电池端盖组件、电池单体、电池及用电设备的制作方法

文档序号:32181965发布日期:2022-11-15 19:07阅读:84来源:国知局
电池端盖组件、电池单体、电池及用电设备的制作方法

1.本公开涉及电池技术领域,特别涉及一种电池端盖组件、电池单体、电池及用电设备。


背景技术:

2.二次电池尤其是锂离子电池具有电压高、比能量大、循环寿命长、绿色无污染、工作温度范围宽及自放电小等优点,在便携式电子设备及大型新能源电动汽车的动力设备方面得到广泛应用,对解决人类环境污染和能源危机有着重大意义。随着锂离子电池的广泛应用,电池的长期密封可靠性成为使用者密切关注的问题。


技术实现要素:

3.在本公开的一个方面,提供一种电池端盖组件,包括:
4.端盖,具有沿第一方向贯通的注液孔,所述注液孔包括;沿所述第一方向划分的第一孔段和第二孔段,所述第一孔段的横截面面积大于所述第二孔段的横截面面积,所述第一孔段与所述第二孔段之间具有台阶面,所述台阶面包括沿所述第一方向朝所述第二孔段倾斜的第一倾斜表面。
5.在本实施例中,注液孔中的台阶面设置第一倾斜表面,可以引导注液时进入注液孔中的电解液经第一倾斜表面引导向下流动,减少或消除电解液在注液孔内的残留。
6.在一些实施例中,所述第一倾斜表面为圆台面。
7.圆台形的第一倾斜表面可以实现360度范围内的电解液的引导,进一步减少电解液在注液孔内的残留。
8.在一些实施例中,所述第一倾斜表面在所述第一方向上的高度为 l,所述第一倾斜表面在垂直于所述第一方向的平面的投影为圆环,所述圆环的径向宽度为d,高度l和径向宽度d满足:0.2≤d/l≤35。
9.径向宽度d的大小影响第一倾斜表面相对于台阶面的占比,从而影响引导电解液流动的效果,而高度l除了影响第一倾斜表面相对于第二孔段的长度的占比,以影响第二孔段的密封效果之外,还能够配合径向宽度 d影响第一倾斜表面的倾斜程度,以影响对电解液流动的引导效果。
10.在一些实施例中,所述高度l和所述径向宽度d满足: 0.5≤d/l≤3.5。
11.通过设置径向宽度d和高度l的合适比值,可以兼顾电解液流动的效果和第二孔段的密封效果。
12.在一些实施例中,所述台阶面还包括:垂直于所述第一方向的平面段,所述平面段位于所述第一倾斜表面远离所述第二孔段的外侧。
13.该平面段可以用于注液时与注液设备的注液口的平整端面紧密配合,从而在负压下注液时避免发生漏气。
14.在一些实施例中,所述平面段的内边缘所限定出的区域面积被配置为大于注液嘴
的出液口的面积,所述注液嘴为用于给所述注液孔注液的注液设备的注液嘴。
15.通过使以使注液嘴的出液口在注液时位于第一倾斜表面内,避免电解液残留在平面段,从而进一步防止电解液在注液孔内的残留。
16.在一些实施例中,所述的电池端盖组件还包括:
17.第一密封钉,至少部分位于所述第二孔段内,且与所述第二孔段密封配合。
18.通过在第二孔段内设置第一密封钉的至少部分,并使第一密封钉与第二孔段密封配合,使得注液后的注液孔通过第一密封钉实现密封,防止电解液经注液孔向外泄漏,从而提高电池的使用安全性。
19.在一些实施例中,所述第一密封钉包括:沿所述第一方向划分的第一段和第二段,所述第二段与所述第二孔段密封配合,所述第一段的最大横截面面积大于所述第二孔段的横截面面积,且所述第一段具有能够与所述第一倾斜表面紧密贴合的第二倾斜表面。
20.在第一密封钉的第二段与第二孔段密封配合的同时,通过使第一密封钉的第一段的第二倾斜表面紧密贴合台阶面的第一倾斜表面,可以实现第一倾斜表面所对应区域的密封作用,进一步提高密封效果。
21.在一些实施例中,所述第一密封钉还包括沿所述第一方向连接在所述第二段远离所述第一段一侧的第三段,所述第三段的最大横截面面积大于所述第二孔段的横截面面积。
22.当第一密封钉的第三段沿第一方向z插入注液孔并穿过第二孔段时,由于第一密封钉第三段的最大横截面面积大于第二孔段的横截面面积,使得第一密封钉受到第二孔段的限制而不容易沿第一方向z的反方向脱出,从而在电池使用过程中第一密封钉不容易因电池单体内部的气压而被顶出注液孔,从而确保密封的可靠性。
23.在一些实施例中,所述第三段具有邻接所述第二段的鼓形部分,所述第三段的最大横截面面积为所述鼓形部分的最大横截面面积。
24.第一密封钉第三段的鼓形部分采用圆弧形外轮廓有利于制造时脱模,可实现更高的良率,降低生产成本。
25.在一些实施例中,所述第三段还包括位于所述鼓形部分远离所述第二段的圆锥形部分或圆台形部分,所述圆锥形部分或圆台形部分的横截面面积沿所述第一方向渐缩。
26.第一密封钉的圆锥形部分或圆台形部分可引导第一密封钉更顺利地沿第一方向进入注液孔,降低装配难度。
27.在一些实施例中,所述第二孔段的横截面面积大于所述第三段远离所述第二段一侧的端面的横截面面积。
28.由于第三段端面的横截面面积小于第二孔段的横截面面积,在第一密封钉安装到注液孔时,可使得该第三段更容易地穿过第二孔段,降低安装难度。
