太阳能供电的钢结构无线自调零应变检测装置的制作方法

文档序号:7426439阅读:114来源:国知局
专利名称:太阳能供电的钢结构无线自调零应变检测装置的制作方法
技术领域
本发明涉及钢结构应力检测技术领域,尤其涉及一种适用于钢结构施工阶 段与使用阶段的全天候应力检测诊断的太阳能供电的用于钢结构应力检测的无 线自调零应变检测装置。
背景技术
在我国,钢结构建筑由于材料的单一与高强特性,被普遍用于大型公共和 工业建筑中,例如超高层建筑、大型体育场馆,机场,展览馆,大型工业厂房、 大型桥梁等等。这一类大型建筑的安全性极为重要,因此对其安全性能要求也 极高。而结构构件的应力往往是反映结构受力状态最直接的表现。因此,无论 在钢结构建筑的施工安装阶段还是投入使用阶段,检测构件的应力值变化,与 设计理论值进行比较,从而掌握结构的内力变化特性,可以适时诊断其安全性, 对社会安全生产和生活有着重大意义。但是,按目前现有的检测手段,要及时 更要时时掌握钢结构应力变化,存在很大的局限性,更有大部分情况是不可实 现的。现有的钢结构应力检测的相关技术主要情况如下-(1) 有线应变检测设备。常见的如电阻式应变传感设备、光纤光栅应变传 感设备、振弦式应变传感设备,被用于传统的土木工程应力应变检测,经过多 年的发展,技术上已经相当成熟。但是,其有线的特征使其缺陷非常明显,由 于需要用到大量的线路来提供电能、产生光源(光纤光栅)及传输数据,因此 需要耗费大量的时间和费用在线路的安装、布置与维护上。结构规模越大,测 点越多,其耗费越大。而且在某些复杂环境与特殊情况下,线路安装基本不可 能,而日后用于线路的断线、故障的维护都会影响的检测工作的效率与稳定。(2) 无线应变检测设备。目前已出现一些初期的无线应变检测产品,但是在技术与功能上存在着极大的局限性,还不成熟。目前已见报导的无线应变传 感设备主要有两种。 一种是以有线应变检测设备为基础,在局部区域内仍然采 用有线连接进行数据采集,并在该区域内设置数据采集与无线信号收发基站,将该局部区域内采集到的应变数据以无线信号的形式发送出来,可以称之为准 无线测量系统。另一种是基于集成电路模块化设计的无线应变传感设备,其在 数据釆集、处理及传输上均已实现了真正无线传感的理念,但在耗能、供能模 式以及初始调零化设置上还存在较大的缺陷,没法用于实践。比如现有产品采 用电池供电,必然涉及到一个电池更换及使用寿命的问题,不能适用于真正的 长期监测;而采用电源,引入线路又违背了无线设计的初衷。另一方面,应变 传感设备在用于测试前必须有一个初始调零步骤,这个步骤必须在设备安装于 被检测对象上之后进行,且可能反复进行多次,因此实现应变片的初始调零功 能是产品实用化的必备环节,现有的无线应变测试设备还无法实现自动调零功 能,这在某些特殊环境与条件下,在需要反复多次进行初始调零的情况下,很 不方便甚至无法实现。(3)专业型钢结构应变检测设备。目前的土木建筑应力应变检测技术中没 有专门针对钢结构建筑的专业应变检测设备。考虑到钢结构建筑有其自身的特 殊性,比如钢材材质比较特殊、应力应变检测范围与钢材强度范围相关、检测 测点无法埋入式安装、建筑物规模相对比较大型等特性,决定了传统的土木建 筑应力应变检测系统在使用上会碰到很大的局限性。因此,迫切需要开发专业 的适用于钢结构建筑的应力应变检测设备。发明内容本发明的目的在于针对现有技术的不足,提供一种太阳能供电的钢结构无 线自调零应变检测装置。本发明的目的是通过以下技术方案来实现的 一种太阳能供电的钢结构无 线自调零应变检测装置,它主要由数据采集基站和若干个检测单元组成;其中, 数据采集基站主要由计算机工作站和无线网络收发基站相连组成,无线网络收 发基站包括无线收发模块;检测单元主要由自动化调零与量程可调应变传感模 块、太阳能供电模块、无线收发模块和中央处理模块组成,太阳能供电模块分 别与自动化调零与量程可调应变传感模块、无线收发模块和中央处理模块相连, 自动化调零与量程可调应变传感模块和无线收发模块均与中央处理模块相连。