一种无掩膜层联合钝化背接触电池及其制备方法与流程

文档序号:32134250发布日期:2022-11-09 11:57阅读:77来源:国知局
一种无掩膜层联合钝化背接触电池及其制备方法与流程

1.本发明属于背接触异质结电池技术领域,具体涉及一种无掩膜层联合钝化背接触电池及其制备方法。


背景技术:

2.目前背接触异质结电池工艺流程一般为:s101、硅片双面抛光;s102、硅片背面镀第一掩膜层保护,所述第一掩膜层为氮化硅、氮氧化硅、氧化硅中的至少一种;s103、硅片制绒清洗,在第一掩膜层的对面形成绒面,之后去除第一掩膜层,形成单面制绒、单面抛光结构的硅片;s104、硅片背面依次镀第一半导体层及第二掩膜层,第一半导体层包含本征非晶或微晶硅层及n型或p型掺杂非晶或微晶硅层,所述第二掩膜层一般为氮化硅;s105、在硅片背面蚀刻开口,去除第二掩膜层及部分第一半导体层,形成第二半导体区开口;s106、硅片清洗,去除第二半导体区内的第一半导体层;s107、硅片受光面依次形成非晶层及减反层,背面形成第二半导体层,所述第二半导体层采用pecvd或hot-wire方式形成,第二半导体层包含本征非晶或微晶硅层及p型或n型掺杂非晶或微晶硅层(当第一半导体层为n型时第二半导体层为p型,当第一半导体层为p型时第二半导体层为n型);s108、硅片背面蚀刻开口,形成与第二半导体区交替排列的第一半导体区;s109、硅片清洗,去除第一半导体区内的第二掩膜层;s110、硅片背面沉积导电膜;s111、通过蚀刻的方式,在第一半导体区与第二半导体区之间形成绝缘槽;s112、在硅片第一半导体区与第二半导体区上形成金属电极。
3.现有技术中,背接触异质结太阳电池的结构一般为受光面制绒、背面抛光结构,这种结构的硅片一般采用先双面制绒后单面保护再抛光或先双面抛光后单面保护再制绒的方式形成,制备过程很复杂,且在形成第二半导体开口后的清洁不能使用太强的碱液,容易对第一半导体层造成损伤。
4.上述现有技术步骤s107中,背面形成第二半导体层过程中,第二掩膜层氮化硅与第二半导体层之间的附着力存在较大问题,在步骤s107后工艺步骤中,第二半导体层与第二掩膜层之间存在脱离剥落的现象,导致生产良率及产品可靠性降低。


技术实现要素:

5.本发明的目的是为了克服现有技术存在的第二半导体层与第二掩膜层之间存在脱离剥落的现象,导致生产良率及产品可靠性降低的缺陷,提供一种无掩膜层联合钝化背接触电池及其制备方法,该方法采用后制绒方法,将第二半导体层直接形成在第一半导体层表面,附着力强,避免了上述脱离剥落现象,生产良率高,产品可靠性强。
6.为了实现上述目的,本发明第一方面提供了一种无掩膜层联合钝化背接触电池的制备方法,包括以下步骤:s101、提供硅片基底;s102、在所述硅片基底的背面依次形成第一半导体层、掩膜层,第一半导体层包括在背面依次形成的隧穿氧化层和第一掺杂多晶层;
s103、在s102所得背面对第一半导体层进行第一刻蚀,形成间隔分布的第一开口区w1;s104、通过制绒清洗,在背面的第一开口区w1内形成绒面;s105、之后去除掩膜层;s106、之后在s105所得背面上形成第二半导体层,第二半导体层包括在背面上依次形成的本征非晶硅层和第二掺杂硅晶层;s107、然后在s106所得背面的抛光区域进行第二刻蚀,以裸露第一半导体层,形成与第一开口区w1间隔排列的第二开口区w2;其中,所述第一掺杂多晶层和第二掺杂硅晶层中一个为n型,另外一个为p型。
7.在一些优选实施方式中,s101中还包括:对硅片基底依次进行抛光、清洗。
8.在一些优选实施方式中,s102中,隧穿氧化层的形成通过lpcvd方法沉积,且沉积的条件包括:通入氧气,压力为100-1000pa,沉积温度为550-700℃,沉积时间为5-60min。
9.在一些优选实施方式中,s102中,所述掩膜层的厚度为30-110nm,所述掩膜层为氮化硅及氮氧化硅的复合层。