29.在一些实施例中,所述第二孔段的横截面面积是所述第三段远离所述第二段一侧的端面的横截面面积的1.05~1.5倍。
30.通过使第二孔段的横截面面积为第三段的上述端面的横截面面积的 1.05~1.5倍,可以在方便第三段的端面进入第二孔段的同时,通过第三段的侧轮廓与第二孔段的滑动实现安装导向作用。
31.在一些实施例中,所述圆锥形部分或圆台形部分的母线与垂直于所述第一方向的
平面的夹角β满足:30
°
≤β≤50
°

32.通过设置第一密封钉的第三段所为圆锥面或圆台形的母线与垂直于所述第一方向的平面的合适夹角,可以兼顾装配难度和第三段在第一方向上的空间占用。
33.在一些实施例中,所述电池端盖组件还包括:
34.第二密封钉,至少部分位于所述第一孔段内,且与所述第一孔段密封配合。
35.通过第二密封钉与第一孔段的密封配合,配合第一密封钉与第二孔段的密封配合,实现了注液孔的两级密封作用,极大地提高了密封效果,消除了注液孔泄漏电解液的风险。而且,液孔中的台阶面设置第一倾斜表面,可以引导注液时进入注液孔中的电解液经第一倾斜表面引导向下流动,减少或消除电解液在注液孔内的残留,从而降低在焊接第二密封钉时残留的电解液受热蒸发而产生焊接爆点的风险,进一步提高密封性,改善电池单体的安全性。
36.在一些实施例中,所述第一密封钉邻近所述第二密封钉一侧的端面与所述第二密封钉之间具有第一间隙。
37.第一间隙能够为第一密封钉提供容纳空间和膨胀变形空间,降低第一密封钉膨胀对第二密封钉的影响,从而进一步提高密封可靠性。而通过第一密封钉的端面与第二密封钉的间隙可减少第二密封钉焊接时传递到第一密封钉的热量,降低第一密封钉受热失效或烧伤的风险,从而提高第一密封钉的密封可靠性,减少制造过程中的质量问题。另外,该间隙还能够提供残留在第一密封钉和第二密封钉之间的电解液受热汽化的缓冲空间,降低第二密封钉焊接过程中汽化的电解液造成焊接爆点的风险,确保焊接质量。
38.在一些实施例中,所述第一间隙的取值为0.3~0.6mm。
39.适合的第一间隙取值可以在降低第一密封钉受热失效或烧伤的风险的同时,无需采用在第一方向上尺寸过大的电池端盖。
40.在一些实施例中,所述台阶面与所述第二密封钉之间具有第二间隙。
41.通过第二间隙可提供残留在第一密封钉和第二密封钉之间的电解液受热汽化的缓冲空间,降低第二密封钉焊接过程中汽化的电解液造成焊接爆点的风险,确保焊接质量。另外,第二间隙也可以避免第二密封钉和第一密封钉在安装时发生干涉。
42.在一些实施例中,所述第二间隙的取值为0.1~0.4mm。
43.适合的第二间隙取值可以在降低第二密封钉焊接过程中汽化的电解液造成焊接爆点的风险的同时,无需采用在第一方向上尺寸过大的电池端盖。
44.在一些实施例中,所述第一密封钉的材料包括橡胶。
45.利用橡胶的弹性可更方便地实现第一密封钉相对于注液孔的安装,并满足密封性的要求,另外橡胶能够耐受相对较高的温度,且具有一定的耐腐蚀性,可满足电池端盖组件在制造和使用时的需要。
46.在一些实施例中,所述第二密封钉的材料包括金属。
47.采用包括金属的第二密封钉可实现金属焊接来实现更加可靠的固定连接作用。
48.在一些实施例中,所述第一孔段的内壁与垂直于所述第一方向的平面的夹角α满足90
°
≤α≤130
°

49.夹角α的取值可以影响第二密封钉在第一孔段内的安装和定位,并且还可以限定注液孔在端盖上的占用尺寸。
50.在一些实施例中,所述电池端盖组件还包括:
51.第二密封钉,至少部分位于所述第一孔段内,且与所述第一孔段密封配合,
52.其中,所述第二密封钉包括板形盖体,所述板形盖体的周向轮廓具有与所述第一孔段的内壁贴合的第三倾斜表面。
53.通过第二密封钉与第一孔段的密封配合,配合第一密封钉与第二孔段的密封配合,实现了注液孔的两级密封作用,极大地提高了密封效果,消除了注液孔泄漏电解液的风险。而且,通过第三倾斜表面实现第二密封钉在第一孔段内的定位和固定,降低安装难度。
54.在一些实施例中,所述夹角α满足:95
°
≤α≤120
°

55.通过限定适合的夹角α可以方便第二密封钉在第一孔段内的安装和定位,并减少注液孔的空间占用。
56.在一些实施例中,所述电池端盖组件还包括:
57.第二密封钉,至少部分位于所述第一孔段内,且与所述第一孔段密封配合,
58.其中,所述第二密封钉包括板形盖体,所述板形盖体与所述第一孔段在所述板形盖体和所述第一孔段的对接部位焊接,且所述板形盖体在邻近所述对接部位的位置具有凹槽。
59.通过第二密封钉与第一孔段的密封配合,配合第一密封钉与第二孔段的密封配合,实现了注液孔的两级密封作用,极大地提高了密封效果,消除了注液孔泄漏电解液的风险。而且,邻近对接位置的凹槽能够在焊接时发生形变,以释放焊接导致的应力。
60.在一些实施例中,所述板形盖体与所述第一孔段的焊缝呈环形,所述凹槽位于所述焊缝内侧且呈环形。
61.环形焊缝可实现更好的密封效果,而邻近环形焊缝的环形凹槽可以更均匀地释放焊接时产生的应力。
62.在一些实施例中,所述电池端盖组件还包括:
63.防护罩,覆盖所述第二孔段远离所述第一孔段的一端,并具有第一通孔。
