量子点超晶格光电探测器

文档序号:28804092发布日期:2022-02-09 01:15阅读:327来源:国知局
量子点超晶格光电探测器

1.本发明涉及半导体器件制造和光学系统,尤其涉及一种量子点超晶格光电探测器。


背景技术:

2.在过去十年中,胶体量子点展现出将光电探测器向低成本、高灵敏度检测器发展的潜力。量子点层是由各向异性的半导体纳米晶体组成并且是随机排列的,因此是电学无序的,也是区别于常规光电探测器的半导体单晶层之电学有序性。这两方面的问题的克服是基于半导体纳米晶体的复合光电探测器的稳定性研究之前提,因为它们导致两种载流子类型的载流子迁移率都相对较低,继而阻碍了光生载流子的收集并限制了其性能指标,如eqe,线性动态范围和响应时间。低载流子迁移率还将结厚度限制在典型值《200nm,这意味着较高的漏电流,因此产生暗噪声,并限制了可在这些薄膜中吸收的光量。另外,这两方面的问题也阻碍了复合光电探测器的吸收层和传输层的合理设计和优化。
3.二维材料的出现为克服量子点固体的电荷迁移率瓶颈提供了一个独特的机会,因为它们表现出非常高的平面电荷迁移率(high in-plane carrier mobility),如石墨烯和mos2,其原子层级的厚度可能适合低暗电流。konstantatos课题组首次构件石墨烯-pbs量子点复合光电探测器,其采用剥离法备出单层和双层石墨烯,并将其转移到硅片上,采用制备pbs量子点太阳能电池的标准工艺,将pbs量子点薄膜旋涂在附有石墨烯的硅衬底上,制备出复合光电探测器的光响应度高达~107a w-1
。量子点层中强而可调的光吸收会产生转移到石墨烯的电荷,由于石墨烯的高电荷迁移率和量子点层中长时间的电荷捕获寿命,电荷捕获-传递多次循环,该器件的比探测率为7
×
10
13
jones(gerasimos konstantatos,michela badioli.et al.hybrid graphene-quantum dot phototransistors with ultrahigh gain.nature nanotechnology.7,363-368(2012))。鉴于石墨烯的半金属特性,所有基于石墨烯-pbs量子点的复合光电探测器都具有高的暗电流(ivan nikitskiy.et al.integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor.nature communication.7,11954(2016))。konstantatos课题组后续采用mos2替代石墨烯制备了mos
2-pbs量子点复合光电探测器,在工作电压100v的条件下,光响应度高达6*105aw-1
,同时暗电流低至2.6*10-7
a(dominik kufer.et al.hybrid 2d-0d mos2-pbs quamtum dot photodetectors.advanced materials.27,176-180(20150)。但是目前,mos
2-pbs量子点的复合光电探测器的高光电性能和低工作电压很难同时实现(dominik kufer.et al.interface engineering in hybrid quantum dot-2d phototransistors.acs photonics.7,1324-1330(2016))。另外,由于相当比例的绝缘性的有机配体始终以杂质共存于器件中,器件寿命依然是难以推进的难题。


技术实现要素:

4.本发明主要解决的技术问题是提供一种量子点超晶格光电探测器。所述光电探测
器自下而上依次包括:衬底;光敏层,其包括设置在所述衬底上的两层二维材料及其上方的量子点超晶格;金属电极层,包括源电极和漏电极,所述源电极和所述漏电极形成沟道。所述二维材料与所述量子点超晶格材料形成异质结,所述源电极和所述漏电极被配置为使电流能够通过所述光敏层,所述量子点超晶格被配置为在暴露于入射电磁辐射时产生电子-空穴对以产生可检测的变化电流。
5.传统的量子点超晶格和二维材料复合的光电探测器的性能研究之前提,重要的是要意识到量子点层是由各向异性的半导体纳米晶体组成并且是随机排列的,因此是电学无序的。这导致两种载流子类型的载流子迁移率都相对较低,继而阻碍了光生载流子的收集并限制了其性能指标,如eqe,线性动态范围和响应时间。低载流子迁移率还将结厚度限制在典型值《200nm,这意味着较高的漏电流,因此产生暗噪声,并限制了可在这些薄膜中吸收的光量。
6.为解决上述技术问题,本发明采用的一个技术方案是提供量子点超晶格(quantum dots superlattice)和二维材料复合的光敏层。量子点超晶格是晶体级有序、周期排列的超结构材料(metamaterials)。量子点在其超晶格中相互外延取向性的附着(oriented attachment),使pbs量子点超晶格展示出准二维材料的特征,理论上能够如实现狄拉克锥体和拓扑状态,并具有前所未有的重大潜力光电器件。量子点超晶格的有序性的优化将产生离域电子。堆叠生长在二维材料上的量子点超晶格复合光电探测器将具有:电磁辐射激发量子点超晶格产生电子-空穴对,然后离域电子将加速空穴被转移到二维材料通道并迁移到漏极中,但电子仍留在量子点超晶格中,通过电容耦合导致长时间(再循环)载流子存在于高迁移率的二维材料通道中。相比于无序的量子点堆积的薄膜,量子点超晶格在光电探测器中的优势在于:第一方面,量子点形成超晶格结构,减少了量子点表面的配体;第二方面,量子点形成的超晶格结构,形成离域的电子-空穴,有利于空穴传递;第三方面,超晶格结构更加稳定,便于进一步对其表面的配置进行处理。
7.在一个优选实施例中,所述衬底是cmos晶片,其包括用于偏置或放大来自所述光电探测器的信号的电路。
8.在一个优选实施例中,所述衬底是cmos晶片,其包括用于偏置或放大来自所述光电探测器的信号的电路。
9.在一个优选实施例中,所述量子点超晶格由胶体量子点通过打印或者转印组装生长在所述二维材料的表面。
10.在一个优选实施例中,所述胶体量子点是n型半导体或者p型半导体。
11.在一个优选实施例中,所述胶体量子点是n型掺杂半导体或者p型掺杂半导体。
12.在一个优选实施例中,所述量子点超晶格中的胶体量子点之间至少部分晶体融合。
13.在一个优选实施例中,所述量子点超晶格中的胶体量子点表面配体至少部分被替换为短链配体或有机半导体。
14.在一个优选实施例中,所述衬底的表面包括sio2、al2o3、zro2和hfo2中的至少一种。
15.在一个优选实施例中,所述二维材料包括石墨烯、mos2、mose2、ws2、wse2或黒磷。
附图说明
16.本发明及其优点将通过研究以非限制性实施例的方式给出,并通过所附附图所示的特定实施方式的详细描述而更好的理解,其中:
17.图1是本发明实施例的量子点超晶格光电探测器的结构示图。
18.图2是本发明实施例的量子点超晶格光电探测器的工作原理示图。
19.图3是本发明实施例的量子点超晶格之透射电镜图。
20.图4是本发明实施例的量子点超晶格的取向性连接之示意图。
具体实施方式
21.请参照附图中的图式,其中相同的组件符号代表相同的组件,本发明的原理是以实施在一适当的环境中来举例说明。以下的说明是基于所示例的本发明的具体实施例,其不应被视为限制本发明未在此详述的其它具体实施例。
22.本说明书所使用的词语“实施例”意指用作实例、示例或例证。此外,本说明书和所附权利要求中所使用的冠词“一”一般地可以被解释为意指“一个或多个”,除非另外指定或从上下文清楚导向单数形式。
23.在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
24.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
25.此外,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或表示第一特征水平高度小于第二特征。
26.下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