10.在一些优选实施方式中,s103中,所述第一刻蚀的深度为自掩膜层表面至硅片基底的上表面向内3μm深处,优选的,第一刻蚀刻蚀掉部分第一掺杂多晶层。
11.在一些优选实施方式中,s103中,所述第一刻蚀采用激光工艺,激光为绿光或紫外激光,脉冲宽度小于100纳秒。
12.在一些优选实施方式中,所述制备方法还包括:s104中,还在硅片基底的受光面上形成绒面,之后在受光面上依次形成钝化层和任选的减反层。
13.在一些优选实施方式中,s104中,所述绒面为金字塔绒面且金字塔的宽度为1-5μm。
14.在一些优选实施方式中,s105中,所述去除掩膜层的过程包括:采用溶度为2-10%的腐蚀溶液腐蚀2-10min。
15.在一些优选实施方式中,s107中,所述第二刻蚀采用激光工艺,激光为绿光或紫外激光,脉冲宽度小于100纳秒。
16.在一些优选实施方式中,w1宽度为0.3-0.6mm,w2宽度为0.1-0.2mm,第二开口区w2与第一开口区w1之间的间隔区wg宽度为0.1-0.3mm。
17.在一些优选实施方式中,s102中,所述隧穿氧化层的厚度为1.5-2.5nm,第一掺杂多晶层的厚度为50-300nm、更优选100-300nm;s106中,所述本征非晶硅层的厚度为5-15nm,第二掺杂硅晶层的厚度为5-20nm。
18.在一些优选实施方式中,所述制备方法还包括:s108、在s107所得背面全覆盖地形成导电膜层;s109、然后在s108所得背面的位于第二开口区w2与第一开口区w1之间的导电膜层部分进行第三刻蚀,形成绝缘槽;s110、在s109所得背面的第二开口区w2与第一开口区w1上分别形成金属电极。
19.更优选地,s109中,所述第三刻蚀采用激光技术,激光为紫外激光,脉冲宽度小于100纳秒。
20.更优选地,s109中,所述绝缘槽处的开口区wi宽度为0.03-0.1mm。
21.本发明第二方面提供一种无掩膜层联合钝化背接触电池,其通过第一方面所述的制备方法制备得到;其包括硅片基底,在所述硅片基底的背面设置的第一半导体层和第二半导体层;且其背面具有第一半导体层与硅片基底直接接触的第一区域,第二半导体层与硅片基底直接接触的第二区域,以及在第一区域和第二区域之间的过渡区域,其中在所述过渡区域中第一半导体层和第二半导体层之间直接接触。
22.在一些优选实施方式中,所述第一区域的宽度为0.1-0.2mm,第二区域的宽度为0.3-0.6mm,过渡区域的宽度为0.1-0.3mm。
23.在一些优选实施方式中,所述第一半导体层包括隧穿氧化层和第一掺杂多晶层,所述第二半导体层包括本征非晶硅层和第二掺杂硅晶层,其中,所述第一掺杂多晶层和第二掺杂硅晶层中一个为n型,另外一个为p型。
24.更优选地,所述隧穿氧化层的厚度为1.5-2.5nm,第一掺杂多晶层的厚度为50-300nm。
25.更优选地,所述本征非晶硅层的厚度为5-15nm,第二掺杂硅晶层的厚度为5-20nm。
26.更优选地,第二掺杂硅晶层为掺杂非晶硅层或掺杂微晶硅层中的至少一种。
27.在一些优选实施方式中,所述无掩膜层联合钝化背接触电池还包括:在所述硅片基底的受光面上依次设置的钝化层和任选的减反层;其中,所述钝化层包括钝化膜层和掺杂膜层;在所述硅片基底的背面设置的导电膜层,在位于过渡区域的导电膜层上开设有绝缘槽;其中,绝缘槽的宽度为0.03-0.1mm;以及在第一区域和第二区域分别设置的金属电极。
28.有益效果:本发明采用后制绒工艺,具体采用隧穿氧化层和第一掺杂多晶层作为第一半导体层,配合在第一开口区w1形成后进行制绒,并将掩膜层全部腐蚀干净,之后配合形成第二半导体层等技术特征,能够使得第二半导体层不需要沉积在掩膜层(如氮化硅层)表面,而是直接沉积在第一半导体层上,大幅改善第二半导体层的附着力,提高硅片基底表面洁净度,提高产品良率及稳定性,简化工艺流程。