64.电解液在负压作用下从注液孔先进入防护罩,再经防护罩上的第一通孔进入电池单体内部。防护罩能够对从注液孔注入的电解液进行缓冲,防止电解液快速进入电池单体内部对电极组件造成冲击。
65.在一些实施例中,所述防护罩固定连接在所述端盖远离所述第一孔段一侧的表面上。这种结构占用空间较少。
66.在一些实施例中,所述电池端盖组件还包括:
67.绝缘板,沿所述第一方向位于所述端盖的前侧,且具有与所述注液孔至少部分重合的第二通孔;
68.其中,所述防护罩与所述绝缘板固定连接或与一体成型,且位于在所述绝缘板远离所述第二密封钉一侧的表面上。
69.绝缘板能够隔离顶盖和电极组件的极耳,避免极耳直接与端盖电连接而导致漏电等问题。对于一体成型的防护罩和绝缘板,两者可采用相同的绝缘材质,从而方便成型加工,另外一体成型的结构也能够确保两者的连接强度,避免防护罩受到电极组件的碰撞而导致防护罩与绝缘板的连接失效。
70.在一些实施例中,所述防护罩包括:围边和底板,所述围边和所述底板共同围出所
述第二孔段远离所述第一孔段一侧的空间,所述底板具有多个第一通孔。
71.围边和底板所围空间可以保护第一密封钉的部分,避免第一密封钉掉入电池单体的内部,而底板上多个第一通孔能够在注液时分散电解液,在降低对电极组件的冲击作用的同时,使电解液更顺畅地进入电极组件。
72.在本公开的一个方面,提供一种电池单体,包括:
73.壳体,具有腔室和与所述腔室连通的端部开口;
74.电极组件,位于所述腔室内;和
75.前述的电池端盖组件,设置在所述端部开口。
76.采用前述电池端盖组件实施例的电池单体可实现更优的安全性能。
77.在本公开的一个方面,一种电池,包括前述的电池单体。
78.采用前述电池单体实施例的电池可实现更优的安全性能。
79.在本公开的一个方面,提供一种用电设备,包括前述的电池。
80.采用前述电池实施例的用电设备可实现更优的安全性能。
附图说明
81.为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
82.参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
83.图1是根据本公开用电设备的一些实施例的结构示意图;
84.图2是根据本公开电池的一些实施例的分解示意图;
85.图3是根据本公开电池单体的一些实施例的分解示意图;
86.图4是根据本公开电池端盖组件的一些实施例的安装结构的截面示意图;
87.图5是图4的分解示意图;
88.图6是根据本公开电池端盖组件的另一些实施例的安装结构的截面示意图;
89.图7是根据本公开电池端盖组件的又一些实施例的分解示意图;
90.图8是图7的截面示意图。
91.应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
92.附图标记说明:
93.10:电池单体;11:壳体;12:电极组件;13:电池端盖组件; 14:极柱;15:连接件;111:端部开口;
94.20:端盖;21:注液孔;211:第一孔段;212:第二孔段;213:台阶面;213a:第一倾斜表面;213b:平面段;
95.30:第一密封钉;31:第一段;32:第二段;33:第三段;311:第二倾斜表面;331:鼓形部分;332:圆台形部分;
96.40:第二密封钉;41:板形盖体;42:第三倾斜表面;43:凹槽; 44:对接部位;
97.50:防护罩;51:第一通孔;52:绝缘板;53:第二通孔;
98.60:电池;61:箱体;
99.70:车辆;71:控制器;72:马达;73:车桥;74:车轮。
具体实施方式
100.下面结合附图和实施例对本公开的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本公开的原理,但不能用来限制本公开的范围,即本公开不限于所描述的实施例。
101.在本公开的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
102.下述描述中出现的方位词均为图中示出的方向,并不是对本公开的具体结构进行限定。在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本公开中的具体含义。
103.下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例中的特征可以相互组合。
104.电解液是锂离子电池中的离子传导载体。在电池制作过程中,为了方便将电解液注入电池内部,通常在电池顶盖片上开设由上到下贯通的注液孔,在注完电解液后需要使用密封胶钉对注液孔进行一次密封。如果密封胶钉被歪斜地装配或者长时间使用而老化,则可能发生漏液,进而因漏液引起的电池的性能下降、电池腐蚀等一些安全问题。
105.在一些相关技术中,在使用密封胶钉对注液孔进行一级密封后,仍需使用密封铝钉对注液孔进行二级密封。对于这种两级密封结构所存在的漏液现象,发明人研究后发现,漏液现象的发生与多个方面的因素有关,例如密封结构、密封钉材质、密封钉装配工艺等。