27.实施例1
28.首先,通过图1-4,就本发明的实施例的量子点超晶格和二维材料复合的光电探测
器进行说明。如图1所示,本实施例采用的一个技术方案是提供量子点超晶格1022(quantum dots superlattice)和二维材料1021复合的光敏层。所述光电探测器自下而上依次包括:衬底101;光敏层102,其包括设置在所述衬底上的一层二维材料1021及其上方的量子点超晶格1022;金属电极层,包括源电极103和漏电极104,所述源电极103和所述漏电极104形成沟道。所述二维材料1021与所述量子点超晶格1022形成异质结,所述源电极103和所述漏电极104被配置为使电流能够通过所述光敏层102,所述量子点超晶格1022被配置为在暴露于入射电磁辐射时产生电子-空穴对以产生可检测的变化电流。
29.量子点超晶格是晶体级有序、周期排列的超结构材料(metamaterials)。本实施例使用的是pbs量子点。如图3-4所示,pbs量子点在其量子点超晶格1022中相互外延取向性的附着(oriented attachment),使pbs量子点超晶格1022展示出准二维材料的特征。量子点超晶格1022的有序性的优化将产生离域电子。如图2所示,堆叠生长在二维材料1021上的量子点超晶格复合光电探测器将具有:电磁辐射激发量子点超晶格1022产生电子-空穴对,然后离域电子将加速空穴被转移到二维材料1021通道并迁移到漏极中,但电子仍留在量子点超晶格中,通过电容耦合导致长时间(再循环)载流子存在于高迁移率的二维材料1021通道中。相比于无序的量子点堆积的薄膜,量子点超晶格1022在光电探测器中的优势在于:第一方面,量子点形成超晶格结构,减少了量子点表面的配体;第二方面,量子点形成的超晶格结构,形成离域的电子-空穴,有利于空穴传递;第三方面,超晶格结构更加稳定,便于进一步对其表面的配置进行处理。
30.所述衬底是cmos晶片,其包括用于偏置或放大来自所述光电探测器的信号的电路。
31.本实施例提供的量子点超晶格和二维材料复合光电探测器的制备方法,其包括如下步骤:
32.s1、pbs超晶格制备
33.取一定量的pbs量子点溶液滴到硅片上,通过溶剂挥发制备pbs量子点超晶格,其包括以下子步骤:
34.s11、配置1mg/ml~10mg/ml pbs量子点溶液;s12、将硅片切割成1cm x 1cm大小,再依次用丙酮、异丙醇、去离子水超声清洗,然后用氮气枪吹干,放到3cm x 3cm培养皿里;s13、取10~50μl的pbs量子点溶液滴在硅片上,用保鲜膜密封培养皿;s14、5~12h后取出硅片并用乙醇清洗硅片。
35.s2、量子点超晶格和二维材料复合光电探测器的器件制备
36.预先在空白硅片上镀ti/au电极,然后将二维材料转到电极上,再将pbs量子点超晶格转到二维材料上,最后浸泡在短配体溶液里完成器件制备,具体包括以下子步骤:
37.s21、先将硅片切割成合适大小,再依次用丙酮、异丙醇、去离子水超声清洗,然后用氮气枪吹干,采用干法转移,将二维材料转移至硅片之上;
38.s22、将pbs量子点打印生长二维材料上形成pbs量子点超晶格;
39.s23、镀ti/au电极:旋涂光刻胶,再80℃~100℃加热4分钟烘胶,之后光刻、显影、镀ti/au电极再浸泡丙酮去除多余金。
40.提采用上述方法制成的量子点超晶格复合二维材料的异质结构光电探测器件。从下至上依次包括高掺杂硅衬底101、氧化硅介质层、mos2二维材料1021和pbs量子点超晶格
1022、ti/au源电极103和漏电极104。
41.该光电探测器的工作原理是:源电极103和漏电极104与mos2二维材料1021层直接接触而与pbs量子点超晶格1022没有接触,在源电极103和漏电极104之间施加电压后器件开始导通工作;mos2二维材料1021和pbs量子点超晶格1022直接接触,mos2层为二维电子传输层,pbs量子点为红外光敏层,且二者因电子浓度梯度发生扩散,形成内建电场;在波长《1500nm的光照条件下,pbs量子点超晶格1022产生的光生电子空穴对经内建电场作用而分离,形成可以被检测到的光电流。
42.虽然在上文中已经参考一些实施例对本发明进行了描述,然而在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,本发明所披露的各个实施例中的各项特征均可通过任意方式相互结合起来使用,在本说明书中未对这些组合的情况进行穷举性的描述是出于省略篇幅和节约资源的考虑。因此,本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1