29.其中,本发明的第一半导体层采用隧穿氧化层及第一掺杂多晶硅层,相比于常规采用的非晶/微晶层,其耐酸碱能力显著增强,从而可实现沉积第一半导体层之后再制绒,大幅提高硅片基底表面的洁净程度,进而提高电池制程稳定性。而且,本发明采用隧穿氧化层及第一掺杂多晶层作为第一半导体层,相比于常规采用的本征非晶硅层及掺杂非晶/微晶层,第一掺杂多晶层的电阻率明显低于非晶/微晶层,加之采用隧穿氧化层,本发明的第一半导体层更利于大幅改善载流子在隔离区传输引起的电学效率损失。优选地,第一掺杂多晶硅层的厚度进行增厚,为50-300nm,能够在高温碱液后制绒(如80℃、10%koh浓度)及清洗的过程中避免被蚀刻损伤;而第一半导体层常规采用的非晶层厚度小,为5-15nm,在后制绒工艺中常规非晶硅很容易被蚀刻损伤。
30.其中,本发明在制绒后将掩膜层完全腐蚀干净,第二半导体层直接沉积在第一半导体层的第一掺杂多晶硅层表面,避免了第二掺杂硅晶层沉积在掩膜层表面附着力差的问题。
附图说明
31.为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
32.图1a为本发明实施例1提供抛光清洗后的硅片的结构示意图。
33.图1b为本发明对比例2提供正面制绒、背面抛光的硅片的结构示意图。
34.图2a为本发明实施例1在硅片背面形成隧穿氧化层及本征多晶层的结构示意图;图2b为本发明实施例1在硅片背面形成n型掺杂多晶层及磷硅玻璃层(psg)的结构示意图;图2c为本发明实施例1或实施例2在硅片背面间接或直接形成隧穿氧化层、n型掺杂多晶层及掩膜层的结构示意图。
35.图3为本发明实施例1在硅片背面形成p型半导体开口区的结构示意图。
36.图4a为本发明实施例1通过制绒清洗,先在硅片背面p型半导体开口区及受光面形成金字塔绒面的结构示意图;图4b为本发明实施例1通过制绒清洗,在硅片背面通过hf溶液去除掩膜层的结构示意图。
37.图5为本发明实施例1在硅片受光面形成钝化层的结构示意图。
38.图6为本发明实施例1在硅片背面形成本征非晶层、p型掺杂非晶/微晶层的结构示意图。
39.图7为本发明实施例1在硅片受光面形成减反层的结构示意图。
40.图8为本发明实施例1在硅片背面的抛光区域形成与p型半导体开口区间隔排列的n型半导体开口区的结构示意图。
41.图9为本发明实施例1在硅片背面形成导电膜层的结构示意图。
42.图10a为本发明实施例3采用印刷保护油墨进行掩膜,在硅片背面的n型半导体开口区与p型半导体开口区之间形成绝缘槽图案的结构示意图;图10b为本发明实施例3采用腐蚀溶液腐蚀绝缘槽图案,之后形成绝缘槽的结构示意图;图10c为本发明实施例1或实施例3在硅片背面的n型半导体开口区与p型半导体开口区之间直接或间接形成绝缘槽的结构示意图。
43.图11为本发明实施例1在硅片背面n型半导体开口区与p型半导体开口区形成间隔排列的两个金属电极的结构示意图。
44.图12为对比例2的含掩膜层的联合钝化背接触电池的结构示意图。
45.附图标记说明10、硅片,11、隧穿氧化层,12、n型掺杂多晶层,12a、本征多晶层,12b、磷硅玻璃层,13、掩膜层,14i、钝化膜层,14n、掺杂膜层,15i、本征非晶层,15p、p型掺杂非晶层,16、减反层,17、导电膜层,17a、保护油墨,18n、第一金属电极,18p、第二金属电极。
具体实施方式
46.在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
47.本发明中,溶度均以质量计。
48.本发明第一方面提供了一种无掩膜层联合钝化背接触电池的制备方法,包括以下步骤:s101、提供硅片基底;s102、在所述硅片基底的背面依次形成第一半导体层、掩膜层,第一半导体层包括在背面依次形成的隧穿氧化层和第一掺杂多晶层;s103、在s102所得背面对第一半导体层进行第一刻蚀,形成间隔分布的第一开口区w1;s104、通过制绒清洗,在背面的第一开口区w1内形成绒面;s105、之后去除掩膜层;s106、之后在s105所得背面上形成第二半导体层,第二半导体层包括在背面上依次形成的本征非晶硅层和第二掺杂硅晶层;s107、然后在s106所得背面的抛光区域进行第二刻蚀,以裸露第一半导体层,形成与第一开口区w1间隔排列的第二开口区w2。
