无刷电动机的启动方法及驱动装置以及冰箱的制作方法

文档序号:7285847阅读:148来源:国知局
专利名称:无刷电动机的启动方法及驱动装置以及冰箱的制作方法
技术领域
本发明涉及包括具有线圈的定子和具有永久磁铁的转子的无刷电动机的启动方法及驱动装置、以及将无刷电动机作为压缩机的驱动单元使用的冰箱。
背景技术
以往,在冰箱、空调设备等冷冻循环上,采用往复式压缩机。而现在用直流无刷电动机驱动这种压缩机已成为主流。
这种无刷电动机由缠绕多相线圈的定子,以及具有永久磁铁的多极转子构成。压缩机内部因为高温、高压而难以安装位置传感器。因此,采用无传感器驱动装置,该装置根据线圈的电流或电压,检测转子的旋转位置,根据该检测出的位置,进行旋转控制。
这种无传感器驱动装置,在无刷电动机停止状态下,无法检测转子位置。因而,无传感器驱动装置在启动无刷电动机时不用位置信息,而根据预设的通电模式使电流流过线圈,使转子加速至规定转速再进行强制换流。在这种情况下,为防止转子急剧的旋转移动,例如如日本国公开专利公报昭和61年第1290号所公开的,在利用直流励磁使转子旋转移动到初始位置后,进行上述强制换流。
具体为,无传感器驱动装置使直流励磁电流慢慢上升,使转子旋转移动到初始位置。然后,在上升至预定的电流值时,看作转子旋转移动至初始位置,保持该电流值不变转移至上述强制换流。
根据该启动方法因能减少电流值的急剧变化,所以也能降低转子的急剧旋转移动,能容易地防止启动时失步。
然而,在利用直流励磁使正停止的转子旋转移动到初始位置时,有时由于所产生的磁场的方向和磁极之间的位置关系,无法使其旋转移动到初始位置,或就在从直流励磁转到强制换流前不久,转子急剧旋转移动而失步。以下,参照图14至图16对这一现象进行说明。
这些图模式地表示往复式压缩机内活塞位置、4极无刷电动机转子位置之间的关系。在偏离转轴的位置处曲柄销202固定在转子201。该曲柄销通过连杆203与气缸室204内的活塞205连接。
上述转子201的初始位置X与转子201的S极对应安装于转子201上的曲柄销202为位于图中X1或X2位置的状态。当对定子线圈直流励磁沿X1方向及X2方向产生N极磁场时,转子201转向位置X1、X2的某个方向。图14中沿CW方向旋转,曲柄销202的位置(以后称为‘转子位置’)向初始位置X1移动。
与此相反,如图15所示,有时与S极对应的曲柄销202在停在位置X1和X2的中间点Z的情况下,即便进行直流励磁使线圈电流增加至规定的电流值,由于磁力平衡转子201不能旋转移动。
即使在这种情况下,无传感器驱动装置也在使直流励磁电流增加至规定的电流值时,看成转子201停止在初始位置X1或X2,转到强制换流。因此,利用强制换流使转子201例如转向CW方向时,就在移向强制换流后不久,N极的磁场从X1-X2方向(用虚线表示)向X3-X4方向(用双点划线表示)移动,正停在中间点Z的转子201一时被拉近到位置X2(X4)的方向(CCW方向)。
其结果,就在强制换流后不久磁场的旋转方向和转子201的旋转方向相反,从而会失步。另外,即使不失步,由于转子201的速度急剧变化产生振动,有时因保持转子201的图中未示出的机框和压缩机的密闭外壳相撞发出异常的声音。
再有,如图16所示,也有转子201的停止位置为中间点Z附近位置R的情况。在这种情况下,开始直流励磁后不久由于磁力平衡转子201停止。但当使电流一直升到1.7A及其以上时,作用于位置X1的磁场(N极)和转子201的S极之间的磁力和作用于位置X2的磁场(N极)和转子201的S极之间的磁力之差变大。因此,转子201转向位置X1或X2中近的方向(图16中为CW方向)。由于该旋转开始时的电流值已经变大,所以作用于转子201的磁极上的磁力也大,转子201急剧旋转移动。其结果,因转子201速度急剧变化而产生振动有时保持转子201的机框和压缩机的密闭外壳相撞而发出异常的声音。
