降低逆变器热点区温度和整体损耗的脉冲宽度调制方案的制作方法

文档序号:7465799阅读:282来源:国知局
专利名称:降低逆变器热点区温度和整体损耗的脉冲宽度调制方案的制作方法
技术领域
本发明涉及电子逆变器,尤其涉及降低用于永磁同步电动机(PMSM)的电子逆变器 中功率装置的热点区温度和功率损耗的方法和装置。
背景技术
电力机械,比如电动车辆或混合动力车辆,可以通过电力驱动系统使用电能推进, 该电力驱动系统可以包括连接到电动机的电源电路,比如电子逆变器。在这种配置中,电源 电路能可控地将电源中的电力传给电动机以驱动负荷,比如车辆驱动桥。对于三相同步电 动机来说,电源电路可以包括有三相接脚的逆变器,每一个接脚都包括开关,所述开关能分 别控制以提供期望的逆变器输出。例如,作为电动机的转矩需求的函数的驱动信号可以通 过逆变器控制器提供给逆变器。实践中,可以将逆变器设置成双向电流流动,使得电流既能 从逆变器流向电动机也能从电动机流向逆变器。
由于逆变器的电流取决于电动机的转动和转矩需求,当电动机的角旋转大幅降低 或完全停止时,在转子锁定或电动机锁定模式过程中会出现问题。当驱动转矩等于车辆重 量时,例如当车辆爬坡或障碍物阻挡车轮时,电动机的旋转会减慢或停止。控制器会通过增 加供应电动机的电流来增加电动机的转矩或旋转。然而,由于电动机不是充分旋转,增加的 电流会集中到单个接脚中。比如,一个逆变器接脚中的电流会是另外两个接脚的两倍。高 电流集中会使该接脚中的开关装置变热并增加与该装置运转有关的功率损耗。
鉴于这种现象,将逆变器的开关装置设计成能耐受转子锁定运转过程中可以预期 的特定的热点区温度。耐受的热点区的温度越高,该装置的尺寸要求越大,最终,装置成本 也越高。遗憾的是,转子锁定电流集中和热点区的温度越高,设备损耗越高,功率变换系统 的整体运转损耗也越高。
人们已经进行了各种尝试,以减少转子锁定情况下的功率损耗。传统的解决方法 是减少脉冲宽度调制(PWM)的转换频率以降低逆变器的功率损耗。尽管这个解决方案可以 降低逆变器的开关损耗,但由于传导损耗在功率装置的损耗中通常占主导因素,其效果有 限。最近,提出了各种面向软件的解决方案。例如,美国专利公开号为2010/0185350、名称 为“电动车辆的控制装置、具备该控制装置的电动车辆、电动车辆的控制方法以及存储有用 于使计算机执行该控制方法的程序的计算机可读存储介质”、专利权人为丰田自动车株式 会社的专利公开了根据电动发电机的转矩指令(TR)和电机转数(MRN)设定载波频率(FC) 的载波频率设定单元。PWM信号生成单元生成对应于相应的相电压指令(Vu,Vv,Vw)的调 相波,并且根据各调相波与具有载波频率(FC)的载波之间的量值关系来生成相位PWM信号 (Pu, Pv, Pw)。当载波频率(FC)低于预设的频率时,PWM中心控制单元生成用于对PWM中心 进行可变控制的PWM中心校正值(ACE)并且输出到PWM信号。丰田的公开教导了一种依 赖载波频率的逆变器过热的问题的解决方案。但是,还需要一个经济的、面向硬件的解决方 案,可以不考虑并且独立于PWM载波频率地使用该解决方案降低装置的功率损耗和热点区 的温度。发明内容
示例系统包括逆变电路和脉冲宽度调制(PWM)方案模块,该方案模块用于将逆变 器相电流从高损耗的装置迁移到低损耗的装置以降低逆变器热点区的温度和功率损耗。在 一个示例性实施例中,PWM方案模块会被设定为当耦合到逆变电路的电动机处于电动机锁 定状态时迁移相电流。举例说明,但不仅限于此,能将电流从相对高损耗的绝缘栅双极晶体 管(IGBT)迁移到相对低损耗的在同一接脚的二极管。PWM方案模块能被用于更改PWM的调 制信号,该调制信号用于提供PWM控制信号以满足电动机指令电压的要求。PWM方案模块也 能用于不影响载波频率或逆变器输出地迁移电流。
