电池和用电装置的制作方法

文档序号:35682917发布日期:2023-10-08 22:43阅读:26来源:国知局
电池和用电装置的制作方法

本技术涉及电池,特别是涉及电池和用电装置。


背景技术:

1、随着电池技术的发展,电池应用于越来越多的领域,并在汽车动力领域逐渐替代传统的石化能源。电池可存储有化学能并将化学能可控地转化为电能。在可循环利用的电池中,在放电后可通过充电的方式使活性物质激活而继续使用。

2、由于电池单体组在发生某些异常情况下,如热失控等,会放出气体,目前的一些技术中会通过设置气体传感器来对电池内的气氛进行检测,从而提前对热失控进行侦测。但目前的气体传感器通常成本较高,且检测原理大多不适用于电池等储能系统中的环境,因此气体传感器在电池中的布设数量和布设位置受到这些客观原因的限制,难以对电池内的气体进行较为全面、准确的监控。


技术实现思路

1、鉴于上述问题,本技术提供电池和用电装置,能够对电池内的预设气体进行多点位检测,提升电池气体检测的准确性和多元性。

2、第一方面,本技术提供了一种电池,电池包括壳体、电池单体组和光纤气体检测组件。壳体具有容纳空间;电池单体组包括顶部、周侧和底部,顶部和底部相背设置,周侧连接于顶部和底部之间,电池单体组设置于容纳空间;光纤气体检测组件设置于容纳空间内,光纤气体检测组件包括至少一根光纤,至少一根光纤具有多个气体检测位置,多个气体检测位置间隔设置于容纳空间内且位于电池单体组的外周,多个气体检测位置包括至少一个第一气体检测位置和至少一个第二气体检测位置,至少一个第一气体检测位置对应于顶部和底部中的至少一者设置,至少一个第二气体检测位置对应于周侧设置;气体检测位置用于对容纳空间内的预设气体进行检测;至少四个气体检测位置不同在一个平面。

3、通过上述方式,利用在电池的壳体内的容纳空间内设置光纤气体检测组件,将多个气体检测位置间隔设置在电池单体组的外周不同侧面,从而对容纳空间内多个位置的预设气体进行检测,能够针对电池单体组外周不同侧面附近的预设气体,形成在容纳空间内呈立体分布的气体检测点阵,从而扩大气体检测范围,使得气体检测的结果更加全面、可靠。

4、在一些实施例中,电池单体组包括至少一个电池单体,每个电池单体在对应于顶部的区域设置有供其内部泄压的防爆阀,防爆阀用于在工作时向顶部的上方喷射气体;至少一个第一气体检测位置与顶部相对设置,且位于顶部的上方。

5、通过上述方式,由于防爆阀能够较早地将电池单体内的气体泄出,至少一个第一气体检测位置能够对电池单体上用于喷射气体的防爆阀附近的气体进行检测,从而更快捷有效地对从电池单体内经防爆阀放出的预设气体进行响应,提升气体检测的灵敏度和准确性。

6、在一些实施例中,至少一个第一气体检测位置的数量大于或等于至少一个电池单体的数量。

7、通过上述方式,能够设置较多的第一气体检测位置针对电池单体组顶部的区域对防爆阀进行更全面检测,减少对防爆阀所喷出气体的漏检概率,从而提升气体检测的全面性。

8、在一些实施例中,每个第一气体检测位置与顶部相对设置,且位于一电池单体的防爆阀的上方。

9、通过上述方式,能利用每一个第一气体检测位置准确地对相应的一防爆阀喷出的气体进行检测,提升第一气体检测位置对相应的防爆阀放出的预设气体的响应速度,进而能提升气体检测的灵敏度和准确性。

10、在一些实施例中,至少一个电池单体的数量为多个,至少一个第一气体检测位置的数量为多个,每个第一气体检测位置设置在顶部相对设置,且位于每相邻的两个电池单体的防爆阀的中间区域的上方。

11、通过上述方式,利用一个第一气体检测位置对应检测两个防爆阀喷出的气体进行检测,降低发生异常的电池单体被漏检的概率,从而能在提升气体检测的准确性的同时降低布设第一气体检测位置的成本。

12、在一些实施例中,至少一个电池单体的数量为多个,多个电池单体沿预设排列方向排列设置,至少一个第一气体检测位置的数量为多个,多个第一气体检测位置沿预设排列方向间隔设置。

13、通过上述方式,使多个第一气体检测位置能与多个电池单体平行排列,从而能够尽量满足多个电池单体的浓度检测,提升气体检测的准确性。

14、在一些实施例中,至少一个第一气体检测位置的数量为多个,至少一个第二气体检测位置的数量为多个;每相邻的两个第一气体检测位置之间的光纤区段的延伸长度小于每相邻的两个第二气体检测位置之间的光纤区段的延伸长度。