本发明为解决上述问题而提出,其目的在于提供一种能可靠地启动的无刷电动机的启动方法及驱动装置,以及提供一种冰箱,在冰箱中本启动方法运用于驱动压缩机的无刷电动机。

发明内容
为了解决上述问题,本发明的无刷电动机的启动方法,是一种包括具有线圈的定子、以及具有永久磁铁的转子的无刷电动机的启动方法,其中,具有以下步骤通过对所述线圈进行直流励磁,使所述转子旋转移动到预定的初始位置的初始位置移动步骤;通过对所述线圈依照预定的通电模式进行通电,使所述转子从所述初始位置旋转的强制换流步骤;以及根据利用所述线圈的电流或电压推定的所述转子的旋转位置,转移到旋转控制的转移步骤,所述初始位置移动步骤包括以下步骤使所述直流励磁的电流上升至第1电流值,以使所述转子旋转移动到偏离所述初始位置的预备励磁位置的第1步骤;以及使所述直流励磁的电流上升至比第1电流值大的第2电流值,以使所述转子从所述预备励磁位置旋转移动到所述初始位置的第2步骤。
另外,本发明的冰箱,包括无刷电动机;以及由无刷电动机驱动的往复式压缩机的冰箱,其中,具有控制单元,该控制单元在所述无刷电动机启动时,进行使所述线圈的电流上升至第1电流值的直流励磁控制,以使所述转子旋转移动到偏离预定初始位置的预备励磁位置,此后,进行使所述线圈的电流上升至比第1电流值大的第2电流值的直流励磁控制,以使所述转子从所述预备励磁位置旋转移动到所述初始位置,此后,进行强制换流控制,以使所述转子从所述初始位置开始旋转。
根据本发明,则由于能在无刷电动机启动时使转子可靠地旋转移动到初始位置的状态下转移至强制换流,因此能防止振动或失步,可靠地进行启动。


图1为表示实施方式1的电动机启动时间流程图。
图2为驱动装置的构成方框图。
图3为压缩机的纵剖视图。
图4为模式地表示转子的磁极和定子线圈间位置关系用的图。
图5为冰箱的纵剖视图。
图6为表示三相电流和二相电流间关系的矢量图。
图7为αβ轴的电流和dq轴电流间关系用矢量图。
图8为表示转子停止位置和电流值间关系用的图。
图9为表示4极电动机的预备励磁位置的范围用的说明图。
图10为表示转子正停在初始位置中间点的状态用的说明图。
图11为表示使转子旋转移动到预备励磁位置的状态用的说明图。
图12为表示使转子旋转移动到初始位置的状态用的说明图。
图13为表示实施方式2的电动机启动时间流程图。
图14为表示使转子旋转移动到初始位置的状态用的说明图。
图15为表示转子正停在初始位置中间点的状态用的说明图。
图16为表示转子正停在初始位置附近的状态用的说明图。
具体实施例方式
实施方式1以下,参照附图1至12对本发明的实施方式1进行说明。
图5为冰箱的纵剖视图。冰箱本体1的构成为在绝热箱体2内从上层开始依次有冷藏室3、蔬菜室4、切换室5、以及冷冻室6。在冰箱本体1正面敞开部上从上层开始,依次设各贮藏室3~6的门7~10。还有,虽然图中未示出,但还在切换室5中一并设置制冰室。
在冷藏室3的背面及冷冻室6的背面,分别设置构成冷冻循环的冷藏室用冷却器12(以后简称为R冷却器)、冷冻室用冷却器14(以后称F冷却器),在其各自上部设置冷藏室用风扇11、冷冻室用风扇13。当风扇11、13运转时,向各室供给由R冷却器12、F冷却器14生成的冷气,根据各室的设定温度,进行控制。