49.其中,所述第一掺杂多晶层和第二掺杂硅晶层中一个为n型,另外一个为p型。可以理解的是,当第一掺杂多晶层为n型掺杂多晶层时,第二掺杂硅晶层为p型掺杂硅晶层;该情况下,第一开口区为p型半导体开口区,w1可称为w
p
;第二开口区为n型半导体开口区,w2可称为wn。当第一掺杂多晶层为p型掺杂多晶层时,第二掺杂硅晶层为n型掺杂硅晶层;该情况下,第一开口区为n型半导体开口区,w1可称为wn;第二开口区为p型半导体开口区,w2可称为w
p

50.本发明所述硅片基底为n型硅片,可以为直拉单晶硅片或铸造单晶硅片。
51.在一些优选实施方式中,s101中还包括:对硅片基底依次进行抛光、清洗。
52.更优选地,所述抛光采用溶度为3-8%的氢氧化钾或氢氧化钠溶液。
53.更优选地,所述抛光的温度为70-90℃。
54.所述清洗所采用的清洗液,本领域技术人员可以根据需求选择,例如可以为sc1溶液、sc2溶液、hf溶液等。
55.在一些优选实施方式中,s102中,隧穿氧化层的形成通过lpcvd(低压化学气相沉积)方法沉积,且其沉积的条件包括:通入氧气,压力为100-1000pa,沉积温度为550-700℃,沉积时间为5-60min。在另外一些优选实施方式中,s102中,隧穿氧化层的形成通过pecvd多晶沉积设备,其条件包括:沉积温度为250-500℃,通入氧气,工艺真空度为100-500pa,沉积时间为10-100秒。
56.s102中,在第一种实施方式中,所述形成第一掺杂多晶层的过程包括:在沉积隧穿氧化层之后抽空洗气,接着采用lpcvd方法沉积本征多晶层,然后置于扩散炉进行扩散吸杂,扩散后本征多晶层转变为第一掺杂多晶层,同时在第一掺杂多晶层表面形成一层磷硅
玻璃层;然后去除磷硅玻璃层。更优选地,所述沉积本征多晶层采用lpcvd方法的条件包括:通入硅烷,压力为500-3000pa,沉积温度为550-700℃,沉积时间为5-60min。更优选地,所述扩散吸杂的条件包括:通入包括氧气、氮气、三氯氧磷的混合气体,压力为100-10000pa,扩散温度为700-925℃,扩散时间为10-100min;其中,该混合气体中氧气、大氮、携带三氯氧磷的小氮的质量流量比为4-8:4-8:1。更优选地,所述去除磷硅玻璃层采用氢氟酸。本发明形成第一掺杂多晶层的该优选方案,能够与现有成熟的量产设备工艺兼容,更利于量产快速推广。
57.在第二种实施方式中,所述形成第一掺杂多晶层的过程包括:采用pecvd多晶沉积设备,在沉积隧穿氧化层之后,通入包括硅烷、磷烷、氢气的混合气体,沉积温度为250-500℃,沉积时间为100-1000秒;其中,该混合气体中硅烷、磷烷、氢气的质量流量比为1:1-2:1-10。该优选方案下,能够实现与隧穿氧化层、掩膜层在同一设备沉积完成,更利于减少工序步骤,降低设备投资成本,提高生产良率。
58.s102中,所述掩膜层的形成可以采用现有技术,例如可以采用pecvd(等离子体化学气相沉积)方法,具体过程例如:通入包括质量流量比为1:1-2:0.5-2的硅烷、氨气、笑气的气体,沉积温度为250-500℃,沉积时间为100-1000秒。
59.s102中,优选地,所述掩膜层的厚度为30-110nm。
60.本领域技术人员可以根据实际需求选择所述掩膜层的材质,只要可以阻挡制绒即可。优选地,所述掩膜层为氮化硅及氮氧化硅的复合层,可以为氮化硅和氮氧化硅混合形成的混合层,还可以为由下到上依次形成的氮化硅层和氮氧化硅层。该优选方案下,与第一掺杂多晶层接触的掩膜层采用氮氧化硅,氮氧化硅更容易与氢氟酸反应,更利于腐蚀干净掩膜层。