106.例如,相关技术中注液孔通常采用台阶设计,在注液后容易残留电解液,且存在清洁死角,使得电解液难以从注液孔中有效地清除。残留的电解液容易造成对电池单体的污染,具有发生腐蚀或影响焊接性能的风险。在采用激光焊接方式进行密封铝钉的二级密封时,残留的电解液也会因为焊接热量作用下汽化,从而产生具有一定压力的废气,如果废气冲出熔池,则可能造成焊缝上针孔、爆点及裂纹等问题,导致二次密封质量下降或失效,从而影响电池单体的安全性。另外,在采用激光焊接时,密封结构的熔池如果距离密封胶钉较近,则还容易造成密封胶钉的烧伤气化,导致一级密封质量下降或失效,从而导致电池漏液。
107.有鉴于此,本公开实施例提供一种电池端盖组件、电池单体、电池及用电设备,能够减少或消除注液孔内电解液的残留。
108.本公开实施例的电池端盖组件可适用于各类电池单体。电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本公开
实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本公开实施例对此并不限定。
109.本公开实施例的电池单体可适用于各类电池。电池可用于车辆等用电设备的供电,例如给车辆提供操控用的电源或者驱动行驶用的电源。电池可包括壳体和电池模组,壳体用于为电池模组提供容纳空间,电池模组安装在壳体内。壳体可采用金属材质。电池模组可包括串联、并联或混联的多个电池单体。电池单体为组成电池的最小单元。电池单体包括能够发生电化学反应的电极组件。
110.本公开实施例的电池可适用于各类使用电池的用电设备。用电设备可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。本公开实施例对上述用电设备不做特别限制。
111.图1是根据本公开用电设备的一些实施例的结构示意图。为了方便,以用电装置为车辆为例进行说明。车辆70可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车或混合动力汽车等。在车辆70的底部或车头或车尾可以设置电池60。
112.电池60可以用于车辆70的供电,例如,电池60可以作为车辆 70的操作电源,用于车辆70的电路系统,例如用于车辆70的启动、导航和运行时的工作用电需求。电池60不仅仅可以作为车辆70的操作电源,还可以作为车辆70的驱动电源,替代或部分替代燃油或天然气为车辆70 提供驱动力。
113.车辆70的内部还可以设置车桥73、车轮74、马达72以及控制器71,控制器71用来控制电池60为马达72的供电,例如,用于车辆70 以电池60作为驱动电源时,控制器71可以为马达72提供匀速、加速的所需要的动力。马达72用于驱动车桥73转动,以带动车轮73转动。
114.图2是根据本公开电池的一些实施例的结构示意图。图3是根据本公开电池单体的一些实施例的分解示意图。参考图2,在一些实施例中,电池60包括箱体61以及设置于箱体61中的一个或者多个电池单体 10。箱体61可给电池单体10提供冷却、密封及防撞击等功能,还能够避免液体或其他异物对电池单体的充放电或安全的不利影响。
115.参考图2和图3,各个电池单体10之间电连接,比如串联、并联或者混联,以实现所需要的电池60的电性能参数。多个电池单体60成排设置,根据需要可以在箱体内设置一排或者多排电池单体10。
116.在一些实施例中,电池60的各电池单体10可以沿着箱体的长度方向和宽度方向中的至少一个排列。根据实际需要可设置至少一行或一列电池单体60。根据需要,还可以在电池60的高度方向,也可设置一层或者多层电池单体10。
117.在一些实施例中,多个电池单体10可先串联或并联或混联组成电池模块,然后多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体61内。在另一些实施例中,所有电池单体10直接串联或并联或混联在一起,再将所有电池单体10构成的整体容纳于箱体内。
118.在图3中,电池单体10包括:壳体11、电极组件12和电池端盖组件13。在电池单体10
内还包括电解液。壳体11具有腔室和与所述腔室连通的端部开口111,该腔室用于容纳电极组件12。壳体11根据一个或多个电极组件12的形状而定,壳体11可以为中空长方体或中空正方体或中空圆柱体。壳体11可以由导电金属的材料或塑料制成,可选地,壳体11 由铝或铝合金制成。
119.电池端盖组件13设置在所述端部开口111,以与壳体11形成容纳电极组件12的密闭腔体。电池端盖组件13可包括两个极柱14,两个极柱14的极性相反,并分别通过连接组件15或直接地与电极组件12中对应极性的极片上的极耳电连接。
120.在图3中,以第一方向z(即z方向)为电解液向电池单体内部注入的方向,相互垂直的第二方向x(即x方向)和第三方向y(即y方向)均与z方向垂直。在一些实施例中,x方向、y方向和z方向可以分别为电池单体的宽度方向、厚度方向和高度方向。