进一步地,所述自动化调零与量程可调应变传感模块主要由电阻应变片、 自动化调零测试桥路、电压放大器、滤波去噪器、模数转换器和应变电路控制 芯片组成。其中,电阻应变片、自动化调零测试桥路、电压放大器、滤波去噪 器、模数转换器依次相连,应变电路控制芯片分别与自动化调零测试桥路、电压放大器、滤波去噪器和模数转换器相连。
进一步地,所述太阳能供电模块主要由太阳能电池板、充电控制保护装置、蓄电池、智能开关电路、稳压模块和能量信息模块组成。其中,太阳能电池板、充电控制保护装置、蓄电池、智能开关电路、稳压模块依次相连,能量信息模块与蓄电池相连。
进一步地,所述中央处理模块主要由存储单元、中央处理芯片、数值分析模块、异步时钟和串口总线组成。其中,存储单元、数值分析模块、异步时钟和串口总线分别与中央处理芯片相连。
本发明的有益效果是
1、 利用太阳能供电模式与无线通讯协议,在功能上做到真正意义上的零线路布置,长期全天候工作。
2、 利用集成电路设计原理,在功能上实现应变片的自动化初始调零设计,实现应变量程可调,以保证在钢材料受力极限强度范围内的最大精度测量要求。
3、 根据钢结构材质特性,实现表面快速无损安装与拆卸。
4、 根据钢结构建筑规模大的特性,实现传感器检测测点的传输接力、灵活组网。


图1是本发明的整体结构示意图;图2是自动调零电桥电路原理图;图3是本发明实施方案示意图。
具体实施例方式
下面结合附图详细说明本发明,本发明的目的和效果将变得更加明显。如图l、 3所示,本发明太阳能供电的钢结构无线自调零应变检测装置主要由数据采集基站和若干个检测单元组成。其中,数据采集基站主要由计算机工作站和无线网络收发基站相连组成,无线网络收发基站包括无线收发模块。检测单元主要由自动化调零与量程可调应变传感模块、太阳能供电模块、无线收发模块和中央处理模块组成,太阳能供电模块分别与自动化调零与量程可调应变传感模块、无线收发模块和中央处理模块相连,自动化调零与量程可调应变传感模块和无线收发模块均与中央处理模块相连。
自动化调零与量程可调应变传感模块是本发明实现应变检测功能的基本模块,由中央处理模块控制,通过采用电阻式应变片与惠斯顿电桥原理实现对钢结构应变信号的采集,通过集成电路设计实现测试前的自动初始化调零,同时设计量程的可调节选择,将检测到的模拟电压信号进行模数转换,转变为数字信号输出至中央处理模块,中央处理模块控制无线收发模块,应用zigbee通讯协议,将无线信号调制解调,并采用灵活的组网,实现对检测数据、检测命令的无线通讯传输。太阳能供电模块通过太阳能板的光伏效应实现电能的收集,利用特定电路实现电量的存储、智能开关与稳压输出功能,从而保证整个系统运行的电能需求;中央处理模块采用Atmega芯片系列,对系统各个模块进行管理,并实现简单的数据处理、存储、系统休眠等功能;将以上三大模块集成安装于保护盒中,采用防水接头与密封设计,实现设备在晴雨天气下的全天候工作,同时利用空间结构材质多为钢材的特征,设计磁铁安装底盘,实现传感装置的无损快速拆卸。数据采集控制基站由无线网络收发基站和计算机工作站组成,控制整个系统的数据采集及信号收发。
如图1所示,自动化调零与量程可调应变传感模块主要由电阻应变片、自动化调零测试桥路、电压放大器、滤波去噪器、模数转换器和应变电路控制芯片组成,其中,电阻应变片、自动化调零测试桥路、电压放大器、滤波去噪器、模数转换器依次相连,应变电路控制芯片分别与自动化调零测试桥路、电压放大器、滤波去噪器和模数转换器相连。太阳能供电模块主要由太阳能电池板7、充电控制保护装置、蓄电池、智能开关电路、稳压模块和能量信息模块组成,其中,太阳能电池板7、充电控制保护装置、蓄电池、智能开关电路、稳压模块依次相连,能量信息模块与蓄电池相连。中央处理模块主要由存储单元、中央处理芯片、数值分析模块、异步时钟和串口总线组成,其中,存储单元、数值分析模块、异步时钟和串口总线分别与中央处理芯片相连。