61.s103中,可以理解的是,所述第一刻蚀是为了最大程度的刻蚀掉掩膜层、至少部分刻蚀第一半导体层,而在后续s104制绒中会腐蚀掉剩余部分的第一半导体层及第一刻蚀(如激光)引起的损伤层。在一些优选实施方式中,s103中,所述第一刻蚀的深度为自掩膜层表面至硅片基底的上表面向内3μm深处,优选的,第一刻蚀刻蚀掉部分第一掺杂多晶层。该优选方案下,能够避免损伤到硅片基底,更利于减小制绒的蚀刻量。
62.在一些优选实施方式中,s103中,所述第一刻蚀采用激光工艺,激光为绿光或紫外激光,脉冲宽度小于100纳秒。该优选方案下,能够减少掩膜层腐蚀工艺,更利于简化工艺流程。
63.在一些优选实施方式中,所述制备方法还包括:s104中,还在硅片基底的受光面上形成绒面,之后在受光面上依次形成钝化层和任选的减反层。该优选方案下,主要为了减小反射,增加光的利用率,提高短路电流。
64.本领域技术人员可以根据需求选择绒面的形状。在一些优选实施方式中,s104中,所述绒面为金字塔绒面且金字塔的宽度为1-5μm。
65.在一些优选实施方式中,s105中,所述去除掩膜层的过程包括:采用溶度为2-10%的腐蚀溶液腐蚀2-10min。更优选地,所述去除掩膜层采用溶度为4-10%的腐蚀溶液腐蚀2-10min。该优选方案下,能够确保掩膜层完全腐蚀干净,更利于提高第二半导体层在第一半导体层上的附着力。
66.本发明所述腐蚀溶液的具体种类只要能将掩膜层腐蚀掉即可,例如可以为氢氟酸
溶液,也可以为boe刻蚀液。
67.s107中,可以理解的是,第二刻蚀是为了刻蚀掉第二半导体层,裸露第一半导体层。在一些优选实施方式中,s107中,所述第二刻蚀采用激光工艺,激光为绿光或紫外激光,脉冲宽度小于100纳秒。该优选方案下,能够减少激光对第一半导体层的损伤,更利于降低钝化损失。
68.在一些优选实施方式中,w1宽度为0.3-0.6mm,w2宽度为0.1-0.2mm,第二开口区w2与第一开口区w1之间的间隔区wg宽度为0.1-0.3mm。该优选方案下,能够兼顾载流子传输损失以及制程的可行性,更利于提高电池效率、提高生产良率。
69.在一些优选实施方式中,s102中,所述隧穿氧化层的厚度为1.5-2.5nm,第一掺杂多晶层的厚度为50-300nm、更优选100-300nm;s106中,所述本征非晶硅层的厚度为5-15nm,第二掺杂硅晶层的厚度为5-20nm。该优选方案下,各层厚度适宜,尤其是第一掺杂多晶层的厚度增加,一方面,能够在高温碱液后制绒(如80℃、10wt%浓度的koh溶液)及清洗的过程中避免被蚀刻损伤;另一方面,能够在第二刻蚀中避免损伤到隧穿氧化层,保持钝化效果,从而更利于缩短工艺周期,提升生产良率。
70.在一些优选实施方式中,所述制备方法还包括:s108、在s107所得背面全覆盖地形成导电膜层;s109、然后在s108所得背面的位于第二开口区w2与第一开口区w1之间的导电膜层部分进行第三刻蚀,形成绝缘槽;s110、在s109所得背面的第二开口区w2与第一开口区w1上分别形成金属电极。
71.s108中,本领域技术人员可以根据需求选择导电膜层的形成方法和组成,示例性的,所述导电膜层为氧化铟锡ito。示例性的,所述导电膜层的形成可以采用物理气相沉积技术。
72.可以理解的是,s109中,所述第三刻蚀是为了刻蚀掉部分导电膜层。在一些更优选实施方式中,所述第三刻蚀采用激光技术,激光为紫外激光,脉冲宽度小于100纳秒。该优选方案下,能够简化工艺流程,更利于降低设备投资、提高生产良率。
73.在另外一些实施方式中,所述第三刻蚀的过程包括:采用印刷保护油墨在背面形成裸露所需形成绝缘槽区域的绝缘槽掩膜图案,然后采用腐蚀溶液腐蚀裸露的导电膜层,形成绝缘槽,之后通过碱性溶液去除保护油墨。该优选方案下,能够避免激光刻画损伤到第一半导体层,更利于保持钝化效果。
74.更优选地,s109中,所述绝缘槽处的开口区wi宽度为0.03-0.1mm。该优选方案下,能够兼顾设备及工艺的可行性,更利于提高电池效率、提高生产良率。