121.电极组件可包括正极极片、负极极片和位于正极极片和负极极片之间的隔膜。电池单体的工作是通过内部的金属离子在正极极片和负极极片之间移动实现的。
122.正极极片包括正极集流体和正极活性物质层。正极极耳连接或形成在正极集流体上。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等可以提供锂离子的锂化物质。对于采用粘结物质粘接正极集流体和正极活性物质层的情况,该粘结物质可以是pvdf(polyvinylidene fluoride,聚偏氟乙烯)等。
123.负极极片包括负极集流体和负极活性物质层。负极极耳连接活性成在负极集流体上。以锂离子电池为例,负极集流体的材料可以为铜,负极活性物质可以为石墨、硅、钛酸锂等可以储存锂离子的物质。对于采用粘结物质粘接负极集流体和负极活性物质层的情况,该粘结物质可以是羧甲基纤维素、环氧树脂、丁苯橡胶等。
124.隔膜的材质可以为pp(polypropylene,聚丙烯)或 pe(polyethylene,聚乙烯)等。电解液包括电解质及溶剂,电解质为有机金属盐、无机盐等,可以提供在正极极片和负极极片之间穿梭的金属离子。为了保证具有足够的过电流能力,正极极耳的数量可以为多个且层叠在一起,负极极耳的数量可以为多个且层叠在一起。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本公开实施例并不限于此。
125.图4是根据本公开电池端盖组件的一些实施例的安装结构的截面示意图。图5是图4的分解示意图。参考图4和图5,本公开实施例提供了一种电池端盖组件13。该组件包括:端盖20。端盖20具有沿第一方向 z贯通的注液孔21。端盖20可以为金属板,例如铜板、铁板、铝板、钢板或合金板。注液孔21用于提供向电池单体10内注入电解液的通道。
126.所述注液孔21包括;沿所述第一方向z划分的第一孔段211和第二孔段212。所述第一孔段211的横截面面积大于所述第二孔段212的横截面面积,所述第一孔段211与所述第二孔段212之间具有台阶面 213,所述台阶面213包括沿所述第一方向z朝所述第二孔段212倾斜的第一倾斜表面213a。
127.该第一方向z可以为注液孔21的注液方向,也可以为端盖20的厚度方向。第一孔段211和第二孔段212的横截面可以为圆形、矩形、正方形或其他形状。这些横截面的形状可以相同,也可以不同。这里及后续的横截面均可为与第一方向z垂直的截面。
128.在本实施例中,注液孔21中的台阶面213设置第一倾斜表面 213a,可以利用重力引导注液时进入注液孔21中的电解液经第一倾斜表面 213a向下流动,使第一孔段211内和
台阶面213上的电解液更顺畅地流入第二孔段212,再流入电极组件12,减少或消除电解液在注液孔21内的残留。这样可有效地改善电解液对电池单体的污染。
129.为了更彻底地减少电解液的残留,在图5中的所述第一倾斜表面 213a可为圆台面。这种圆台面可以实现360度范围内的电解液的引导,进一步减少电解液在注液孔21内的残留。在另一些实施例中,第一倾斜表面213a也可以分段设置,例如第一倾斜表面213a包括沿第二孔段212的周向等间隔或不等间隔地设置多个倾斜表面段。
130.沿着第一方向z,第一倾斜表面213a所围空间的横截面(即垂直于第一方向z的截面)的面积逐渐减小,这样有利于更多的电解液经过第一倾斜表面213a被引导到第二孔段212,并从第二孔段212进入电极组件 12。
131.参考图5,在一些实施例中,所述第一倾斜表面213a在所述第一方向z上的高度为l,所述第一倾斜表面213a在垂直于所述第一方向z 的平面的投影为圆环,所述圆环的径向宽度为d,高度l和径向宽度d满足:0.2≤d/l≤35。
132.径向宽度d的大小影响第一倾斜表面213a相对于台阶面213的占比,从而影响引导电解液流动的效果,而高度l除了影响第一倾斜表面 213a相对于第二孔段212的长度的占比,以影响第二孔段212的密封效果之外,还能够配合径向宽度d影响第一倾斜表面213a的倾斜程度,以影响对电解液流动的引导效果。
133.在一些实施例中,所述高度l和所述径向宽度d满足: 0.5≤d/l≤3.5,可选地,d/l=8/5。通过设置径向宽度d和高度l的合适比值,可以兼顾电解液流动的效果和第二孔段212的密封效果。
134.考虑到在注液时,通常是用注液孔中的台阶面抵顶着注液设备的注液嘴,而常用的注液嘴包括用于定位的平整端面,因此,在图5中,所述台阶面213还包括:垂直于所述第一方向z的平面段213b,所述平面段 213b位于所述第一倾斜表面213a远离所述第二孔段212的外侧。这样,该平面段213b可以用于注液时与注液嘴的平整端面紧密配合,实现定位,从而在负压下注液时避免发生漏气。而且,这种结构也无需要求特殊结构的注液嘴。
