基于特高压电网联络线运行状态的电压控制方法

文档序号:7438677阅读:241来源:国知局
专利名称:基于特高压电网联络线运行状态的电压控制方法
技术领域
本发明属于电力系统自动电压控制技术领域,特别涉及基于特高压电网联络线运 行状态的无功电压控制方法。
背景技术
特高压电网是指比交流500kV电网能量更大、输电距离更远的电网。它包括两个 不同的内涵一是交流特高压(UHC),二是特高压直流(HVDC)。它具有输电成本经济、电网 结构简化、短路电流小、输电走廊占用少等优点。根据国际电工委员会的定义交流特高压 是指IOOOkV以上的电压等级。在中国,特高压电网是指IOOOkV以上的交流电网,800kV以 上的直流电网。特高压电网投运后,将对现有的自动电压控制(AVC)系统产生影响。自动电压控制(AVC,Automatic Voltage Control)系统是电力系统最重要的 自动控制系统之一。目前AVC系统主要采用三级电压控制模式,整个控制系统分为三个 层次一级电压控制(PVC,Primary Voltage Control),二级电压控制(SVC,Secondary VoltageControl)和三级电压控制(TVC,Tertiary Voltage Control)。一级电压控制为 本地控制,控制器由本区域内控制发电机的自动励磁调节器(AVR)等设备组成,控制时间 常数一般为几秒钟。控制设备通过保持输出变量尽可能的接近设定值来补偿电压快速的和 随机的变化,控制时间常数一般是秒级。二级电压控制的时间常数为分钟级,它在整个分 级控制模型中承上启下,是重要的一环。它的主要任务是以某种协调的方式重新设置区域 内各自动电压调节器(一级电压控制)的参考值或设定值,以达到系统范围内的良好运行 性能。它首先将整个系统分解成若干控制区域(control zone),在每个控制区域中选出其 最关键的对区域内其他节点有重要影响的电压母线为“中枢母线”(pilot node),并根据中 枢母线的电压偏差,按照某种预定的控制方式进行协调,有效的调整区域内各控制发电机 (controlgenerators)的自动电压调节器(AVR,Automatic Voltage Regulator)的参考电 压设定值或其他无功源的设定值,从而使中枢母线的电压基本保持不变,进而维持整个区 域的电压水平,并使无功分布在一个良好的状态。二级电压控制中利用到协调二级电压控制模型(CSVC,Coordinated Secondary VoltageControl) 0模型的建立涉及到准稳态灵敏度的计算。孙宏斌,张伯明,相年德在《准 稳态的灵敏度分析方法》(中国电机工程学报,1999年4月V19N4,pp. 9-13)中提出了准稳 态灵敏度方法,与常规的静态的灵敏度分析方法不同,准稳态灵敏度方法考虑了电力系统 准稳态的物理响应,计及系统控制前后新旧稳态间的总变化,有效提高了灵敏度分析的精 度。该方法基于电力系统的PQ解耦模型,当发电机安装有自动电压调节器(AVR)时,可认 为该发电机节点为PV节点;而当发电机装有自动无功功率调节(AQR)或自动功率因数调节 (APFR)时,可认为该发电机节点与普通负荷节点相同均为PQ节点。此外,将负荷电压静特 性考虑成节点电压的一次或二次曲线。这样所建立的潮流模型就自然地将这些准稳态的物 理响应加以考虑,从而基于潮流模型计算出的灵敏度即为准稳态的灵敏度。在潮流模型下, 设PQ节点和PV节点个数分别为、和~,状态量χ是PQ节点的电压幅值eRN^,控制变量U= [Qpq Vpv TJt,其中e/ 是PQ节点的无功注入,e是PV节点的电压 幅值,7; ei 是变压器变比,τ为倒置符号,重要的依从变量h= [Qb Qpv]T,其中Qb e Rb
是支路无功潮流,是PV节点的无功注入。这时,有无功潮流模型为Qpq(Vpq, VPV,Tk) = 0(1)Qb = Qb (VpQ, Vpv, Tk)(2)Qpv = Qpv(VPQ, VPV, Tk)(3)可得准稳态无功类灵敏度的计算公式见表1。表1准稳态的无功类灵敏度S(x,h)u的计算公式 其中&~ =-,上表中的所有量都可以直接对潮流模型(1)-(3)的雅可