在冰箱本体1的背面底部,设置机械室15。其内部设置往复式的压缩机16、控制驱动压缩机用无刷电动机17(以后简称为电动机)的驱动装置18等。
图3为往复式压缩机16的纵剖视图。以下,说明该压缩机16的结构。
机框20通过弹簧21弹性地支持在压缩机16的密闭机壳19内上下方向实质上中间部处,压缩机机构部22设置在机框20上,电动机17设置在机框20的下方。另外,主轴支承用孔23设置在机框20的中心部,主轴、即转轴24嵌入其中,并能自由转动。
在该转轴24的上端部,一体地形成凸缘部25。曲柄销26以相对转轴24的中心轴线偏心的状态固定在该凸缘部25的上部。当转轴24旋转时,凸缘部25以与机框20的上表面滑动的状态旋转,曲柄销26相对转轴24就偏心旋转。
气缸27设置在压缩机机构部22,能往复运动的活塞29安装在气缸室28内。活塞29和上述曲柄销26靠连杆30连接。也就是活塞29通过球关节机构部31和连杆30的一端连接,连杆30的另一端30a相对曲柄销26能自由旋转地连接。利用这一构成,当曲柄销26偏心旋转时,连杆30以球关节机构部31为支点作摇摆运动,活塞29在气缸室28内作往复运动。
另外,在气缸27的里端部(图3的左端)设置阀门机构33。该阀门机构33通过图中未示出的吸入室吸入制冷剂气体,通过图中未示出的排出室向冷冻循环内排出在气缸室28经过压缩的高压气体。
电动机17由嵌安装在从机框20向下凸出的转轴24上的转子34和定子35构成。永久磁铁32嵌入转子34。在转子34的外圆周面和定子35的内圆周面之间设狭小的间隙。图4为模式地表示电动机17的转子34磁极和定子35线圈49间位置关系用的图。电动机17是无刷电动机,本实施方式中为三相6槽4极的内转型电动机。
以下,说明压缩机16的动作。
通过对电动机17的通电转轴24旋转,曲柄销26和转轴24一起偏心旋转。该偏心旋转通过连杆30和球关节机构部24变换成活塞29在气缸室28内的往复运动。
在密闭机壳19内,引入在R冷却器12或F冷却器蒸发的制冷剂气体。该制冷剂气体当活塞29向下止点移动时(吸入步骤),通过阀门机构33吸入气缸室28。
相反,当活塞29向上止点移动时(压缩步骤),制冷剂气体被压缩,通过阀门机构33从排出管引入冷冻循环。就这样,利用电动机17的旋转反复执行压缩步骤和吸入步骤,使冷冻循环内制冷剂循环,冷却各贮藏室3~6。
以下,说明旋转控制电动机17的驱动装置18的构成。
图2为驱动装置18的构成方框图。驱动装置18是根据电动机17上流过的电流检测出旋转位置的无传感器驱动装置。驱动装置18具有逆变器电路36、整流电路37、PWM形成部38、A/D变换部39、dq变换部40、速度检测部41、速度指令输出部42、速度PI控制部43、d轴电流PI控制部44、q轴电流PI控制部45、三相变换部46及初始模式输出部47。
驱动装置18中,除逆变器电路36及整流电路37以外的部分、及后面将阐述的主控制部48均由微型计算机构成。另外,d轴电流PI控制部44、q轴电流PI控制部45、三相变换部46及PWM形成部38构成电流控制部55(电流控制单元)。
逆变器电路36在使电动机17旋转的情况下,在电动机17的三相(u相、v相、w相)的定子线圈49u、49v、49w上流过三相的驱动电流。该逆变器电路36具有将作为功率半导体元件的晶体管Tr1~Tr6(本实施方式中为IGBT)在直流电源线50p和50n之间作桥式连接的构成。在下支路一侧的晶体管Tr4、Tr5、Tr6和直流电源线50n之间,分别连接检测电流用的分流电阻R1、R2、R3(电流检测器)。