75.s110中,所述金属电极的形成可以采用印刷银浆或电镀铜栅线技术等。可以理解的是,两个金属电极间隔排列在背面。
76.本发明第二方面提供一种无掩膜层联合钝化背接触电池,其通过第一方面所述的制备方法制备得到。
77.所述无掩膜层联合钝化背接触电池包括硅片基底,在所述硅片基底的背面设置的第一半导体层和第二半导体层;且其背面具有第一半导体层与硅片基底直接接触的第一区域,第二半导体层与硅片基底直接接触的第二区域,以及在第一区域和第二区域之间的过渡区域,其中在所述过渡区域中第一半导体层和第二半导体层之间直接接触。本发明中第
二区域上各相邻膜层之间的接触均为绒面接触,第一区域上各相邻膜层之间的接触均为平面接触。
78.本发明的无掩膜层联合钝化背接触电池中,第二半导体层直接设置在第一半导体层的第一掺杂多晶硅层表面,避免了第二掺杂硅晶层沉积在掩膜层表面附着力差的问题,大幅改善第二半导体层的附着力,提高硅片基底表面洁净度,提高产品良率及稳定性,简化工艺流程。
79.在一些优选实施方式中,所述第一区域的宽度为0.1-0.2mm,第二区域的宽度为0.3-0.6mm,过渡区域的宽度为0.1-0.3mm。
80.在一些优选实施方式中,所述第一半导体层包括隧穿氧化层和第一掺杂多晶层,所述第二半导体层包括本征非晶硅层和第二掺杂硅晶层,其中,所述第一掺杂多晶层和第二掺杂硅晶层中一个为n型,另外一个为p型。
81.更优选地,所述隧穿氧化层的厚度为1.5-2.5nm,第一掺杂多晶层的厚度为50-300nm。该优选方案下,能够兼顾钝化及载流子隧穿的效果,更利于提高钝化效果以及兼容后道激光刻蚀量。
82.更优选地,所述本征非晶硅层的厚度为5-15nm,第二掺杂硅晶层的厚度为5-20nm。该优选方案下,能够兼顾钝化及载流子传输功损,更利于提高电池效率。
83.更优选地,第二掺杂硅晶层为掺杂非晶硅层或掺杂微晶硅层中的至少一种。
84.在一些优选实施方式中,所述无掩膜层联合钝化背接触电池还包括:在所述硅片基底的受光面上依次设置的钝化层和任选的减反层;在所述硅片基底的背面设置的导电膜层,在位于过渡区域的导电膜层上开设有绝缘槽;以及在第一区域和第二区域分别设置的金属电极。
85.其中,优选地,所述钝化层包括钝化膜层和掺杂膜层。该优选方案下,能够兼顾钝化及掺杂膜层对光的吸收,更利于提高电池效率。
86.当本发明s104中还在硅片基底的受光面上形成绒面时,钝化膜层、掺杂膜层和减反层在沉积平面时的厚度分别为相应层绒面沉积实际厚度的1.3-1.4倍。示例性的,当沉积平面上掺杂膜层厚度为8-16nm,在制绒面上掺杂膜层厚度为5-12nm。示例性的,当沉积平面上钝化膜层厚度为5-10nm,在制绒面上钝化膜层厚度为3-8nm。示例性的,当沉积平面上减反层的厚度为80-140nm时,在绒面上减反层的厚度为50-100nm。
87.本领域技术人员可以根据需求选择减反层的组成,示例性的,本发明所述减反层可以为氮化硅、氮氧化硅的复合层。
88.其中,优选地,导电膜层的厚度为50-130nm。
89.优选地,绝缘槽的宽度为0.03-0.1mm。
90.下面结合具体实施例对本发明进行进一步详细阐述。
91.实施例1一种无掩膜层联合钝化背接触电池的制备方法,包括以下步骤:s101、如图1a所示,提供抛光清洗后的n型单晶硅片10(简称硅片);具体地,用温度为80℃、质量浓度为5%的氢氧化钾溶液对所述硅片10进行抛光,之后通过sc1溶液清洗硅片10表面,所述硅片10为直拉单晶硅片;
s102、如图2a、图2b、图2c所示,在硅片10的背面依次形成隧穿氧化层11、n型掺杂多晶层12、掩膜层13;具体地,如图2a所示,采用lpcvd技术在硅片10背面形成隧穿氧化层11及本征多晶层12a,所述沉积隧穿氧化层11时lpcvd的条件包括:通入氧气,压力为500pa,沉积温度为600℃,沉积时间为10min,隧穿氧化层11的厚度为2nm,沉积隧穿氧化层11后抽空洗气;接着沉积本征多晶层12a,所述沉积本征多晶层12a时lpcvd的条件包括:通入硅烷,压力为1000pa,沉积温度为600℃,沉积时间为10min,本征多晶层12a厚度为150nm。