L pq _
比矩阵求逆得到。二级电压控制采用协调二级电压控制模型(CSVC),该模型为一个二次规划模型。 所涉及到的各个变量如下Qg表示控制发电机当前无功出力,Vg表示控制发电机机端母线当前电压,Vp表示 中枢母线当前电压,Vh表示发电机高压侧母线的当前电压。Cg为发电机无功对中枢母线电 压的灵敏度矩阵,Cvg为发电机无功对发电机高压侧母线电压的灵敏度矩阵,满足Δ Vp = Cg Δ Qg(1)Δ Vh = Cvg Δ Qg(2)二级电压控制由主站系统和子站系统共同完成。主站系统计算得到控制策略后, 下发给子站系统的命令是电厂高压侧母线电压Vh的设定值,而子站系统再根据该设定值去 求解发电机无功的调整量,再利用AVR实现一级电压闭环控制。这样做主要是为了使主站 系统和子站系统之间界面分割清晰,保证即使二者之间的通道出现问题,子站系统仍能够 根据预置曲线独立完成本地控制,从而提高控制的可靠性。为了实现增大发电机无功裕度,并使之出力更加均衡的目的,定义无功裕度向量 Θ g,其第i个分量为 将Il g Il 2引入到二次规划目标函数中,可以保证一方面增加控制发电机的无功 裕度,另一方面促使各台控制发电机向无功出力更加均衡的方向发展。
构造二次规划形式的目标函数如下
(4)其中,AQg作为优化变量,表示控制发电机无功出力的调节量;Qg、2gmm和STr分别 表示控制发电机当前无功、无功下限和无功上限;vp和表示中枢母线当前电压和设定 电压;wp和\为权重系数,α为增益系数;完整的CSVC模型要求在满足安全约束条件的情况下来求解(4)的极小化问题,这
些约束包括\
(6)
(7)
(8)Vp、Kp-和C分别表示中枢母线当前电压、中枢母线电压下限和中枢母线电压 上限;Qg、2;""和δΓ分别表示控制发电机当前无功、无功下限和无功上限 ’\、Km和
分别表示发电机高压侧母线的当前电压、电压下限、电压上限和允许的单步最大调整 量。Cvg为发电机无功出力对发电机高压侧母线电压的准稳态灵敏度矩阵,Cg为发电机无功 出力对中枢母线电压的准稳态灵敏度矩阵。在实际的二级电压控制中,最终控制的执行是由子站系统完成的,而主站系统的 控制策略是通过给出Vh的设定值来实现的。为了防止控制操作对电网造成过大的波动,在 每一步控制中都对控制步长有严格的限制,这正是通过约束(5)加以实现的,其物理含义 是控制后Vh的调整量要小于允许的单步最大调整量ΔΙ^Τ"。约束(6)和(7)保证了控制后不会导致Vi^PVh产生越限,对于其他一些比较重要 的母线电压也可以类似的添加到约束条件中。约束(8)保证了控制后发电机的无功出力不 会越限。当特高压电网投运后,特高压联络线传输有功功率值会出现大范围波动,进而特 高压近区电网电压将产生较大范围波动,如果仍旧采用上述AVC系统的电压控制模式,将 影响电网设备的安全稳定运行以及经济性控制目标的实现。

发明内容
本发明的目的是为克服已有技术的不足之处,提出一种基于特高压电网联络线运 行状态的电压控制方法,本控制方法对已有的AVC系统中的二级电压控制方法进行了改 进,以实现电网设备的安全稳定运行以及经济性控制目标。本发明提出的一种基于特高压电网联络线运行状态的电压控制方法,其特征在 于,包括以下步骤1)在一个控制周期开始时,首先采集特高压联络线运行状态;2)判断特高压联络线投运状态是否改变,如果特高压线路停运,则从商用库中重 新装载默认电压限制;装载成功后转步骤4),若特高压联络线仍然处于投运状态,则转下
一步;