整流电路37将市电(例如AC100V)的交流电源51的交流电压整流后,供给逆变器电路36。
PWM形成部38根据后述的三相电压Vu、Vv、Vw进行脉冲调宽,向晶体管Tr1~Tr6各栅极输出PWM信号(换流信号)。
A/D变换部39输入分流电阻R1、R2、R3的各电压,将其从模拟量变换成数字量,根据其A/D变换的数值检测出相电流Iu、Iv、Iw。
dq变换部40将A/D变换部39输出的相电流Iu、Iv、Iw变换成与磁通对应的电流分量、即d轴(direct axis)的电流Id,和与转矩对应的电流分量、即q轴(quadrature axis)的电流Iq。在这种情况下,首先进行式(1)示出的三相—二相变换,将三相电流Iu、Iv、Iw变换成二相电流Id、Iq。图6为表示三相电流和二相电流间的关系的矢量图。
式(1)IαIβ=231-1/2-1/203/2-3/2IuIvIw---(1)]]>继续进行式(2)示出的dq座标变换,将二相的电流Iα、Iβ变换成d轴电流Id和q轴电流Iq。图7为表示二相电流Iα、Iβ和d轴电流Id和q轴电流Iq间关系的矢量图。还有,式(1)及式(2)中示出的运算可以汇总成一次进行。
式(2)IdIq=cosθsinθ-sinθcosθIαIβ---(2)]]>速度检测部41根据检测出的d轴电流Id和q轴电流Iq,检测电动机17转子34的旋转角θ。然后通过对该旋转角θ微分求转速ω。
主控制部48进行各贮藏室3~6的温度控制等冰箱整体的控制。主控制部48根据dq变换部40送来的q轴电流Iq,输出速度指令信号S。
速度指令输出部42根据主控制部48输出的速度指令信号S和速度检测部41输出的转速ω,生成输出基准转速ωref。基准转速ωref对速度指令信号S进行刻度转换及限制处理。减法器52从基准转速ωref减去当前转速ω,输出两者之差(转速偏差)。
速度PI控制部43输入上述转速偏差进行PI运算,输出基准d轴电流Idref和基准q轴电流Iqref。减法器53从基准d轴电流Idref减去检测出的d轴电流Id输出d轴电流偏差。减法器53从基准q轴电流Iqref减去检测出的q轴电流Iq输出q轴电流偏差。
d轴电流PI控制部44输入d轴电流偏差进行PI运算,输出基准d轴电压Vd。同样,q轴电流PI控制部45输入q轴电流偏差进行PI运算,输出基准q轴电压Vq。
三相变换部46将基准d轴电压Vd和基准q轴电压Vq变换成三相电压Vu、Vv、Vw,将其向PWM形成部38输出。在这种情况下,首先进行式(3)示出的dq座标变换,将基准d轴电压Vd和基准q轴电压Vq变换成二相电压Vα、Vβ。
式(3)VαVβ=cosθ-sinθsinθcosθVdVq---(3)]]>继续进行式(4)示出的三相-二相变换,将二相电压Vα、Vβ变换成三相电压Vu、Vv、Vw。
式(4)
VuVvVw=2310-1/23/2-1/2-3/2VαVβ---(4)]]>在初始模式输出部47(电流指令单元)上设定启动压缩机16(电动机17)时用的启动模式。驱动装置18在电动机17启动时,按照该预设的启动模式开始运转。这里所谓启动模式是指在以后将阐述的初始位置移动步骤所用的旋转初始位置电流Idinit1、Iqinit1(直流励磁指令电流)和强制换流步骤所用的启动d轴电流Idinit2、启动q轴电流Iqinit2(强制换流指令电流)的大小、持续时间、变化率等与启动有关的数据。