自动化调零与量程可调应变传感模块中,电阻应变片、自动化调零测试桥路、信号放大器、滤波去噪器、模数转换器和应变电路控制芯片组成的基本电路原理如图2所示,由其共同完成自动化初始调零与应变采集工作。电路主要由桥路电阻A A、电阻及"数字电位器『(三部分共同组成电阻应变片和自动化调零测试桥路)、信号处理器!7,(包含信号放大器与滤波去噪器)以及单片机[/2 (包含模数转换器与应变电路控制芯片)组成。在电路系统中,数字电位器r可以选用Max5400EKA非易失性数字电位器;信号放大器C/,可以选用AD8555增益及输出失调、可数字编程的零漂移桥式传感放大器;单片机^可以选用Atmegal6L微处理单元芯片。
模块电路工作原理为由于调零及应变测试中,电阻值变化都非常小,直接测量其阻值变化不可行,故须通过惠斯顿电桥的零电压法则来实现。首先进行桥路的自动化调零,然后进行应变测试。调零过程中,由及, i ,(其中A与A之一为电阻应变片1,另一为固定电阻,A与A为固定电阻)组成的惠斯顿电桥输出的电位差信号,通过电阻i^与数字电位器『的微调后(&与『并联后串联于&和i 4之间)传送到信号处理器C/,,并通过外接电容器,进行高增益,低噪声放大,输出符合测量要求的电压信号F。w。接着,单片机^对输出信号^,采样并进行模数转换后,判别输出电压信号^,是否处于规定的零位电压范围内,如果存在偏差,则通过单片机"2对数字电位器发出指令,通过图2中CS等3个引脚,控制数字电位器滑动触点步进,从而最后调节到输出符合要求。电桥平衡的条件如式(1)所示
式中,i^为^与电位器^并联后的阻值,『。为『的"部分的值。取『使之标称值远大于&的标称值,贝"p/ffa^,『将相当于电压取样电位器。又由于及2、 A相对于i p阻值较大,承受了拱桥电压的大部分,因此『两端的电压值较小,通过控制其滑动节点的位置就可以实现/^-mK级步进的电压值调节,使之与A、 ^相接点的静态电压保持相等,从而实现了零输出调整。调零结束后,即可进行应变测试,电阻应变片直接贴粘在钢结构检测对象表面,钢结构应变s的产生使的电阻应变片在外力作用下产生机械变形,从而引起电阻微小变化。根据在一定应变范围内电阻变化率(,)与应变f成正比《。的原理,即可测得应变大小,如公式(2)。
K寻)/s (2)
同样由于电阻变化带来的电桥电压不平衡,造成调零后的输出电压重新变为非零。这部分电压信号在进行数字化处理之前,先将其进行放大和失调处理,然后再滤除噪声,最后输出符合测量要求的电压信号^,,在这里通过引脚将不同放大倍数的程序写入芯片,同时实现增益即应变测试量程的可调。本模块的核心大脑Atmegal6L芯片,它的工作包括调节数字电位器,控制AD8555的放大倍数,包括数字信号向模拟信号的转变,以及应变数据往主板芯片Atmega64L(包含存储单元、中央处理芯片、数值分析模块、异步时钟)的传送。太阳能供电模块中,太阳能电池板将光能转变为电能,通过充电保护控制装置,对蓄电池进行充电,并可根据蓄电池的充电程度进行判断,以避免过充,损伤电池;蓄电池经由智能开关电路,稳压模块进行输出,智能开关电路根据蓄电池电量进行智能判断,实现低电压切断、高电压输出的功能,而稳压模块起到电压稳压输出的功能,对中央处理及无线收发模块、自动化调零及量程可调应变传感模块进行供能。能量信息模块将电池电量信息输出,由模数转换器将其转换为数字信号进行显示处理。