在一个示例性实施例中,PWM方案模块包括用于执行损耗减少方案的方案控制模 块,在该方案中逆变器相电流从高损耗装置迁移到低损耗装置。在一个示例性实施例中, PWM方案模块可以用于修改用来调制PWM载波信号的调制信号。在一个示例性实施例中, PWM方案模块能控制转换信号模块提供转换信号,该转换信号与PWM调制信号结合提供转 换调制信号。示例性的PWM方案模块可以用于在电动机处于转子锁定状态时迁移逆变器相 电流。相应地,PWM方案模块可以包括用于测定电动机处于转子锁定状态的状态检测模块。 但是,PWM方案模块也可以用于在电动机处于正常的“非锁定”状态时迁移电流以减少逆变 器的开关损耗。
降低热点区温度的示例方法可以包括测定电动机处于转子锁定状态,执行热点 区降低PWM方案,测定电动机不再处于转子锁定状态,停止热点区降低方案的执行。在一 个示例性实施例中,本发明的方法可以包括从逆变电路的接脚中的高损耗装置向低损耗装 置迁移相电流。比如,电流能从绝缘栅双极晶体管(IGBT)迁移到二极管。在一个示例方法 中,与高频载波信号协同向逆变器提供PWM控制信号的低频调制信号可以被修改。例如,可 将PWM参考电压转换成较低的值。在一个示例性实施例中,电流迁移过程不依赖于载波频 率,也不影响逆变器的输出。本发明的方法可以提供兼容所有开关频率的面向硬件的解决 方案,该方案能降低逆变器热点区温度和功率损耗,从而允许在逆变电路中使用更小、更便 宜的功率电子装置。












图1示出了具有PWM方案模块(PSM)的示例系统。2示出了一个示例系统。3示出了一个示例系统。4A示出了一个示例系统。4B示出了一个示例系统。5示出了一个示例系统。6示出了一个示例方法的流程图。7示出了一个示例方法的流程图。8A示出了一个示例逆变电路在无PWM转换时的逆变器电流和信号。 SB示出了使用转换的PWM调制信号时的逆变器电流和信号。9示出了执行与未执行PWM损耗方案时的逆变电路的结果对比。
图10示出了执行与未执行PWM损耗方案时的逆变电路的结果对比。
具体实施方式
在此介绍本发明的示例性实施例;然而,本发明可以以多种替代方式实施,这对于 本领域的技术人员是显而易见的。为便于理解本发明并为权利要求提供根据,本说明包括 若干附图。为了强调本发明的新颖特征,附图未按比例绘制并且省略了有关元素。图中描绘 的结构和功能细节的目的是教导本领域的技术人员实施本发明,而不应被解释为限制。比 如,各种系统中的控制模块和元件可以被不同地设置和/或结合,而不应被视为限于这里 给出的示例性配置。
图1表明示例车辆100的示意图。车辆100可以是任何适当的类型,例如电动车 辆或混合动力车辆。在至少一个实施例中,车辆100可包括第一轮组112、第二轮组114、 发动机116、混合动力车辆驱动桥118和电力驱动系统120。电力驱动系统120可以用于 向第一和/或第二轮组112,114提供转矩。电力驱动系统120可具有任何合适的配置;例 如,它可以包括电力电子变换器(PEC) 122形式的电力转换电路,该变换器耦合到永磁同步 电动机(PMSM) 126。PMSM126可耦合到功率传输单元130,功率传输单元130可以被耦合到 差速器140以控制轮组114。可以预期,PMSM126可以起到电动机的作用,将电能转化为动 能,或者作为发电机,将动能转化为电能。在一个示例性实施例中,PEC122可通过接口电缆 127连接到作为电动机的第一 PMSM,也可通过第二接口电缆(未图示)连接到作为发电机的 第二 PMSM (未图示)。而且,在混合动力车辆中,正如本领域的技术人员所熟知的,电力驱动 系统120可以是并联驱动、串联驱动或者分流混合驱动。接口电缆127可以是高压三相接 口电缆,,PEC122可以通过该接口电缆为PMSM126提供电力。在一个示例性实施例中,电缆 127用于传导不同相的三相电流。例如,电缆127包括一组三根电缆,每一根用于传导特定 相的电流。