以下,参照图1及图8至图12说明处于停止状态的压缩机16开始运转时利用驱动装置18控制电动机17的启动。图10至图12模式地表示压缩机16气缸室28中活塞29的位置,与电动机17的转子34的位置间的关系。
为了使停止状态的电动机17启动转移至正常的速度控制状态,依照初始模式输出部47设定的启动模式,依次执行初始位置移动步骤、强制换流步骤、以及速度控制转移步骤。
初始位置移动步骤为使停于任意位置的转子34旋转移动到初始位置X(参照图10至图12)的步骤。强制换流步骤为不用旋转位置信息利用强制换流使电动机17旋转,加速至能进行位置检测的转速的步骤。速度控制转移步骤为根据位置信号从强制换流控制切换到换流控制的步骤。
初始位置移动步骤将在以后阐述。首先,说明强制换流步骤。
图1为电动机17的启动时间图。驱动装置18在初始位置移动步骤的结束时刻tc以后使电动机17按预定加速度例如150Hz/s2加速。具体为,进行电流控制使一定的启动d轴电流Idinit2流过线圈49,同时看作转子34正常地旋转向逆变器电路36输出强制换流用的PWM信号。之所以进行强制换流是由于启动时在低速区无法进行位置检测。此时,不作速度控制即控制q轴电流Iq,启动q轴电流Iqinit2为零。
驱动装置18继续作强制换流直至转子34到达根据上述启动模式预定的切换速度例如10Hz/s(=600rpm)时刻td。然后,在时刻td从强制换流步骤切换到速度控制转移步骤。
驱动装置18在转至速度控制转移步骤的时刻td以后,根据检测出的d轴电流Id和q轴电流Iq检测转速ω和转子34的旋转位置θ,向逆变器电路36输出根据该转速ω和基准转速ωref生成的PWM信号。逆变器电路36根据该PWM信号使晶体管Tr1~Tr6开关,向电动机17的线圈49输出三相电压。通过这样,进行速度控制(反馈控制)使电动机17以与基准转速ωref一致的转速ω旋转。
以下,说明初始位置移动步骤。
初始位置移动步骤具有第1步骤及第2步骤。主控制部48在时刻ta当对初始模式输出部47输出压缩机16的驱动指令时,初始模式输出部47对速度PI控制部43每隔规定时间例如3秒钟输出旋转初始位置电流Idinit1、Iqinit2(第1步骤)。该电流是用于使转子34旋转移动到预备励磁位置Y(图11示出的Y1或Y2)的直流励磁电流。旋转初始位置电流Idinit1是从零开始慢慢地增加至第1电流值I1例如1A的电流。旋转初始位置电流Iqinit1设定为零。
初始模式输出部47在时刻tb当旋转初始位置电流Idinit1到达第1电流值I1时,使直流励磁电流暂时为零。此后,再次对速度PI控制部43每隔规定时间例如3秒钟输出旋转初始位置电流Idinit1、Iqinit1(第2步骤)。该电流为使转子34旋转移动到初始位置X用的直流励磁电流。旋转初始位置电流Idinit1是从零开始慢慢地增加直至第2电流值I2例如2A的电流。旋转初始位置电流Iqinit1设定为零。第2电流值I2设定得比上述第1电流值I1大。而在时刻tc当旋转初始位置电流Idinit1到达第2电流值I2时,转至上述强制换流步骤。
这里,对设置第1步骤的理由进行说明。
本申请的发明者相对初始位置适当改变转子34的停止位置,测量为了利用直流励磁使转子34从各个停止位置旋转移动到初始位置要测量所需的电流值。另外,还测量从各停止位置旋转移动到初始位置X时,由于转子34的急剧变化,机框20与密闭机壳19碰撞产生异常声音的电流值。这里,所谓转子34的停止位置例如是永久磁铁32的S极位置,所谓初始位置X(X1、X2)例如是由直流励磁产生的磁场的N极位置。