3)当特高压电网联络线处于某一状态空间时,将自动产生对应于该空间的一套特 高压控制母线的电压限值;判断特高压电网联络线的状态空间是否改变;若检测到特高压 电网联络线所处状态空间没有变化,则不对特高压控制母线的电压限值作更改;若检测到 特高压电网联络线的运行状态移动至了新的状态空间,则自动产生新的状态空间对应的特 高压控制母线的电压限值;随后转步骤4);4)启动AVC二级电压控制计算设AVC二级电压控制包含有发电机m个,发电机高 压侧母线η个,中枢母线P个,特高压协调母线q个,实时采集当前m个发电机高压侧母线 电压矢量Vh (η维矢量),单位(KV);当前m个发电机无功矢量Qg (m维矢量),单位(MVAR); 当前P个中枢母线电压矢量Vp (ρ维矢量),单位(KV);当前q个特高压协调母线电压矢量 V。(q维矢量),单位(KV);构造二次规划形式的目标函数如下rnm{Wp\\a-(Vp -0 + (^Δρ』2 +叫|乂|f}\CvghQg\<h.VrVT <VH+ CvgAQg < V『V;" <Vp^C^Qg<V;mQmg'" < Qg+AQg <QmgmVcmin ( Vc+Ccg Δ Qg < Vcmax其中,AQg作为优化变量,表示控制发电机无功出力的调节量矢量(m维矢量); 0Γ"表示控制发电机无功下限矢量(m维矢量),2;"表示控制发电机无功上限矢量(m维矢 量);表示中枢母线设定电压(P维矢量);WP和Wq为权重系数,α为增益系数;表 示中枢母线电压下限矢量(P维矢量),Imat表示中枢母线电压上限矢量(P维矢量)·Κ"轰 示发电机高压侧母线的电压下限矢量(η维矢量),7;^表示发电机高压侧母线上限矢量(n 维矢量^ΔΚ/Γ1表示发电机高压侧母线允许的单步最大调整量矢量(η维矢量);V。min表示 协调母线电压下限矢量(q维矢量),V。max为协调母线电压上限矢量(q维矢量);Cvg为发电 机无功出力对发电机高压侧母线电压的准稳态灵敏度矩阵,Cg为发电机无功出力对中枢母 线电压的准稳态灵敏度矩阵,C。g为发电机无功出力对特高压协调母线节点电压的准稳态灵 敏度矩阵;二级电压控制的主站系统计算得到控制策略后,下发给子站系统电厂高压侧母线 电压的设定值VH,而子站系统再根据该设定值去求解发电机无功的调整量,利用AVR实现一 级的闭环控制;5)在下一次控制周期到来时,返回步骤1)。本发明的特点和效果本发明是基于特高压电网联络线运行状态的特高压电压控制方法。考虑到特高压 设备电压耐受水平和特高压联络线传输有功功率值波动引起的母线电压波动影响,在原有 AVC系统的三级电压控制模式的基础上对二级电压控制进行改进;即首先对联络线运行状 态划分状态空间(划分的根据可以根据联络线的投运状态,特高压联络线的计划传输有功 值,特高压控制母线的档位等)。当特高压联络线投运时,特高压控制系统检测到特高压联 络线运行状态空间发生改变,将自动生成特高压控制母线电压限值,特高压控制母线的电压限值的生成将综合考虑设备电压极限以及当前工况下母线的暂稳态极限值。当特高压控 制母线实时刷新电压限值后,将立即启动二级电压控制计算。特高压控制母线可能包含中 枢母线以及电厂高压侧母线,原有AVC系统中二级电压控制构造二次规划形式的目标函数 (7)中的约束条件式(9) (10)的上下限值将受到特高压控制系统的影响。若特高压近区还 存在没有考虑进二级电压控制模型的母线,则需新建特高压协调母线,并将协调母线约束 考虑进二级电压控制构造二次规划形式的目标函数(7)中即加入 其中V。、V。max、V。min分别为协调母线当前电压和电压约束上下限,Ccg为发电机无功 出力对特高压协调母线节点电压的准稳态灵敏度矩阵。这样二级电压控制产生的控制策略中就考虑了特高压电网对其的影响。该方法改进现有AVC系统的电压控制方法,其核心思想在于实时采集特高压联络 线运行状态,在线生成和下发特高压控制母线的电压限值,AVC系统将根据新的母线电压限 值进行闭环控制。本发明提出的方法在对原有AVC系统的控制方法修改较小的情况下,针对特高压 电网投运的情况,可保证特高压电网电压控制的正常运行,该方法可集成在现场运行的自 动电压控制系统中,提高电网的电压安全水平。


图1为本发明的基于特高压电网联络线运行状态的电压控制方法流程图。