92.然后,如图2b所示,将硅片10放入扩散炉进行扩散吸杂,通入质量流量比为1:5:5的携带三氯氧磷的小氮:氧气、大氮的工艺气体,压力为1000pa,扩散温度800℃,扩散时间为20min,扩散后本征多晶层12a转变为n型掺杂多晶层12,同时在n型掺杂多晶层12表面形成一层磷硅玻璃层12b。n型掺杂多晶层12的厚度为150nm。
93.如图2c所示,将硅片10进行氢氟酸hf处理,去除硅片10表面的磷硅玻璃层12b,之后经过等离子体化学气相沉积(pecvd)技术在硅片10背面形成一层掩膜层13,所述掩膜层13为氮化硅及氮氧化硅的复合层,厚度为80nm。
94.s103、如图3所示,在硅片10背面刻蚀,形成p型半导体开口区wp;具体的,采用激光工艺,所述激光为绿光激光,脉冲宽度为10纳秒。激光直接刻蚀掉掩膜层13、n型掺杂多晶层12、隧穿氧化层11,所述刻蚀的深度位置可以为自掩膜层13表面至硅片10上表面向内的3μm深处,所述p型半导体开口区wp宽度为0.5mm。
95.s104、如图4a所示,通过制绒清洗,先在硅片10背面p型半导体开口区wp及硅片10受光面形成金字塔绒面。如图4b所示,之后通过溶度5%氢氟酸溶液腐蚀2.5min,去除掩膜层13。
96.s105、如图5所示,采用pecvd技术在硅片10受光面形成钝化膜层14i和掺杂膜层14n,所述钝化膜层14i厚度为6nm,掺杂膜层14n厚度为10nm。
97.s106、如图6所示,采用pecvd技术在硅片10背面全覆盖的形成本征非晶层15i、p型掺杂非晶层15p,所述本征非晶硅层15i厚度为10nm,p型掺杂非晶层15p为10nm。
98.s107、如图7所示,采用pecvd技术在硅片10受光面形成减反层16,所述减反层16为氮化硅、氮氧化硅的复合层,减反层16厚度为100nm;s108、如图8所示,采用激光技术在硅片10背面的抛光区域形成与p型半导体开口区wp间隔排列的n型半导体开口区wn;具体的,所述激光为绿光激光,脉冲宽度为10纳秒,激光直接刻蚀掉本征非晶层15i、p型掺杂非晶层15p形成n型半导体开口区wn,以及n型半导体区wn和p型半导体区wp之间的间隔区wg,所述n型半导体开口区wn宽度为0.15mm,n型半导体区与p型半导体区之间的间隔区wg宽度为0.2mm。
99.s109、如图9所示,采用物理气相沉积技术在硅片10背面形成导电膜层17;所述导电膜层17为氧化铟锡ito,厚度为80nm。
100.s110、如图10c所示,采用激光技术在硅片10背面的n型半导体开口区wn与p型半导体开口区wp之间形成绝缘槽wi,所述激光为紫外激光,脉冲宽度小于10纳秒,激光直接蚀刻掉绝缘槽wi区域的导电膜层17,所述绝缘槽开口区wi宽度为0.06mm。
101.s111、如图11所示,采用印刷技术,在硅片10背面n型半导体开口区wn与p型半导体
开口区wp处形成间隔排列的第一金属电极18n、第二金属电极18p。
102.实施例2参照实施例1的方法进行,不同的是,s102的制作方式不同;如图2c所示,采用pecvd多晶沉积设备,在硅片10的背面依次形成隧穿氧化层11、n型掺杂多晶层12、掩膜层13,所述沉积温度为400℃;沉积隧穿氧化层11时,通入氧气,工艺真空度为300pa,沉积时间为20s;沉积n型掺杂多晶层12时,通入质量流量比为1:1:2的硅烷、磷烷、氢气的工艺气体,沉积时间为200秒;沉积掩膜层13时,通入质量流量比为1:1:0.5的硅烷、氨气、笑气的工艺气体,沉积时间为200秒。
103.实施例3参照实施例1的方法进行,不同的是,s110的制作方式不同;如图10a所示,采用印刷保护油墨17a热固化后形成绝缘槽掩膜图案,如图10b所示,经过盐酸腐蚀溶液,在掩膜图案区域形成绝缘槽wi,之后通过碱性溶液去除保护油墨17a,如图10c所示。