135.在一些实施例中,平面段213b内边缘限定出的区域面积可以被配置为大于注液嘴的出液口(出液区域)的面积,以使注液嘴的出液口在注液时位于第一倾斜表面213a内,避免电解液残留在平面段213b,从而进一步防止电解液在注液孔内的残留。
136.参考图4和图5,在一些实施例中,电池端盖组件13还包括第一密封钉30,第一密封钉30至少部分位于所述第二孔段212内,且与所述第二孔段212密封配合。通过在第二孔段内设置第一密封钉的至少部分,并使第一密封钉与第二孔段密封配合,使得注液后的注液孔通过第一密封钉实现密封,防止电解液经注液孔向外泄漏,从而提高电池的使用安全性。
137.在一些实施例中,电池端盖组件13还包括第二密封钉40。第二密封钉40至少部分位于所述第一孔段211内,且与所述第一孔段211密封配合。第一密封钉30和第二密封钉40分别通过与注液孔21的第一孔段 211和第二孔段212的密封配合实现注液孔21的两级密封。通过两级密封作用,使得电池外部杂质不能进入电池单体内部,也放置电池单体内部的电解液泄漏到电池单体之外。
138.另外,从而降低在焊接第二密封钉40时残留的电解液受热蒸发而产生焊接爆点的风险,进一步提高密封性,改善电池单体10的安全性。
139.参考图4和图5,在一些实施例中,所述第一密封钉30包括:沿所述第一方向z划分
的第一段31和第二段32。所述第二段32与所述第二孔段212密封配合,所述第一段31的最大横截面面积大于所述第二孔段212的横截面面积,且所述第一段31具有能够与所述第一倾斜表面 213a紧密贴合的第二倾斜表面311。通过使第一密封钉30的第一段31的最大横截面面积大于第二孔段212的横截面面积,可以确保第一密封钉30 不会掉落到电池单体内部。
140.在图4中,参考第一段31、第二孔段212的两个横截面,第一段31的横向尺寸h1(可以为直径)为第一段31各个横截面的最大横向尺寸,其对应了最大横截面面积。第二孔段212为横截面均相等的柱体形,其横向尺寸h2(可以为直径)在第一方向z上均相等,其对应了第二孔段 212的横截面面积。从图上可以看到,h1大于h2,例如h1=4mm, h2=3.6mm,这对应了第一段31的最大横截面面积大于所述第二孔段212 的横截面面积的关系。
141.在第一密封钉30的第二段32与第二孔段212密封配合的同时,通过使第一密封钉30的第一段31的第二倾斜表面311紧密贴合台阶面 213的第一倾斜表面213a,可以实现第一倾斜表面213a所对应区域的辅助密封作用,进一步提高整体的密封效果。
142.这里第一倾斜表面213a所围的空间为回转体形,该回转体形的母线可以为直线、朝远离中轴线方向凸起的凸弧线或朝中轴线方向凹入的凹弧线。而第二倾斜表面311的轮廓与第一倾斜表面213a相适应,以确保紧密贴合。
143.在图4和图5中,所述第一密封钉30还可包括沿所述第一方向z 连接在所述第二段32远离所述第一段31一侧的第三段33,所述第三段 33的最大横截面面积大于所述第二孔段212的横截面面积。由于第三段 33的最大横截面面积大于所述第二孔段212的横截面面积,使得第一密封钉30的第二段32与第二孔段212密封配合时通过第三段33限制第一密封钉30,以使其不会沿第一方向z的反方向从注液孔脱出。这样,在电池使用过程中,电池单体内部产生的气体不会将第一密封钉30顶出注液孔,从而确保注液孔的密封可靠性。
144.在图5中,所述第三段33可具有邻接所述第二段32的鼓形部分 331,所述第三段33的最大横截面面积即为所述鼓形部分331的最大横截面面积。这样可使得第一密封钉30整体呈哑铃形,即中间较细两端较粗的结构。图4中对应于鼓形部分331的横截面的横向尺寸为h3(可以为直径),从图上可以看到,h3大于h2,例如h3=3.7mm,h2=3.6mm,这对应于鼓形部分331的最大横截面面积大于所述第二孔段212的横截面面积。
145.比于其他形状用于限制第一密封钉30脱出的结构,这种鼓形部分331的圆弧形外轮廓有利于制造时脱模,可实现更高的良率,降低生产成本。
146.考虑到鼓形部分331的最大横截面面积大于所述第二孔段212的横截面面积,为了方便在安装第一密封钉时,使其更顺利地通过第二孔段 212,参考图5,在一些实施例中,所述第三段33还包括位于所述鼓形部分331远离所述第二段32的圆锥形部分或圆台形部分332。
147.在图4中,所述圆锥形部分或圆台形部分332的横截面面积沿所述第一方向z渐缩。圆台形部分332最远离第一段31的端面的横向尺寸为 h4(可以为直径)。从图上可以看到,h4小于h3,例如h4=2.4mm, h3=3.7mm,这对应于圆台形部分332的最小横截面面积(即第三段33远离所述第二段32一侧的端面的横截面面积)小于鼓形部分331的最大横截面面积。
148.所述第二孔段212的横截面面积大于所述第三段33远离所述第二段32一侧的端面的横截面面积,可以使第三段更容易地穿过第二孔段,降低安装难度。可选地,所述第二孔段212的横截面面积为所述第三段33远离所述第二段32一侧的端面的横截面面积的1.05~