具体实施例方式本发明提出的基于特高压电网联络线运行状态的电压控制方法结合实施例与附 图详细说明如下本发明为适应特高压电网投运后的调压需求,以目前已有AVC系统的三级电压控 制模式为基础,对二级电压控制进行改进,实现适应特高压电网的一级电压的闭环控制。本发明的基于特高压电网联络线运行状态的电压控制方法流程如图1所示,包括 以下步骤1)在一个控制周期开始时(例如控制周期设置为30秒),首先采集特高压联络线 运行状态(例如,当前特高压联络线“特高压联络线A”,投运状态为投运);2)判断特高压联络线投运状态是否改变,如果特高压联络线停运,则从商用库 中重新装载默认电压限制(例如参与特高压控制的一条母线"母线A",在某一时刻,如 10:00AM,它的控制电压上限为535kV,控制电压下限500kV);装载成功后(此时没有考虑特 高压控制系统对原有AVC系统的影响)转步骤4);若特高压联络线仍然处于投运状态,则 转下一步;3)当特高压电网联络线处于某一状态空间时,将自动产生一套特高压控制母线的 电压限值(例如参与特高压控制的一条母线"母线A",在某一时刻,如10:00AM,它的控制 电压上限为530kV,控制电压下限505kV);特高压控制系统判断特高压电网联络线的状态 空间是否改变;若检测到特高压电网联络线所处状态空间没有变化,则不对特高压控制母 线的电压限值作更改,转步骤4);若检测到特高压电网联络线的运行状态移动至了新的状
7态空间,则自动产生新的特高压控制母线的电压限值(例如,“母线A",在特高压电网联 络线原状态下,在某一时刻,如10:00,它的控制电压上限为530kV,控制电压下限505kV;在 新的状态下,在某一时刻,如10:00,它的控制电压上限改变为535kV,控制电压下限改变为 5IOkV),再转步骤4);4)启动AVC二级电压控制计算,设二级电压控制中包含有发电机m个,发电机高压 侧母线η个,中枢母线P个,特高压协调母线q个;实时采集当前m个发电机高压侧母线电压 矢量Vh (η维矢量),单位(KV),例如[518…5+0…516]1χ/ ;当前m个发电机无功矢量Qg (m维
矢量),单位(MVAR)(例如
lx/);当前ρ个中枢母线电压矢量\化维矢量),
单位(KV)(例如[218……215]lx/ 当前q个特高压协调母线电压矢量V。(q维矢量),
单位(KV)(例如[508... 5子0 …515]Ιχ/);构造二次规划形式的目标函数如下 Vcmin ≤Vc+Ccg Δ Qg ≤ Vcmax其中,AQg作为优化变量,表示控制发电机无功出力的调节量矢量(m维矢 量);ρ; 表示控制发电机无功下限矢量(m维矢量)(例如……1^-iHx/'T为倒置 符号),ρ;^表示控制发电机无功上限矢量(m维矢量),(例如[650……800]lx/); K/表示中枢母线设定电压(P维矢量)(例如[218…5严…215]1;</);1和1为权重 系数(例如分别为0.6,0.4) ; α为增益系数(例如为2);表示中枢母线电压下限 矢量(P维矢量)(例如[210……210]lx/ ) ;Κ;01表示中枢母线电压上限矢量(ρ维 矢量)(例如[220…5+5…"表示发电机高压侧母线的电压下限矢量(η维 矢量)(例如[510…5|0…510]lx/ -表示发电机高压侧母线上限矢量(η维矢量) (例如[530…5-0…表示发电机高压侧母线允许的单步最大调整量矢 量(η维矢量)(例如
1χ/ ); V。min表示协调母线电压下限矢量(q维矢 量)(例如[505……505]lx/ ) ;V。max为协调母线电压上限矢量(q维矢量)(例如 [530…5+5…528]lx/ Cvg为发电机无功出力对发电机高压侧母线电压的准稳态灵敏度矩
阵,Cg为发电机无功出力对中枢母线电压的准稳态灵敏度矩阵,(;8为发电机无功出力对特 高压协调母线节点电压的准稳态灵敏度矩阵;AVC 二级电压控制的主站系统计算得到控制策略后,下发给子站系统电厂高压侧母线电压的设定值Vh(例如[518…5^)···516]1χ/),而子站系统再根据该设定值去求解发电