图8表示这一实验结果,实线表示停止位置和旋转移动所需的电流值间的关系,虚线表示停止位置和产生异常声音的电流值间的关系。横轴是偏离初始位置X的角度(机械角度),纵轴为电流值。从图8可知,转子34的停止位置越靠近初始位置X,越是能以更小的电流旋转移动。另外,转子34的停止位置越靠近初始位置X,产生异常声音的电流值越大。
但是,转子34的停止位置如图10所示当为初始位置X1、X2的中间点Z即90度附近时,由于直流励磁产生的磁场和转子34的磁极间作用的磁力平衡。为了脱离这一平衡状态使转子34旋转移动需要更大的励磁电流。另外,由于旋转到初始位置X的旋转距离长,所以利用直流励磁加速转子34容易产生急剧的转速变化,产生异常声音的电流值降低。因此,在中间点Z附近产生异常声音的电流值比旋转所需的电流值低。
在图8示出的特性上,当想防止失步或发出异常声音时,虽要用1.7A及其以下的电流值进行直流励磁,但以此无法使转子34旋转移动。另外若让1.7A及其以上的电流值流过,虽然能使转子34旋转移动,但会如上所述地产生异常声音、或失步。
图9表示对于4极电动机17的初始位置X(X1、X2)、预备励磁位置Y(Y1、Y2)、及初始位置不可旋转区域Z1-Z2(以后叙述)间的关系。图中表示的角度是机械角度。当转子34的停止位置为以90度(中间点Z)为中心前后5度的范围(以X1为基准沿CW方向或CCW方向从85度至95度的范围),则不会发生上述问题。再考虑到误差等因素,将会产生异常声音或失步的范围(以后称该范围为初始位置不可旋转区域Z1-Z2)设在以90度(中间点Z)为中心前后10度的范围(以X1为基准从80度到100度的范围),这样设定是适当的。
因此,为了防止失步或产生异常声音,利用直流励磁使转子34可靠地旋转移动到初始位置X,作为准备步骤,设置使转子34旋转移动到预备励磁位置Y(Y1或Y2)的第1步骤。通过这样,启动时能防止转子34持续停止在初始位置不可旋转区域Z1-Z2。
预备励磁位置Y的设定范围需要设定为在直流励磁的电流到达比第2电流值I2小的第1电流值I1以前,使转子34旋转移动能脱离初始位置不可旋转区域Z1-Z2。当将过分靠近初始位置X的0度~20度的范围作为预备励磁位置Y时,产生停在初始位置不可旋转区域Z1-Z2的转子34在第1步骤无法旋转移动的情况。另一方面,当将过分靠近初始位置X的中间点Z的80度~100度的范围作为预备励磁位置Y时,在第1步骤就会使转子34停于初始位置不可旋转区域Z1-Z2。因而,以初始位置X(X1、X2)为基准沿CW方向或CCW方向预备励磁位置Y设定在20度~80度范围内。还有,考虑到误差等因素,最好设在30度~70度范围内。
具体如图9所示,预备励磁位置Y(Y1、Y2)设置在离开初始位置X例如45度的位置,进行直流励磁使转子34移到预备励磁位置Y。通过这样,假设即便转子34停于初始位置不可旋转区域Z1-Z2,利用第1步骤依旧能脱离初始位置不可旋转区域旋转移动到预备励磁位置Y。而继续利用第2步骤又能从预备励磁位置Y可靠地旋转移动到初始位置X。
另外,在转子34停于预备励磁位置Y1、Y2的中间点O或其附近O1~O2时,在第1步骤的直流励磁下,和第2步骤一样当上升至第2电流值I2时,即便是该第1步骤也会产生异常声音或失步。而,第1步骤中只增加到比第2步骤所用的第2电流值I2小的第1电流值I1。通过这样,能防止转子34急剧地旋转移动,能解决上述问题。
在第1步骤,因只使直流励磁电流上升到第1电流值I1,所以无法旋转移动的区域O1~O2扩大。但是,假设即使转子34正停在该区域,则因该区域是初始位置不可旋转区域Z1-Z2之外,所以在第2步骤能使转子34可靠地旋转移动到初始位置X。