PEC122可包括用于向PMSM 126提供电力的硬件电路,并且可以电耦合到车辆控 制系统(VCS) 150,通过车辆控制系统,PEC122可以接收来自其他控制单元关于车辆系统操 作和控制的信号。PEC122可被耦合到配置为使用PWM方案来控制和提高PEC的性能的脉冲 宽度调制(PWM)方案模块(PSM) 124。在一个示例性实施例中,PSM 124控制PWM调制信号 以降低PEC的功率损耗,尤其是在电动机处于电动机锁定或转子锁定状态的期间。
PMSM126可由一个或多个功率源提供动力驱动车辆牵引轮。PMSM126可以是任何 适当的类型,例如电动机、电动发电机或起动发电机。另外,PMSM126可以与用于回收能量 的再生制动系统相关联。
功率传输单元130可被选择性耦合到至少一个PMSM126。功率传输单元130可以 是任何合适的类型,比如多挡“级别比率”变速器、无级变速器或者电子无转换变速器,正如 本领域的技术人员所熟知的。功率传输单元130可适于驱动一个或更多的车轮。在图1所 示的实施例中,功率传输单元130以任何适当的方式连接到差速器140,比如与驱动轴或其 它机械装置连接。差速器140通过轴142,例如轮轴或半轴,可以连接到第二轮组114的每 个车轮。
车辆100也可以包括车辆控制系统(VCS) 150,用于监测和/或控制车辆100的各 个方面。VCS150可被耦合到PEC122、功率传输单元140以及它们的各个元件以监测和控制运转和性能。VCS150可具有任何适当的配置,并且可包括一个或多个控制器或控制模块。 在图2所示的示例性实施例中,VCS150包括动力系统控制模块(PCM) 152、驱动桥控制模块 (TCM) 154、车辆稳定控制模块(VSCM) 156、高压电池控制模块(HVBCM) 158和牵引电池控制 模块(TBCM)160。控制模块152-160可被设置成如箭头线标示的那样彼此相连,然而可以预 见,控制模块之间的相互连接可做出不同的安排。另外,一个或多个控制模块152-160可以 用于连接和/或控制车辆100的各个方面。例如,TBCM160可以监测环境属性(比如温度)和 控制一个或多个功率源的运行。驱动桥控制模块TCM154可与PEC122连接以控制PMSM126 和提供给车辆牵引轮的转矩值。值得注意的是,TCM154可以选择性地嵌入到PEC122中。
图3示出示例系统300,其中图1中的PEC122体现为示例PEC310。PEC310可包 括第一功率源312。在不同的实施例中,比如混合电动车辆实施例,可以提供额外的动力系 统。例如,可以提供第二动力系统,该系统具有电源或者类似内燃机的非电功率源。第一功 率源312可以是任何适当的类型。例如,第一功率源312可以是电源,例如具有多个电性互 联的电池的电池组、电容器或燃料电池。如果使用电池组,其可以是任何适当的种类,例如 镍金属氢化物(Ni—MH)、镍铁(Ni—Fe )、镍镉(Ni—Cd )、铅酸、锌溴(Ni — Cd )或锂基电池。 如果使用电容器,其可以是任何适当的种类,例如超电容器、超级电容器、电化学电容器、双 电层电容器,正如本领域的技术人员所熟知的。在一个示例性实施例中,一个电池组可以与 一个或多个电容器配合使用。
功率源312可耦合到用于向PMSM330提供交流电的逆变电路314。用于提供PWM驱 动信号的逆变器控制器316可以耦合到逆变电路314。PSM320可耦合到逆变器控制器316 以执行PWM方案,以降低逆变电路314中的功率损耗,特别是在(但并不局限于)PMSM330处 于锁定状态期间。在一个示例性实施例中,旋转传感器(未图示)可耦合到PMSM330并用于 向PEC310、PSM320和/或VCS150提供电动机旋转数。
