚度可以大于在柱66的高度,基层64在柱66之间延伸,然后还覆盖支柱66。
[0084]
优选地,柱66布置成格栅。根据一个实施例,每个柱66和最近的柱之间的间距a基本上是恒定的。
[0085]
图6是光子晶体60的实施例的放大的部分简化顶视图,其中柱66布置成六边形格栅。这意味着柱66在顶视图中布置成行,柱66的中心在等边三角形的顶部,同一行相邻的两个柱66的中心相隔间距a,并且相邻两行的柱66的中心沿行方向偏移距离a/2。
[0086]
图7是光子晶体60的另一实施例的放大的部分简化顶视图,其中柱66布置成方形格栅。这意味着柱66布置成行和列,柱66的中心位于正方形的顶部,同一行的两个相邻的柱66相隔间距a,并且同一列的两个相邻的柱66相隔间距a。
[0087]
在图3至7所示的实施例中,每个柱66在平行于表面26的平面中具有直径为d的圆形横截面。在六边形格栅布置的情况下,直径d可介于0.2μm至3.8μm之间。间距a可介于0.4μm至4μm之间。在方形格栅布置的情况下,直径d可介于0.05μm至2μm之间。间距a可介于0.1μm至4μm之间。
[0088]
在图3至7所示的实施例中,每个柱66的横截面在平行于表面26的平面中是圆形的。但是,柱66的横截面可以具有不同的形状,例如,可以是椭圆形的、多边形的、特别是正方形的、矩形的、六边形的等等。根据一个实施例,所有的柱66具有相同的横截面。
[0089]
已经用图5所示的器件20的结构执行了第一和第二模拟。对于第一模拟,光子晶体60将包括硅柱66并且基层64将由sio2制成。柱66以六边形格栅分布,每个柱66具有直径d等于0.97μm的圆形横截面。对于第一模拟,柱66的厚度l等于1μm。吸收层40具有50nm的厚度,折射率等于4.5,吸收系数等于3.75。
[0090]
图8示出了吸收区28的平均吸收abs根据间距a与激光波长λ的比率a/λ的变化曲线c1和c2,曲线c1是在器件20具有图5所示的结构时获得的,曲线c2是在器件20不包括光子晶体60而仅包括吸收层40时获得的。在没有光子晶体60的情况下,吸收区28中的平均吸收约为55%。在光子晶体60存在的情况下,平均吸收在比率a/λ的多个范围内超过55%,并且当比率a/λ等于大约0.75时,甚至达到90%。
[0091]
对于第二模拟,光子晶体60将包括硅柱66,而基层64将由sio2制成。柱66分布成六边形格栅,每个柱66具有圆形横截面。对于第二模拟,柱66的厚度l等于1μm。
[0092]
图9和10分别示出了吸收区28中的平均吸收abs根据横坐标中的比率a/λ和纵坐标中的填充因子ff的灰阶深度图。填充因子ff在顶视图中对应于柱66的面积与光子晶体60的总面积之和。例如,对于具有圆形横截面的柱66,填充因子ff由以下关系式[数学公式1]提供:
[0093]
[数学公式1]
[0094][0095]
可以区分图9中的区域a和区域b以及图10中的区域b'(其平均吸收abs大于约70%)。区域b和b'是针对比率a/λ介于0.1至1之间,并且填充因子ff介于1%至50%之间获得的,区域a是针对比率a/λ介于0.5至2之间,并且填充因子ff介于10%至70%之间获得的。
[0096]
图11示出了平均吸收abs根据柱66的高度l的变化曲线c3,其中填充因子ff等于0.3并且比率a/λ等于0.6。
[0097]
图12示出了平均吸收abs根据柱66的高度l的变化曲线c4,其中填充因子ff等于0.5并且比率a/λ等于0.6。
[0098]
曲线c3和c4表现出对应于不同阶的法布里-珀罗共振的局部最大值,高度l的对应值在图11和图12中指示。优选地,将柱66的高度l选择为基本在法布里-珀罗共振之一的水平上。
[0099]
在光电子组件对应于发光二极管的情况下,将关于图13和14描述光电子组件50的更详细实施例。然而,应当清楚的是,这些实施例可能涉及其他应用,特别是专用于电磁辐射检测或测量的光电子组件或专用于光伏应用的光电子组件。
[0100]
图13是光电子组件50的一个实施例的部分简化截面图。光电子组件50包括覆盖线52上部的外壁的外壳70,外壳70包括至少一个由覆盖线52的上部的有源层72和覆盖有源层72的半导体层74构成的堆叠。在本实施例中,由于外壳70覆盖线52的侧壁,因此光电子组件50被认为采用径向配置。光电子电路30还包括绝缘层76,该绝缘层76在绝缘层56上方和外壳70下部的侧壁上延伸。光电子电路30还包括覆盖外壳70并形成电极的导电层78、对由有源层72发射的辐射透明的导电层76。导电层76可以具体地覆盖光电子电路30的多个光电子组件70的外壳70,然后形成多个电子组件50共用的电极。光电子电路30还包括在线52之间的电极层78上方延伸的导电层80。光电子电路30还包括覆盖光电子组件30的封装层82。