中央处理模块中,中央处理芯片采用Atmega芯片系列,通过串口总线控制无线收发模块实现无线信号的收发与节点组网,通过串口总线控制自动化调零及量程可调应变传感模块实现数据采集,控制储存单元进行数据的存储,控制数值分析模块可实现简单的数值分析与处理、通过异步时钟可实现整个系统的休眠,以降低功耗,延长系统工作时间等等。
数据收发控制基站中,无线网络信号收发基站通过无线收发模块,对各个无线应变测试节点进行信号的收发控制。而用户可通过计算机工作站,进行人机交互指令的输入及采集数据的实地处理。
防水磁铁包装盒将太阳能供电模块、中央处理模块和风速风压传感收发模块封装为一个基本检测单元。盒子采用防水设计,外露防水接口,太阳能板与天线置于盒子外侧,盒子安装底盘采用磁铁设计,利用空间结构材质特性,实现在钢结构结构建筑检测对象上的快速无损安装。
本发明作为一种全天候工作、零线路连接的钢结构结构建筑应力应变检测系统,具有良好的工程应用前景,安装方便、工作时间长、钢结构建筑针对性强,其具体实施过程如图3所示。
8
权利要求
1、一种太阳能供电的钢结构无线自调零应变检测装置,其特征在于,它主要由数据采集基站和若干个检测单元组成。其中,数据采集基站主要由计算机工作站和无线网络收发基站相连组成,无线网络收发基站包括无线收发模块。检测单元主要由自动化调零与量程可调应变传感模块、太阳能供电模块、无线收发模块和中央处理模块组成,太阳能供电模块分别与自动化调零与量程可调应变传感模块、无线收发模块和中央处理模块相连,自动化调零与量程可调应变传感模块和无线收发模块均与中央处理模块相连。
2、 根据权利要求1所述太阳能供电的钢结构无线自调零应变检测装置,其特 征在于,所述自动化调零与量程可调应变传感模块主要由电阻应变片、自 动化调零测试桥路、电压放大器、滤波去噪器、模数转换器和应变电路控 制芯片组成。其中,电阻应变片、自动化调零测试桥路、电压放大器、滤 波去噪器、模数转换器依次相连,应变电路控制芯片分别与自动化调零测 试桥路、电压放大器、滤波去噪器和模数转换器相连。
3、 根据权利要求1所述太阳能供电的钢结构无线自调零应变检测装置,其特 征在于,所述太阳能供电模块主要由太阳能电池板、充电控制保护装置、 蓄电池、智能开关电路、稳压模块和能量信息模块组成。其中,太阳能电 池板、充电控制保护装置、蓄电池、智能开关电路、稳压模块依次相连, 能量信息模块与蓄电池相连。
4、 根据权利要求1所述太阳能供电的钢结构无线自调零应变检测装置,其特 征在于,所述中央处理模块主要由存储单元、中央处理芯片、数值分析模 块、异步时钟和串口总线组成。其中,存储单元、数值分析模块、异步时 钟和串口总线分别与中央处理芯片相连。
全文摘要
本发明公开了一种太阳能供电的钢结构无线自调零应变检测装置,它主要由数据采集基站和若干个检测单元组成;数据采集基站主要由计算机工作站和无线网络收发基站相连组成;检测单元主要由自动化调零与量程可调应变传感模块、太阳能供电模块、无线收发模块和中央处理模块组成;本发明利用太阳能供电模式与无线通讯协议,做到真正意义上的零线路布置,长期全天候工作;利用集成电路设计原理,实现应变片的自动化初始调零设计,实现应变量程可调,以保证在钢材料受力极限强度范围内的最大精度测量要求;根据钢结构材质特性,实现表面快速无损安装与拆卸;根据钢结构建筑规模大的特性,实现传感器检测测点的传输接力、灵活组网。
文档编号H02N6/00GK101520303SQ20091009698
公开日2009年9月2日 申请日期2009年3月26日 优先权日2009年3月26日
发明者沈雁彬, 童若飞, 罗尧治 申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1