逆变器控制器316可以用于控制逆变电路314的运行,因此可以包括硬件、软件、 固件或者它们的一些组合。逆变器控制器316可包括一个基于微处理器的控制装置317, 用于执行控制功能和处理信息。控制装置317可以用于执行软件算法以及存储信息。逆变 器控制器316可包括一个电动机/发电机控制单元(MG⑶)318。在一个示例性实施例中, MGCU318可以是印制电路板的形式,其具有接收反馈电流、接收或建立参考电流和电压、调 整电流、支配电压和电流,以及执行其他与PMSM330的命令和控制相关联的操作的必需的 电路。逆变器控制器316可以从检测电缆127中的电流的传感器(未图示)接收输入。例如, 该传感器检测到的反馈电流可以被接收到MG⑶318。逆变器控制器316,例如通过MG⑶318, 也能从用于检测PMSM330的运动的传感器(未图示)接收输入。逆变器控制器316可以充当 PSM320和逆变电路314之间的连接装置,使PSM320能通过逆变器控制器316执行PWM方案 来影响逆变电路314的运转。
图4A示出系统400,其中,逆变器控制器316体现为示例逆变器控制器402, PSM320体现为示例PSM430。包括耦合到MG⑶406的控制装置404的逆变器控制器402可 以耦合到PSM430。示例MGCU406可包括用于根据转矩需求提供所需的定子绕组电压的电流 /电压控制单元410,以及为逆变电路314生成PWM驱动信号的信号生成模块420。
图4B示出示例性实施例450,其中功率源452耦合到逆变电路454。逆变电路454 包括具有上部开关单元AU和下部开关单元AL的接脚A,具有上部开关单元BU和下部开关单元BL的接脚B,以及具有上部开关单元CU和下部开关单元CL的接脚C。相电流IA与接脚A关联,相电流IB与接脚B关联,相电流IC与接脚C关联。每个相电流IA、IB、IC都被供应到三相PMSM456的定子绕组。在一示例性实施例中,PWM信号生成模块420为逆变电路454的三相接脚生成驱动信号。
再参照图4A,举例来说,但非为限制,电流/电压控制单元410可包括指令电流单元412,该指令电流单元412用于接收转矩需求Tk并在PMSM转子的d_q坐标系中输出所需的指令电流ID。和IQ。。另外,坐标转换单元414可以用于接收IA,、IB、I。、反馈相电流并将它们转换到d-q坐标系以提供输出‘和IQF。直接反馈和指令电流‘和Idc可被比较器 413接收,比较器413用于基于它们之间的差值生成输出ed。类似地,正交反馈和指令电流 Iqf和Iqc可以被比较器415接收,比较器415用于基于它们之间的差值输出eQ。电流调节器416可以用于接收eD和eQ,并使用它们提供输出电压Vd和Vq,这是本领域已知的。坐标转换单元418可以从转子坐标系转化Vd和Vq生成定子线圈532,534,和536的各自的相电压C。三个相电压VA、%和^可提供给PWM信号生成模块420,该模块用于使用相电压VA、 Vb和V。为逆变电路454提供适当的驱动信号SA、SB和S。。例如,Sa可以应用到接脚A,Sb可以应用到接脚B,S。可以应用到接脚C。
PWM信号生成模块420可包括PWM信号控制器422、载波信号模块424、调制信号模块426和比较器428。载波信号模块424可以用于提供载波信号V。-,该载波信号可为PWM 提供开关频率。举例来说,载波信号模块424可包括高频信号发生器。在一个示例性实施例中,载波信号模块424可以用于生成三角波载波信号,该三角波载波信号特征在于频率范围是1. 25Khz到lOKhz,并且该模块可被PWM信号控制器422控制。
调制信号模块426可以用于提供PWM调制信号\,举例来说可包括低频或直流信号发生器。在一示例性实施例中,调制信号Vm可以是(或者表征为)每一接脚的参考电压Vk 的形式,例如逆变电路454的接脚A、B和C的参考电压VM、Veb和 VK。。因此,调制信号模块可包括一个或多个用于提供参考电压的装置。PWM信号控制器422可以用于接收电压VA、 Vb和V。,并且,基于这些电压,指引载波信号模块和调制信号模块424、426提供输出,该输出用来为逆变电路454提供适当的PWM驱动信号SA,Sb, S。。举例来说,但非为限制,驱动信号SA,SB, Sc可以是电压电平和占空比的形式,其应用于逆变电路454的接脚A、B和C的各个开关单元的控制极。