1.5倍,这样在方便第三段的端面进入第二孔段的同时,通过第三段的侧轮廓与第二孔段的滑动实现安装导向作用。
149.当安装第一密封钉时,第三段33远离所述第二段32一侧的端面由于横截面面积较小,因此能够更容易地进入和通过第二孔段212。而圆锥形部分或圆台形部分332的锥形表面可以实现更顺畅地引导第一密封钉在第一方向z上的运动,从而有效地降低装配难度。
150.在图5中,所述圆锥形部分或圆台形部分332的母线与垂直于所述第一方向z的平面的夹角β可以为35
°
~45
°
,可选地为40
°
。过大的夹角β会影响圆锥形部分或圆台形部分332在第二孔段212的通过,增加装配难度。另外,过大的夹角β还可能造成圆锥形部分或圆台形部分332在第一方向z上过长,过多地占用电池内的空间。过小的夹角β所实现引导的作用比较有限,也会造成装配难度增加。因此通过设置第一密封钉30的第三段33所呈圆锥形或圆台形的母线与垂直于所述第一方向z的平面的合适夹角,可以兼顾装配难度和第三段33在第一方向z上的空间占用。
151.在一些实施例中,所述第一密封钉30的材料包括橡胶,例如氟橡胶或三元乙丙橡胶等耐腐蚀橡胶。利用橡胶的弹性可更方便地实现第一密封钉30相对于注液孔21的安装,并满足密封性的要求。第一密封钉30 相应地可以采用实心的结构,其第二段的截面尺寸可略大于的第二孔段的截面尺寸,例如大于0.1~0.3mm,这样两者之间可通过弹性变形实现过盈配合,提高密封效果。另外橡胶能够耐受相对较高的温度,且具有一定的耐腐蚀性,可满足电池端盖组件13在制造和使用时的需要。
152.在一些实施例中,所述第二密封钉40的材料包括金属。第二密封钉可以为金属钉,例如铜钉、铁钉、铝钉、钢钉或合金钉。采用包括金属的第二密封钉40可实现金属焊接来实现更加可靠的固定连接作用。这种材料可以采用激光焊接工艺来与同为金属的壳体进行焊接,通过焊缝实现第二密封钉的二级密封。
153.如果电解液在注液孔内有残留,那么激光焊接时的热量就会汽化电解液而产生废气。参考图4,在一些实施例中,所述第一密封钉30邻近所述第二密封钉40一侧的端面与所述第二密封钉40之间具有第一间隙 g1。第一间隙g1能够为第一密封钉30提供容纳空间和膨胀变形空间,降低第一密封钉30膨胀对第二密封钉40的影响,从而进一步提高密封可靠性。
154.这里的第一间隙g1可以为第一密封钉30邻近所述第二密封钉 40一侧的端面与所述第二密封钉40的最小间隙,也可以是第一密封钉30 邻近所述第二密封钉40一侧的端面与所述第二密封钉40的平均间隙。在图4中,如果该端面与第二密封钉40的端面平行,则该第一间隙g1既是最小间隙,也是平均间隙。
155.当第一密封钉30的端面与第二密封钉40之间存在间隙时,第二密封钉40焊接时不能直接通过热传导的方式将热量传递给第一密封钉 30,这就降低第一密封钉30受热失效或烧伤的风险,从而提高第一密封钉30的密封可靠性,减少制造过程中的质量问题。另一方面,该间隙还能够提供残留在第一密封钉30和第二密封钉40之间的电解液受热汽化的缓冲空间,降低第二密封钉40焊接过程中汽化的电解液造成焊接爆点的风险,确保焊接质量。
156.可选地,所述第一间隙g1的取值为0.3~0.6mm。适合的第一间隙g1取值可以在降低第一密封钉30受热失效或烧伤的风险的同时,无需采用在第一方向z上尺寸过大的电池端盖20。
157.仍参考图4,在一些实施例中,所述台阶面213与所述第二密封钉40之间具有第二间隙g2。这里的第二间隙g2可以为台阶面213与所述第二密封钉40的最小间隙,也可以是台阶面213与所述第二密封钉40的平均间隙。在图4中,如果台阶面213与第二密封钉40上正对的部分的表面平行,则该第二间隙g2既是最小间隙,也是平均间隙。
158.通过第二间隙g2可提供残留在第一密封钉30和第二密封钉40 之间的电解液受热汽化的缓冲空间,降低第二密封钉40焊接过程中汽化的电解液造成焊接爆点的风险,确保焊接质量。另外,第二间隙g2也可以避免第二密封钉40和第一密封钉30在安装时发生干涉。
159.可选地,所述第二间隙g2的取值为0.1~0.4mm。适合的第二间隙g2取值可以在降低第二密封钉40焊接过程中汽化的电解液造成焊接爆点的风险的同时,无需采用在第一方向z上尺寸过大的电池端盖20。
160.在一些实施例中,第二间隙g2可以小于第一间隙g1,通过更大的第一间隙g1来减少焊接时传递到第一密封钉30的热量,降低其被烧伤的风险,而较小的第二间隙g2可以允许第二密封钉的对应部分设置应力释放结构。
161.第一孔段211可以被设置成等截面孔段。在另一些实施例中,第一孔段211也可以被设置成沿第一方向z渐缩的孔段,例如内锥孔段。参考图5,在一些实施例中,所述第一孔段211的内壁与垂直于所述第一方向z的平面的夹角α满足90
°
≤α≤130
°
。夹角α的取值可以影响第二密封钉 40在第一孔段211内的安装和定位,并且还可以限定注液孔21在端盖20 上的占用尺寸。过大的夹角α会导致在注液孔在端盖上占用过多空间,影响端盖上的其他元件。而过小的夹角α不利于第二密封钉40的安装和定位。