104.实施例4参照实施例1的方法进行,不同的是,s104中,通过溶度为2%氢氟酸溶液腐蚀2.5min 去除掩膜层13。
105.实施例5参照实施例1的方法进行,不同的是,s102中,本征多晶层12a厚度为70nm,也即n型掺杂多晶层12厚度为70nm。
106.对比例1本对比例为常规背接触异质结太阳电池,其工艺流程为:s101、硅片双面抛光;s102、硅片背面镀第一掩膜层保护,所述第一掩膜层为氮化硅;s103、硅片制绒清洗,在第一掩膜层的对面,即受光面,形成金字塔绒面,之后去除第一掩膜层,形成单面制绒、单面抛光结构的硅片;s104、硅片背面依次镀第一半导体层及第二掩膜层,所述第一半导体层采用pecvd方式形成,第一半导体层包含本征非晶硅层及n型掺杂非晶硅层,所述第二掩膜层为氮化硅;s105、在硅片背面激光蚀刻开口,去除第二掩膜层及部分第一半导体层,形成第二半导体区开口;s106、硅片清洗,去除第二半导体区开口内的第一半导体层;s107、硅片受光面依次形成非晶层及减反层,背面形成第二半导体层,所述第二半导体层采用pecvd方式形成,第二半导体层包含本征非晶硅层及p型掺杂非晶硅层;s108、硅片背面激光蚀刻开口,形成与第二半导体区开口交替排列的第一半导体区开口;s109、硅片清洗,去除第一半导体区开口内的第二掩膜层;s110、硅片背面沉积导电膜;s111、通过激光蚀刻的方式,在第一半导体区开口与第二半导体区开口之间形成绝缘槽;s112、在硅片第一半导体区开口与第二半导体区开口处分别形成金属电极。
107.本对比例采用常规制绒方法,用于与实施例1的后制绒方法进行对比。本对比例与实施例1的区别在于工艺步骤的不同,关于各层的厚度等参数均与实施例1相同。
108.对比例2参照实施例1的方法进行,不同的是,p型半导体开口区为抛光面,不是制绒面,如图12所示,且不进行s104的制绒与去除掩膜层13,为常规工艺配合联合钝化的有掩膜层的电池结构示意图;其中工艺步骤不同的是:s101、如图1b所示,提供正面制绒、背面抛光后的n型单晶硅片10;具体的,所述正面制绒、背面抛光后的n型单晶硅片可以采用双面制绒后单面镀掩膜层保护再抛光,或双面抛光后单面镀掩膜层保护再制绒的方式形成,所述制绒面的金字塔的宽度为1-5μm;不进行s104的制绒与去除掩膜层13。
109.测试例将上述实施例和对比例分别制备背接触电池,采集不同制备工艺指标参数,并对制备完成的背接触电池进行iv测试,以10000片为单位计算,提取工艺指标参数中的工艺周期、良率以及转换效率进行对比,结果如下表1所示。
110.表1性能参数工艺周期(h)良率转换效率实施例118-30100%100%实施例215-2799.5%100.1%实施例319-3199.2%100%实施例418-3099.5%99.8%实施例518-3099.2%99.5%实施例420-3299.5%100%对比例124-3697.5%100.1%对比例222-3499%99.5%通过上述表1结果可以看出,本发明采用无掩膜层联合钝化制作背接触电池,可以大幅缩短工艺周期,提高生产良率,非常有利于减少设备投资,更适合量产推广。通过实施例1和对比例2可以看出,本发明采用后制绒无掩膜层联合钝化制作背接触电池,可以大幅缩短工艺周期,提高生产良率与电池效率。
111.进一步的,通过实施例1和实施例4可以看出,采用本发明优选氢氟酸的溶度的方案,更利于将掩膜层完全腐蚀去除干净,避免第二掺杂晶硅层沉积在掩膜层表面,导致附着力差的问题,从而更利于提升生产良率,提高转换效率。通过实施例1和实施例5可以看出,采用本发明优选足够厚度的n型掺杂多晶层的方案,更利于在s107第二次激光刻蚀中避免损伤到隧穿氧化层,从而提升生产良率,提高转换效率。
112.以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1