PSM430可以用于执行或指引PWM方案以降低系统400中的热点区温度和功率损耗。在一个示例性实施例中,PSM430可包括状态检测模块432、方案控制模块434和调制信号模块436。每一模块可包括硬件、软件、固件或它们的一些组合。状态检测模块432可以用于测定耦合到逆变电路(例如逆变电路454)的电动机(比如PMSM456)处于转子锁定状态。在一个示例性实施例中,状态检测模块432可接受关于反馈电流IA、IB和I。的输入,并且高电流持续地集中到一个接脚中可作为电动机锁定的象征。举例来说,但非为限制,状态检测模块可接受关于电动机旋转的输入,该输入来自VCS 150、MGCU 320或直接来自耦合到电动机的角旋转传感器(未图示)。角旋转数低于预设的最小值时表明电动机处于锁定状态。
PSM430可进一步包括用于执行PWM方案的方案控制模块434,以降低装置热点区温度和功率损耗。在一示例性实施例中,方案控制模块434可改变PWM调制信号以执行热点和损耗降低方案。举例来说,但非为限制,在方案控制模块434的指示下,转换信号模块 436可以用于向PWM信号生成单兀420提供转换信号VSHIFT。信号Vshift可与调制信号Vm在信号组合器427中结合以提供转换过的调制信号VM’,该转换过的调制信号可提供给比较器 428并用于生成控制信号SA、&和\。在一示例性实施例中,调制信号Vm可以是参考信号 Ve的形式,并且信号Vshift可在信号组合器427中并入参考信号\,以提供可以输入到比较器428的转换过的。因此,转换过的的Vea’、Veb’和Vk。’可分别地提供给接脚A、B和C。 比较器可比较V和载波信号Vcakk以生成转换过的PWM信号SA、Sb和S。。在一示例性实施例中,信号Vshift可使参考电压Vr向下转换,也·就是说,Vshift可以是负值,或者从Vr中减去。 转换参考电压Vk可改变PWM信号并减少逆变器占空比,减小传导损耗。另外,改变PWM信号可将相电流从高传导损耗的设备,比如IGBT,移往低传导损耗的设备,比如二极管。
图5示出示例系统500,该系统中的PWM方案模块可降低热点区温度和功率损耗。 系统500包括通过电容器C耦合到逆变电路510的功率源502。逆变器电路510耦合到电动机530和逆变器控制单元540,该控制单元用于为逆变器电路510提供驱动信号。在一个示例性实施例中,电动机530是包括三个独立线圈532、534和536的PMSM。逆变器电路 510可包括三相接脚A、B和C,该三相接脚分别耦合到线圈532、534和536并分别和相电流 IA、Ib和Ic相关联,当该相电流流向电动机530时被认为是正向,而流出电动机530时是反向。
接脚A、B和C中的每一个均具有上部和下部开关单元,每一个开关单元均具有有源装置,比如绝缘栅双极晶体管,和半有源装置,比如二极管。例如,接脚A可具有上部开关单元512,其包括IGBTau及与之反向平行的上部二极管Dau,还具有下部开关单元514,其包括下部IGBTa及与之反向平行的下部二极管Dau。同样地,接脚B可具有上部开关单元516, 其包括上部IGBTbu&与之反向平行的上部二极管Dbu,还具有下部开关单元518,其包括下部 IGBTbl及与之反向平行的下部二极管D&。同样,接脚C可包括上部开关单元520,其包括上部IGBTai和上部二极管Dai,还包括下部开关单元522,其包括下部IGBTa和下部二极管Da。
在一个典型的非电动机锁定PWM周期中,电流每次流过开关单元的一个装置,并且每次流过接脚的一个开关单元,因此,在正常运转模式中,一个接脚在一个逆变周期中的总功率在四个装置之间分配。但是,在电动机锁定状态时,一些开关装置根本就不运转,使得一个接脚的功率仅在两个装置之间分配,由此增加了装置的功率损耗和温度。例如,在电动机锁定状态,上部的二极管Dau和下部IGBTa可能没有导电,IGBTbu和二极管D&也可能没导电,同样,IGBTa^P二极管Da也可能不导电。因此,在每一接脚中,电流可能集中在两个装置中,而不是四个,这增加了导电的IGBT设备的损耗和温度。