机无功的调整量,利用AVR实现一级电压的闭环控制;
5)在下一次控制周期到来时,返回步骤1)。
权利要求
一种基于特高压电网联络线运行状态的电压控制方法,其特征在于,包括以下步骤1)在一个控制周期开始时,首先采集特高压联络线运行状态;2)判断特高压联络线投运状态是否改变,如果特高压线路停运,则从商用库中重新装载默认电压限制;装载成功后转步骤4),若特高压联络线仍然处于投运状态,则转下一步;3)当特高压电网联络线处于某一状态空间时,特高压系统将自动产生一套特高压控制母线的电压限值;判断特高压电网联络线的所处状态空间是否改变;若检测到特高压电网联络线所处状态空间没有变化,则不对特高压控制母线的电压限值作更改;若检测到特高压电网联络线的运行状态移动至了新的状态空间,则自动产生新的状态空间对应的特高压控制母线的电压限值;随后转步骤4);4)启动AVC二级电压控制计算设AVC二级电压控制包含有发电机m个,发电机高压侧母线n个,中枢母线p个,特高压协调母线q个,实时采集当前m个发电机高压侧母线电压矢量VH(n维矢量),单位(KV);当前m个发电机无功矢量Qg(m维矢量),单位(MVAR);当前p个中枢母线电压矢量Vp(p维矢量),单位(KV);当前q个特高压协调母线电压矢量Vc(q维矢量),单位(KV);构造二次规划形式的目标函数如下 <mrow><munder> <mi>min</mi> <msub><mi>&Delta;Q</mi><mi>g</mi> </msub></munder><mo>{</mo><msub> <mi>W</mi> <mi>p</mi></msub><msup> <mrow><mo>|</mo><mo>|</mo><mi>a</mi><mo>&CenterDot;</mo><mrow> <mo>(</mo> <msub><mi>V</mi><mi>p</mi> </msub> <mo>-</mo> <msubsup><mi>V</mi><mi>p</mi><mi>ref</mi> </msubsup> <mo>)</mo></mrow><mo>+</mo><msub> <mi>C</mi> <mi>g</mi></msub><msub> <mi>&Delta;Q</mi> <mi>g</mi></msub><mo>|</mo><mo>|</mo> </mrow> <mn>2</mn></msup><mo>+</mo><msub> <mi>W</mi> <mi>q</mi></msub><msup> <mrow><mo>|</mo><mo>|</mo><msub> <mi>&Theta;</mi> <mi>g</mi></msub><mo>|</mo><mo>|</mo> </mrow> <mn>2</mn></msup><mo>}</mo> </mrow> <mrow><mo>|</mo><msub> <mi>C</mi> <mi>vg</mi></msub><mi>&Delta;</mi><msub> <mi>Q</mi> <mi>g</mi></msub><mo>|</mo><mo>&le;</mo><mi>&Delta;</mi><msubsup> <mi>V</mi> <mi>H</mi> <mi>max</mi></msubsup> </mrow> <mrow><msubsup> <mi>V</mi> <mi>H</mi> <mi>min</mi></msubsup><mo>&le;</mo><msub> <mi>V</mi> <mi>H</mi></msub><mo>+</mo><msub> <mi>C</mi> <mi>vg</mi></msub><msub> <mi>&Delta;Q</mi> <mi>g</mi></msub><mo>&le;</mo><msubsup> <mi>V</mi> <mi>H</mi> <mi>max</mi></msubsup> </mrow> <mrow><msubsup> <mi>V</mi> <mi>p</mi> <mi>min</mi></msubsup><mo>&le;</mo><msub> <mi>V</mi> <mi>p</mi></msub><mo>+</mo><msub> <mi>C</mi> <mi>g</mi></msub><msub> <mi>&Delta;Q</mi> <mi>g</mi></msub><mo>&le;</mo><msubsup> <mi>V</mi> <mi>p</mi> <mi>max</mi></msubsup> </mrow> <mrow><msubsup> <mi>Q</mi> <mi>g</mi> <mi>min</mi></msubsup><mo>&le;</mo><msub> <mi>Q</mi> <mi>g</mi></msub><mo>+</mo><msub> <mi>&Delta;Q</mi> <mi>g</mi></msub><mo>&le;</mo><msubsup> <mi>Q</mi> <mi>g</mi> <mi>max</mi></msubsup> </mrow>Vcmin≤Vc+CcgΔQg≤Vcmax其中,ΔQg作为优化变量,表示控制发电机无功出力的调节量矢量(m维矢量);表示控制发电机无功下限矢量(m维矢量),表示控制发电机无功上限矢量(m维矢量);表示中枢母线设定电压(p维矢量);Wp和Wq为权重系数,α为增益系数;表示中枢母线电压下限矢量(p维矢量),表示中枢母线电压上限矢量(p维矢量);表示发电机高压侧母线的电压下限矢量(n维矢量),表示发电机高压侧母线上限矢量(n维矢量),表示发电机高压侧母线允许的单步最大调整量矢量(n维矢量);Vcmin表示协调母线电压下限矢量(q维矢量),Vcmax为协调母线电压上限矢量(q维矢量);Cvg为发电机无功出力对发电机高压侧母线电压的准稳态灵敏度矩阵,Cg为发电机无功出力对中枢母线电压的准稳态灵敏度矩阵,Ccg为发电机无功出力对特高压协调母线节点电压的准稳态灵敏度矩阵;二级电压控制的主站系统计算得到控制策略后,下发给子站系统电厂高压侧母线电压的设定值VH,而子站系统再根据该设定值去求解发电机无功的调整量,利用AVR实现一级的闭环控制;5)在下一次控制周期到来时,返回步骤1)。FSA00000199714600016.tif,FSA00000199714600017.tif,FSA00000199714600018.tif,FSA00000199714600019.tif,FSA000001997146000110.tif,FSA000001997146000111.tif,FSA000001997146000112.tif,FSA000001997146000113.tif
全文摘要
本发明涉及基于特高压电网联络线运行状态的电压控制方法,属于电力系统自动电压控制技术领域;该方法包括,首先检测特高压联络线的投运状态,若特高压联络线未投运,则按照默认电压限制进行二级电压控制;若特高压联络线处于投运状态,当特高压电网联络线处于某一状态空间时,特高压系统将自动产生一套特高压控制母线的电压限值;若特高压电网联络线所处状态空间没有变化,则不对特高压控制母线的电压限值作更改;若特高压电网联络线的运行状态移动至了新的状态空间,并且特高压控制系统检测到了这一变化,则特高压控制系统自动产生新的特高压控制母线的电压限值;该方法对已有的AVC系统中的二级电压控制方法进行了改进,以实现电网设备的安全稳定运行以及经济性控制目标。
文档编号H02J3/18GK101917002SQ20101023257
公开日2010年12月15日 申请日期2010年7月16日 优先权日2010年7月16日
发明者孙宏斌, 汤磊, 汪鸿, 王蓓, 袁萍, 贾琳, 赵伟, 郭庆来, 陈江澜 申请人:清华大学;华北电网有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1