如以上所述,本实施方式中,由第1步骤和第2步骤构成启动时的初始位置移动步骤。在第1步骤进行直流励磁直至第1电流值I1,使转子34旋转移动到预备励磁位置Y,此后,在第2步骤,进行直流励磁直至比第1电流值I1大的第电流值I2,以使转子34转向初始位置X。通过这样,在第2步骤能使转子34可靠地旋转移动到初始位置X,在初始位置移动步骤以后继续执行强制换流步骤能防止失步可靠启动。
另外,通过将上述启动方法应用于启动冰箱压缩机16的电动机17上,能防止转子34速度急剧变化。其结果,不会产生异常声音能可靠地启动压缩机16。
实施方式2以下,参照附图13对本发明的实施方式2进行说明。
在实施方式1中,因在第1步骤只让电流上升到比第2电流值I2小的第1电流值I1,所以当转子34停于初始位置X的中间点Z及其附近Z1~Z2时有时便难以旋转移动。在本实施方式中,为了在第1步骤使转子34可靠移动,设计成在直流励磁电流上升到第1电流值I1后,只在规定时间继续以该第1电流值I2进行通电。
具体如图13所示,驱动装置从时刻te开始使电流值慢慢上升使转子34旋转移动到预备励磁位置(电流上升步骤)。然后,在时刻tf当直流励磁电流到达第1电流值I1时,在规定时间这里是两秒钟,第1电流值I1保持不变继续进行直流励磁(电流保持步骤)。然后在经过规定时间后的时刻th电流值回到零,再转移至第2步骤。
采用这一构成,则即使转子34停于难以旋转的场所即初始位置不可旋转区域Z1-Z2,在第1步骤能可靠地旋转移动到预备励磁位置,在此后的第2步骤,经强制换流步骤能可靠地使电动机17启动。
还有,如图13的虚线所示,从时刻tf和时刻th之间的时刻tg开始,以后可以以比第1电流值I1小的第3电流值I3直流励磁。通过这样,能防止在转到第2步骤之前不久的时刻th转子34旋转。
其它实施方式还有,本发明并不限于以上所述及在附图中示出的各实施方式,例如能作以下的变形或扩展。
各实施方式中以4极的电动机17为例进行说明。但由于磁力平衡转子34不能旋转的状况是2极电动机、6极电动机等其它极数的电动机也会产生的问题。本发明对于这些电动机也能同样地适用。但是,因上述或图中示出的角度是机械角度,所以其它极数的电动机其数值会不同。例如2极电动机的情况下,预备励磁位置Y以初始位置X为基准沿CW方向或CCW方向设定在40度~160度(机械角度及电气角度)的角度范围内,考虑到误差等因素,最好设定在60度~140度范围内。
初始位置移动步骤中直流励磁电流的上升率可以不是一定。可以用线圈49的电压推定转子34的旋转位置。
在各实施方式中,虽对冰箱用的无刷电动机进行了说明,但本发明不限于此,也适于用作各种设备所用的无刷电动机的启动方法。另外,虽以矢量控制为例进行说明,但通常的逆变器控制也能取得同样的效果。再有,在不改变本发明的精神的范围内可以适当改变转子的磁极、电流值、直流励磁位置。
工业上的实用性如上所述,本发明的无刷电动机的启动方法,不仅可用于冰箱所用的无刷电动机的启动,而且还可用于其它各种设备所用的无刷电动机的启动。
权利要求
1一种无刷电动机的启动方法,该无刷电动机(17)包括具有线圈(49)的定子(35)、以及具有永久磁铁(32)的转子(34),其特征在于,具有以下步骤通过对所述线圈(49)进行直流励磁,使所述转子(34)旋转移动到预定的初始位置的初始位置移动步骤;通过对所述线圈(49)依照预定的通电模式进行通电,使所述转子(34)从所述初始位置开始旋转的强制换流步骤;以及根据利用所述线圈(49)的电流或电压推定的所述转子(34)的旋转位置,转移到旋转控制的转移步骤,所述初始位置移动步骤包括以下步骤使所述直流励磁的电流上升至第1电流值,以使所述转子(34)旋转移动到偏离所述初始位置的预备励磁位置的第1步骤;以及使所述直流励磁的电流上升至比第1电流值大的第2电流值,以使所述转子(34)从所述预备励磁位置旋转移动到所述初始位置的第2步骤。