[0101]
图14是光电子组件50的另一实施例的部分简化截面图。图14所示的光电子组件50包括图13所示的光电子组件50的所有元件,不同之处在于外壳70是仅存在于线52的顶部。然后认为光电子组件50采取轴向配置。
[0102]
根据一个实施例,线52至少部分地由至少一种半导体材料制成。半导体材料选自包括iii-v化合物、ii-vi化合物或iv族半导体或化合物的组。线52可以至少部分地由主要包括iii-v化合物的半导体材料制成,例如iii-n化合物。iii族元素的示例包括镓(ga)、铟(in)或铝(al)。iii-n族化合物的示例是gan、aln、inn、ingan、algan或alingan。也可以使用其他v族元素,例如磷或砷。线52可以至少部分地由主要包括ii-vi化合物的半导体材料制成。ii族元素的示例包括iia族元素,特别是铍(be)和镁(mg),以及iib族元素,特别是锌(zn)、镉(cd)和汞(hg)。vi族元素的示例包括via族元素,特别是氧(o)和碲(te)。ii-vi族化合物的示例是zno、znmgo、cdzno、cdznmgo、cdhgte、cdte或hgte。通常,iii-v或ii-vi化合物中的元素可以于不同的摩尔分数组合。线52可以至少部分地由主要包括至少一种iv族化合物的半导体材料制成。iv族半导体材料的示例是硅(si)、碳(c)、锗(ge)、碳化硅合金(sic)、硅锗合金(sige)或碳化锗合金(gec)。线52可包括掺杂物。作为示例,对于iii-v族化合物,掺杂物可以选自包括以下项的组:p型ii族掺杂物,例如镁(mg)、锌(zn)、镉(cd)或汞(hg),p型iv族掺杂物,例如碳(c),或n型iv族掺杂物,例如硅(si)、锗(ge)、硒(se)、硫(s)、铽(tb))或锡(sn)。
[0103]
种子层38、种子垫62和可能的层36由有利于线52生长的材料制成。作为示例,形成种子层38、种子垫62和可能的层36的材料可以是来自元素周期表的iv、v或vi族的过渡金属的氮化物、碳化物或硼化物或这些化合物的组合。作为示例,种子层38、种子垫62和可能的层36可以由氮化铝(aln)、氧化铝(al2o3)、硼(b)、氮化硼(bn)、钛(ti)、氮化钛(tin)、钽(ta)、氮化钽制成(tan)、铪(hf)、氮化铪(hfn)、铌(nb)、氮化铌(nbn)、锆(zr)、硼酸锆(zrb2)、氮化锆(zrn)、碳化硅(sic)、碳氮化钽(tacn)、mg
x
ny形式的氮化镁(其中x约等于3,y
约等于2,例如,mg3n2形式的氮化镁)制成。
[0104]
每个绝缘层42、56、54、76可由介电材料制成,例如氧化硅(sio2)、氮化硅(si
x
ny,其中x约等于3,y约等于4,例如si3n4)、氮氧化硅(特别是通式sio
x
ny,例如si2on2)、氧化铪(hfo2)或金刚石。
[0105]
有源层72可包括限制装置,例如单个量子阱或多个量子阱。它例如由各自具有从5至20nm(例如,8nm)和从1至10nm(例如,2.5nm)的厚度的gan和ingan层的交替形成。gan层例如可以是n型或p型掺杂的。根据另一示例,有源层可包括单个ingan层,例如具有大于10nm的厚度。
[0106]
半导体层74(例如,p型掺杂的)可对应于半导体层的堆叠,并允许形成p-n或p-i-n结,有源层42介于中间p型层和p-n或p-i-n结的n型线52之间。
[0107]
电极层78能够使发光二极管的有源层极化并且能够让由发光二极管发射的电磁辐射通过。形成电极层78的材料可以是透明导电材料,例如铟锡氧化物(或ito)、纯氧化锌、铝锌氧化物、镓锌氧化物、石墨烯或银纳米线。作为示例,电极层78具有介于5nm至200nm之间,优选地介于30nm至100nm之间的厚度。
[0108]
封装层82可以由有机材料或无机材料制成并且对由发光二极管发射的辐射至少部分地透明。封装层82可包括发光体,当被由发光二极管发射的光激发时,该发光体能够发光,此光的波长不同于由发光二极管发射的光的波长。
[0109]
图15至18是在用激光切割器件20的方法的另一实施例的连续步骤中获得的结构的部分简化截面图。
[0110]
图15示出了在制造器件20之后获得的结构,图15示出三个光电子电路30作为示例,吸收区28在图15中由连续层示意性地表示。
[0111]