图6示出了降低热点区温度的示例方法600。在框602,可以测定电动机处于转子锁定状态。例如,状态检测模块432可接收关于相电流IA、B和c的输入且比较它们的大小以测定电动机被锁定。譬如,高强度电流持续地集中在一个接脚中表明转子锁定状态。通过进一步的示例,状态检测模块432可以从VCS 150、MG⑶320、或者直接从耦合到电动机的角旋转传感器接收关于电动机转动的输入。角旋转数低于预先设定的最小值表明电动机处于锁定状态。
在框604,可执行损耗降低PWM方案。在一不例性实施例中,损耗降低PWM方案的执行可包括将电流从高损耗装置迁移到低损耗装置。例如,电流可从IGBTau迁移到D&。图7示出了迁移电流的示例方法700。在框702中可以提供转换信号VSHIFT。例如,方案控制模 块434可提示转换信号发生器436生成转换信号VSHIFT。在框704,转换信号可用来提供修 正的PWM调制信号。例如,Vshift可以结合来自调制信号模块426的Vm以提供修正的调制信 号VM’。在一示例性实施例中,调制信号是Vm是参考电压Vk的形式。调制信号发生器426 可以用于向每一个逆变器接脚提供参考电压,即为接脚A、B和C分别提供VM、Veb和VK。,并 且转换信号Vshift可以加入到每一个参考电压中以提供转换过的参考电压Vea’、Veb’和Vkc’。 在一示例性实施例中,每个接脚的转换信号Vshift是相同的,但是,可以预期的是,转换信号 在接脚之间可以不同。在框706,转换过的调制信号VM’可用于提供PWM驱动信号。例如, V与载波信号Vcakk可在比较器428中比较以向逆变电路510提供PWM驱动信号。
在一不例性实施例中,载波信号和转换过的调制信号可以生成PWM驱动信号,该 驱动信号可将相电流从高损耗的装置迁移到低损耗的装置,譬如从IGBTau迁移到二极管 Dp因为实施本发明可降低IGBT传导的平均电流集中度,所以可以降低IGBT的热点区的 温度。
在参照图6,示例性方法600可进一步包括,在框606测定电动机不再处于转子锁 定状态。例如,使用前述的输入,状态检测模块432可测定转子锁定状态不再有效。相应地, 在框608,运行可以回复到正常的运转模式,该模式中不执行转换,并且使用Vm而不是VM’为 逆变器生成PWM驱动信号。这可以通过停止转换信号Vshift的生成实现。
值得注意的是,本发明的方法可包括即使电动机处于正常或者非锁定状态时的 PWM转换。正常运转状态的PWM转换可以将PWM推进到极致,这会导致不连续的脉冲宽度调 制(DPWM),其可使开关损耗降到最低。因此,可降低逆变器总体功率损耗,增加电动车辆的 燃料经济性。
图8示出了一个系统的效果,例如系统500,其中电动机处于转子锁定状态,并且 PWM信号以正常的、未转换的方式执行,也就是说没有Vshift信号生成。在这个示例中,调制 信号Vm的形式分别是参考电压VKA、VKB和\c。载波Vcmk可与上述参考电压一起用于为逆变 器接脚A、B和C生成PWM信号S_a, S_b,and S_c。逆变器相电流用Iga、Igb和Igc表示, 正值标志电流从逆变器流向电动机,负值标志电流从电动机流向逆变器。正如图8A所示, 从逆变器流向电动机的电流Iga的大小大约是从电动机流向逆变器的电流Igb、Igc的两 倍,这表明电动机的锁定状态。图9和图10示出了图8A所示条件下的、在正常的(未转换 的)PWM期间的逆变器占空比和逆变器的三相接脚的功率损耗。参照图8A、图9和图10,可 以看出,接脚A的占空比只是仅仅比其他接脚的稍长,但是接脚A的功率损耗大大高于其他 接脚。这是因为电流集中在IGBTua,其具有相对高的功率损耗,包括传导和开关功率损耗。