15、通过上述方式,使得更靠近顶部的第一气体检测位置相比第二气体检测位置更密集,有效协调对电池单体放出的预设气体灵敏度不同的第一气体检测位置和第二气体检测位置的数量,能够在提升气体检测灵敏度的同时节省设置第二气体检测位置的成本。

16、在一些实施例中,至少一个第一气体检测位置的数量与顶部的面积的比值大于至少一个第二气体检测位置的数量与周侧的面积的比值。

17、通过上述方式,使得更靠近顶部的第一气体检测位置相比第二气体检测位置更密集,有效协调对电池单体放出的预设气体灵敏度不同的第一气体检测位置和第二气体检测位置的数量,能够在提升气体检测灵敏度的同时节省设置第二气体检测位置的成本。

18、在一些实施例中,多个气体检测位置还包括设置于底部的至少一个第三气体检测位置;至少一个第三气体检测位置的数量与底部的面积的比值小于至少一个第二气体检测位置的数量与周侧的面积的比值。

19、通过上述方式,能利用第三气体检测位置对电池单体组底部附近的气氛进行检测,降低气体检测的漏检率和误检率,进而提升气体检测的全面性和准确性。

20、在一些实施例中,至少一个第二气体检测位置的数量为多个且划分为至少两组,每组第二气体检测位置沿电池单体组的周向间隔排列;至少两组第二气体检测位置沿顶部到底部的方向间隔排列;在每相邻的两组第二气体检测位置中,靠近顶部的一组第二气体检测位置的数量大于靠近底部的一组的第二气体检测位置的数量。

21、通过上述方式,能在周侧以不同的方向布设多组第二气体检测位置,增加气体检测位置的数量,降低气体检测的漏检率和误检率,进而提升气体检测的全面性和准确性。

22、在一些实施例中,在靠近顶部的一组第二气体检测位置中,每相邻的两个第二气体检测位置之间的光纤区段的延伸长度为第一延伸长度;在靠近底部的一组第二气体检测位置中,每相邻的两个第二气体检测位置之间的光纤区段的延伸长度为第二延伸长度;第一延伸长度小于第二延伸长度。

23、通过上述方式,使靠近顶部的第二气体检测位置相较于靠近底部的第二气体检测位置更加密集,能有效协调因设置位置不同导致灵敏度不同的第二气体检测位置的数量,从而在提升气体检测灵敏度的同时控制布设第二气体检测位置的成本。

24、在一些实施例中,电池单体具有装配连接位置,多个气体检测位置包括至少一个第四气体检测位置,至少一个第四气体检测位置对应于装配连接位置设置。

25、通过上述方式,能对应电池单体易于泄露气体的装配连接位置设有第四气体检测位置,从而针对从电池单体中逸出的气体快速响应,进而提升气体检测的灵敏度。

26、在一些实施例中,装配连接位置包括焊缝或者装配缝隙。

27、通过上述方式,能针对通过焊缝或装配缝隙逸出的气体快速响应,提升气体检测的灵敏度。

28、在一些实施例中,电池单体包括具有开口端的外壳、端板和电极组件,电极组件经开口端设置于外壳的内部,端板设置于开口端并且与外壳装配连接,端板和外壳之间具有装配连接位置。

29、通过上述方式,能快速响应通过电池单体的端板和外壳之间的装配连接位置泄露的气体。

30、在一些实施例中,电池单体开设有注液孔,注液孔用于向电池单体的内部注入电解液;多个气体检测位置包括至少一个第五气体检测位置;至少一个第五气体检测位置对应于注液孔设置。

31、通过上述方式,能够快速响应通过注液孔泄露的气体,提升气体检测的灵敏度。

32、在一些实施例中,周侧包括两个第一侧面和两个第二侧面,两个第一侧面相对设置,两个第二侧面相对设置且分别与两个第一侧面连接;第一侧面的面积大于第二侧面的面积;至少部分第二气体检测位置以阵列方式设置于两个第一侧面中的至少一者;和/或,至少部分第二气体检测位置以阵列方式设置于两个第二侧面中的至少一者。

33、通过上述方式,能够针对电池单体周侧的不同侧面设置第二气体检测位置,从而快速响应不同侧面附近的气体,降低气体检测的漏检率和误检率。

34、在一些实施例中,至少一根光纤绕设于电池单体组的外周,光纤的外周包覆有弯折缓冲层。

35、通过上述方式,能利用弯折缓冲层保护绕设于电池单体组外周的光纤,提升光纤气体检测组件的强度,降低光纤因震动、碰撞发生弯折甚至断裂的概率,进而以提升气体检测的稳定性。