图16示出了在将器件20放置成与支撑件90接触,从而导致光电子电路30与支撑件90结合之后获得的结构。根据一个实施例,光电子电路30与支撑件90的结合可以通过将光电子电路30混合分子结合到支撑件90来实现。根据一个实施例,支撑件90可包括在光电子电路30的结合位置处的垫92。然后使器件20和支撑件90彼此靠近,直到光电子电路30与垫92接触。根据一个实施例,并非所有结合到支撑件22的光电子电路30都旨在转移到相同的支撑件90上。为此,支撑件90可包括仅用于将光电子电路30转移到支撑件90上的垫92。在这种情况下,当器件20和支撑件90彼此靠近时,直到一些光电子电路30与垫92接触,不与焊盘92相对的光电子电路30不与支撑件90接触,因此未结合到支撑件90。
[0112]
图17示出了在激光18通过以从支撑件22分离要转移到支撑件90上的光电子电路30期间获得的结构。在操作中,激光束18优选地聚焦到吸收区28上,以实现吸收区28的烧蚀。在图2所示的实施例中,激光18直接被吸收层40吸收。在图3和4所示的实施例中,当柱66或基层64由吸收激光18的材料制成时,光子晶体60特别能够增加柱66或基层64对激光的吸收,从而实现光子晶体60的烧蚀。当形成光子晶体60的柱66的材料和形成光子晶体60的基层64的材料的吸收系数k在线性状态的激光波长处不介于1至10之间时,光子晶体60能够增加激光存在于光子晶体60中的时间,因此能够局部增加光子晶体60中的能量密度。这能够通过光子晶体60中的非线性吸收现象来增加激光的吸收,导致光子晶体60的烧蚀。光子晶体60的存在然后能够降低激光的强度,对于该激光,非线性吸收现象特别出现在形成基层64和柱66的材料中。在图5所示的实施例中,光子晶体60能够局部地增加吸收层40的能量密
度。这样能够实现吸收层40的烧蚀。根据先前描述的现象,可以进一步在光子晶体60的水平上直接进行激光吸收。
[0113]
当支撑件22由半导体材料,特别是硅制成时,激光波长可能需要在红外范围内,以使支撑件22对激光透明。然而,市售的红外激光与其他频率的其他市售激光器相比,一般具有较低的最大能量。器件20的前述实施例有利地使得即使使用红外激光,也能够执行激光切割,并且因此有利地能够使用特别是由硅制成的半导体支撑件22。
[0114]
图18示出了在从支撑件90移除支撑件22之后获得的结构。结合到支撑件90的光电子电路30与支撑件22分离。
[0115]
图19至25是在制造诸如图3所示的器件20的方法的实施例的连续步骤中获得的结构的部分简化截面图。制造方法包括以下步骤:
[0116]-在衬底32上形成种子结构34(图19),种子结构34包括在图19中作为示例示出的两个层36和38的堆叠;
[0117]-例如,跨上层38的整个厚度36,在种子结构34的上层38中蚀刻光子晶体的柱66和种子垫62(图20),然后层36能够起到蚀刻停止层的作用;
[0118]-沉积覆盖种子结构34的第一材料层92,特别是填充柱66之间和种子垫62周围的开口(图21);
[0119]-例如,通过化学机械平坦化(cmp)蚀刻层92以到达柱66和种子垫62的顶部,以仅保持柱66之间和种子垫62周围的层92的部分,从而特别形成光子晶体60的基层64(图22);
[0120]-在光子晶体60上形成绝缘层56(图23);
[0121]-在绝缘层56中蚀刻开口94以在形成光电子组件的期望位置处暴露光子晶体60的柱66的顶部(图24);以及
[0122]-在每个开口94中生长线52(图25),柱66起到种子垫的作用。
[0123]
制造器件20的方法继续执行光电子组件形成步骤。
[0124]
根据所使用的材料,前述实施例中的沉积步骤可以是例如以下方法:化学气相沉积(cvd)或金属有机化学气相沉积(mocvd),也称为金属有机气相外延(movpe)。然而,也可以使用例如以下方法:分子束外延(mbe)、气源mbe(gsmbe)、金属有机mbe(mombe)、等离子辅助mbe(pambe)、原子层外延(ale)或氢化物气相外延(hvpe)。然而,可以使用电化学工艺,例如化学浴沉积(cbd)、水热工艺、液体气溶胶热解或电沉积。
[0125]
制造图2所示的器件20的方法的实施例包括与先前关于图19至图25描述的那些相同的步骤,不同之处在于形成光子晶体60的步骤被替换为沉积中间层42和吸收层40的步骤。
[0126]
已经描述了各种实施例和变体。本领域技术人员将理解这些各种实施例和变体的某些特征可以组合,并且本领域技术人员将想到其他变体。最后,基于上文给出的功能指示,所描述的实施例和变体的实际实施在本领域技术人员的能力范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1