2.如权利要求1所述的无刷电动机的启动方法,其特征在于,所述无刷电动机(17)为4极时,所述预备励磁位置设定在以所述初始位置为基准20度~80度(机械角度)的角度范围。
3.如权利要求1所述的无刷电动机的启动方法,其特征在于,所述第1步骤具有以下步骤使所述直流励磁电流上升到所述第1电流值的电流上升步骤;以及在此后的规定时间,所述线圈(49)上流过小于等于所述第1电流值的直流励磁电流的电流保持步骤。
4.一种无刷电动机的驱动装置,该无刷电动机(17)包括具有线圈(49)的定子(35)、以及具有永久磁铁(32)的转子(34),其特征在于,具有根据换流信号,对所述线圈(49)进行通电的逆变器电路(36);检测所述线圈(49)上流过的电流的电流检测器(R1、R2、R3);根据指令电流和所述检测电流生成换流信号,向所述逆变器电路输出该换流信号的电流控制单元(55);以及电流指令单元(47),该电流指令单元(47)用于在启动时,对所述电流控制单元(55),输出使所述线圈(49)的电流上升到第1电流值的直流励磁指令电流,以使所述转子(34)旋转移动到偏离预定的初始位置的预备励磁位置,此后,输出使所述线圈(49)的电流上升到比所述第1电流值大的第2电流值的直流励磁指令电流,以使所述转子(34)从所述预备励磁位置旋转移动到所述初始位置,此后,输出强制换流指令电流,以使所述转子(34)从所述初始位置开始旋转。
5.一种冰箱,包括具有线圈(49)的定子(35)及永久磁铁(32)的无刷电动机(17);以及由无刷电动机(17)驱动的往复式压缩机(16),其特征在于,具有控制单元(18),该控制单元(18)在所述无刷电动机(17)启动时,进行使所述线圈(19)的电流上升至第1电流值的直流励磁控制,以使所述转子(34)旋转移动到偏离预定初始位置的预备励磁位置,此后,进行使所述线圈(49)的电流上升至比第1电流值大的第2电流值的直流励磁控制,以使所述转子从所述预备励磁位置旋转移动到所述初始位置,此后,进行强制换流控制,以使所述转子(34)从所述初始位置开始旋转。
全文摘要
本发明揭示一种无刷电动机的启动方法,包括以下步骤利用直流励磁,使转子旋转移动到预定的初始位置的初始位置移动步骤(ta~tc);通过依照预定的通电模式通电,从而使转子从初始位置开始旋转的强制换流步骤(tc~td);以及根据推定的转子旋转位置,转移到旋转控制的转移步骤(td),所述初始位置移动步骤具有使直流励磁电流上升到第1电流值,以使转子旋转移动到偏离初始位置的预备励磁位置的第1步骤(ta~tb);以及使直流励磁电流上升到比第1电流值大的第2电流值,以使转子从预备励磁位置开始旋转移动到初始位置的第2步骤(tb~tc)。
文档编号H02P6/00GK1914788SQ20058000331
公开日2007年2月14日 申请日期2005年1月27日 优先权日2004年1月29日
发明者足立幸作, 丸谷裕树 申请人:株式会社东芝, 东芝电器营销株式会社, 东芝家电制造株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1