36、在一些实施例中,弯折缓冲层包括聚酰亚胺膜;和/或,至少一根光纤通过固定胶固定于电池单体组的外周上或者壳体靠近容纳空间的表面上。

37、通过上述方式,能够利用聚酰亚胺膜提升光纤气体检测组件强度,和/或利用成本较低的固定胶实现较好的光纤固定效果。

38、在一些实施例中,光纤上在彼此间隔的多个位置上涂设有钯或钯合金敏感材料,以在光纤上形成对氢气的浓度进行检测的多个气体检测位置。

39、通过上述方式,能利用设置在光纤上的钯或钯合金敏感材料形成多个特异性的气体检测位置,从而针对对气体检测位置附近的氢气浓度进行检测,提升气体检测的灵敏度和准确性。

40、在一些实施例中,电池包括光源和解调模块,光源和解调模块设置于壳体上,光源耦接至少一根光纤,用于向至少一根光纤输入检测光线;解调模块耦接至少一根光纤,用于接收至少一根光纤输出的反馈光线,并对反馈光线进行解调,以得到对应于每个气体检测位置的浓度测量信号。

41、通过上述方式,能利用光源向光纤通入光信号,利用解调模块对输出的光信号进行解调,进而能有效地得出对应各气体检测位置的气体的浓度测量信号。

42、在一些实施例中,电池还包括处理器,处理器与解调模块耦接,用于接收浓度测量信号,并根据浓度测量信号得到每个气体检测位置所测量得出的气体浓度。

43、通过上述方式,处理器能够有效地利用解调模块得到的浓度测量信号进行计算,进而得到各气体检测位置测得的气体浓度。

44、在一些实施例中,处理器用于根据每个气体检测位置在容纳空间中的位置和相应的气体浓度生成电池的气体浓度分布图。

45、通过上述方式,处理器生成的气体浓度分布图能够直观地呈现电池的气体浓度分布。

46、在一些实施例中,处理器用于根据多个气体检测位置所测量的气体浓度判断电池是否发生异常,若发生异常,则执行相应的预警措施。

47、通过上述方式,能够根据测量出的气体浓度对电池的状况进行判断,并在发生异常时进行预警,从而提升电池的稳定性。

48、在一些实施例中,光源和解调模块设置于同一电路板上,电路板设置于壳体,且位于壳体外部;光纤气体检测组件还包括传输接头,传输接头与至少一个根光纤耦接;传输接头穿设于壳体;光源和解调模块耦接传输接头,光源通过传输接头向至少一根光纤输入检测光线,解调模块通过传输接头接收反馈光线。

49、通过上述方式,能够利用设置在同一电路板上的光源和解调模块分别对光纤输入光和接收光,从而使光纤上的气体检测位置能够对气体进行检测。

50、第二方面,本技术提供了一种用电装置,包括如上述任一项所述的电池。

51、在一些实施例中,用电装置包括光源和解调模块,光源耦接至少一根光纤,用于向至少一根光纤输入检测光线;解调模块耦接至少一根光纤,用于接收至少一根光纤输出的反馈光线,并对反馈光线进行解调,以得到对应于每个气体检测位置的浓度测量信号。

52、通过上述方式,能有效地得出对应各气体检测位置的气体的浓度测量信号,进而便于得到各气体检测位置的气体浓度。

53、在一些实施例中,用电装置还包括处理器,处理器与解调模块耦接,用于接收浓度测量信号,并根据浓度测量信号得到每个气体检测位置所测量的气体浓度。

54、通过上述方式,能够有效地利用浓度测量信号得到各气体检测位置测得的气体浓度。

55、在一些实施例中,处理器用于根据每个气体检测位置在电池上的位置和相应的气体浓度生成电池的气体浓度分布图。

56、通过上述方式,能够直观地呈现电池的气体浓度分布。

57、在一些实施例中,处理器用于根据多个气体检测位置所测量的气体浓度判断电池是否发生异常,若发生异常,则执行相应的预警措施。

58、通过上述方式,能够根据气体浓度对电池的状况进行判断,并在发生异常时进行预警,从而提升电池的稳定性。

59、上述说明仅是本技术技术方案的概述,为了能够更清楚了解本技术的技术手段,而可依照说明书的内容予以实施,并且为了让本技术的上述和其它目的、特征和优点能够更明显易懂,以下特举本技术的具体实施方式。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1