162.在一些实施例中,所述第一孔段211的内壁与垂直于所述第一方向z的平面的夹角α大于90
°
,且小于130
°
。所述第二密封钉40包括板形盖体41,所述板形盖体41的周向轮廓具有与所述第一孔段211的内壁贴合的第三倾斜表面42。第三倾斜表面42与第一孔段211内壁的配合可实现第二密封钉40在第一孔段211内的定位和固定,有利于焊接时的稳定性,从而有效地降低安装难度。
163.可选地,所述夹角α为95
°
~120
°
,可选地为110
°
。通过限定适合的夹角α可以方便第二密封钉40在第一孔段211内的安装和定位,并减少注液孔21在端盖上的空间占用。
164.在图4和图5中,所述第二密封钉40包括板形盖体41,所述板形盖体41与所述第一孔段211在所述板形盖体41和所述第一孔段211的对接部位44焊接,且所述板形盖体41在邻近所述对接部位44的位置具有凹槽43。
165.板形盖体41与第一孔段211在端盖20上的孔边部分基本平齐,以便获得更加规整的端盖表面,使得端盖更加美观。邻近对接位置44的凹槽43能够在焊接时发生形变,作为第二密封钉40上的应力释放结构来释放焊接导致的应力。
166.在图5中,凹槽43所对应的板形盖体41的厚度相比于板形盖体 41的其他部位的厚度差值在-0.2mm~0.2mm之间,这样厚度一致可使得传热更均匀,使第二密封钉不容易因局部过热而融化。
167.对于圆形的板形盖体41和横截面呈圆形的第一孔段211来说,所述板形盖体41和所述第一孔段211的对接部位呈环形。相应地,所述板形盖体41与所述第一孔段211的焊缝呈环形,所述凹槽43位于所述焊缝的内侧且呈环形。环形焊缝可实现更好的密封效果,而邻近环形焊缝的环形凹槽43可以更均匀地释放焊接时产生的应力。
168.图6是根据本公开电池端盖组件的另一些实施例的安装结构的截面示意图。图7是根据本公开电池端盖组件的又一些实施例的分解示意图。图8是图7的截面示意图。参考图6-图8,与前述实施例相比,在一些实施例中,电池端盖组件13还包括:防护罩50。防护罩50覆盖所述第二孔段212远离所述第一孔段211的一端,并具有第一通孔51。第一通孔 51可以为圆孔,也可以为矩形孔或其他形状的通孔。
169.电解液在负压作用下从注液孔21先进入防护罩50,再经防护罩 50上的第一通孔51进入电池单体10内部。防护罩50能够对从注液孔21 注入的电解液进行缓冲,防止电解液快速进入电池单体10内部对电极组件12造成冲击,降低电极组件在注液时发生损伤的风险,提高生产过程的安全性。
170.参考图6,在一些实施例中,所述防护罩50固定连接在所述端盖20远离所述第二第一孔段211一侧的表面上。例如防护罩50粘接在端盖20上。采用这种结构可以较少地占用电池单体的空间,从而允许采用更大尺寸的电极组件来提高电量。
171.参考图7和图8,在一些实施例中,电池端盖组件13还包括:绝缘板52。绝缘板52沿所述第一方向z位于所述端盖20的前侧,且具有与所述第二孔段212至少部分重合的第二通孔53。所述防护罩50与所述绝缘板52固定连接或与一体成型,且位于在所述绝缘板52远离所述第一孔段211一侧的表面上。
172.绝缘板52能够隔离顶盖和电极组件12的极耳,避免极耳直接与端盖20电连接而导致漏电等问题。对于一体成型的防护罩50和绝缘板 52,两者可采用相同的绝缘材质,从而方便成型加工,另外一体成型的结构也能够确保两者的连接强度,避免防护罩50受到电极组件12的碰撞而导致防护罩50与绝缘板52的连接失效。
173.在图6-图8中,防护罩50可包括围边54和底板55,由围边54 和底板55共同围出注液孔21下方的空间(即第二孔段212远离所述第一孔段211一侧的空间)。防护罩50可以与注液孔同轴设置,底板55正对注液孔21的第二孔段212,而围边54与底板55的侧边沿连接。该空间可以容纳第一密封钉30的第三段33的至少部分,这样就通过防护罩50实现了第一密封钉30的第三段33的保护空间,也避免第一密封钉30穿过注液孔21而进入电池单体10的内部。
174.底板55可具有多个第一通孔51,在负压作用下使电解液分散地进入电极组件,从而在降低对电极组件的冲击作用的同时,使电解液更顺畅地进入电极组件12。
175.基于本公开上述电池端盖组件的各个实施例,本公开实施例还提供了电池单体,包括前述的电池端盖组件。采用前述电极组件的电池单体可获得具有更优的安全性能。
176.在本公开的一个方面,提供一种电池,包括前述的电池单体。采用前述电池单体的电池可获得更优的安全性能。
177.在本公开的一个方面,提供一种用电设备,包括前述的电池。采用前述电池的用电设备可获得更优的安全性能。
178.虽然已经参考优选实施例对本公开进行了描述,但在不脱离本公开的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1