图8B示出了执行降低热点区温度的PWM方案的效果。在此处,参考电压Vra、Vrb 和Vrc被转换为较低的值-50. 00。虽然载波频率保持不变,转换过的参考电压如所示的改 变PWM信号Sa、Sb、和Sc,并且减少逆变器占空比。参照图9、图10,其中也示出了执行PWM 损耗降低方案的效果,使用转换过的参考电压的接脚A的占空比从使用未转换过的参考电 压相关的O. 527占空比减少到了 O. 37。逆变器的功率损耗从高功率损耗的装置转换到低功 率损耗的装置。例如,对于接脚A,与上部IGBTua相关的功率损耗减少,而与下部二极管Du 相关的功率损耗增加。尽管接脚A的总功率损耗没有明显的变化,降低与IGBTua相关的平 均电流和功率损耗减低了装置必须耐受的热点区的温度。因此,逆变器设计者可以得到关于IGBT和二极管的尺寸和成本的不同的权衡设计的可能性。例如,IGBTs可以减小尺寸, 或者目前存在的逆变器的最大容量增加了。值得注意的是,当执行PWM转换时,尽管逆变器 的占空比降低,但是逆变器电流Iga、Igb和Igc保持不变。从而可以降低最大功率损耗或 因而发生的热点区温度而不影响逆变器的输出功率。
如图9和图10所示,对于图8A和图8B例示的转子锁定情况,PWM转换可更平均 地平衡接脚A的上部IGBTau和下部D&之间的功率损耗。例如,无PWM转换时,上部IGBTau 的功率损耗是673瓦,而PWM转换时,功率损耗减少到551瓦。同样,接脚B和C的功率损 耗更平均地在IGBT装置和二极管装置之间保持平衡,缓解了 IGBT装置的压力。因为IGBT 设备热点区的温度下降,本发明使功率装置的尺寸得以减小。因为功率装置的成本是逆变 器总成本的主要组成部分,能缩小元件的尺寸可以显著地降低逆变器硬件成本。
尽管图8A和图SB示出了逆变器的电动机锁定状态的示例,其中电流集中在接脚 A上部,应当理解,当电动机处于转子锁定状态时,可存在六种可能的逆变器电流布局。电 流可集中在三相接脚A、B和C每一个的上部或下部。对于每一种情形,本发明可将电流从 高损耗装置迁往低损耗装置。通过借助于PWM损耗降低方案的执行控制驱动信号,可以产 生从IGBT到二极管或者从二极管到IGBT的电流迁移,并且可以在改变或不改变载波频率 的情况下进行,由此,可提供一个简单、经济的解决方案,该方案可避免依赖复杂、昂贵的软 件。
本发明提供降低逆变器功率装置的最大功率损耗的装置和方法,由此降低其热点 区温度,而对逆变器的性能无不利影响。在电动机锁定运行期间,逆变器电流可集中在一个 接脚,促使功率装置变热并导致热点区高温。PWM方案用于将电流从高损耗装置迁移到低损 耗装置,以降低高损耗装置的温度。在一个示例性实施例中,将参考电压转换为较低的值, 降低逆变器的占空比并合理地平衡流过接脚的上部和下部的电流。该方案的执行和载波频 率无关,且无需改变载波频率。PWM损耗降低方案可使PWM占空比朝着低总体传导损耗的方 向转换。在转子锁定运行期间,功率损耗从功率损耗最高的装置迁移到其它装置,这可显著 地降低逆变器的热点区温度。例如,逆变器热点区温度可降低百分之二十。逆变器热点区 温度降低可允许逆变器功率装置减小尺寸,降低了硬件成本。对于目前的逆变器设计,执行 损耗降低PWM方案可提高逆变器的最大容量。在正常的电动机驱动运转期间,即非转子锁 定运转期间,通过转换PWM信号执行PWM损耗降低方案可以把调制推进到极致,成为不连续 PWM (DPWM),其可最大限度地减少开关损耗和传导损耗。
虽然本发明已以较佳实施例披露如上,然其并非用以限定本发明,任何所属技术 领域的技术人员,在不脱离本发明之精神和范围内,当可作些许之更动与改进,因此本发明 之保护范围当视权利要求所界定者为准。
权利要求
1.一种系统,其特征在于,包括 逆变电路;和 脉冲宽度调制(PWM)方案模块(PSM),该方案模块用于将所述的逆变电路中的相电流从高损耗装置迁移到低损耗装置。
2.如权利要求1所述的系统,其特征在于,所述的PSM用于当耦合到所述的逆变电路的电动机处于转子锁定状态时迁移所述的相电流。
3.如权利要求1所述的系统,其特征在于,所述的PSM用于将所述的电流从接脚的绝缘栅双极晶体管(IGBT)迁移到所述接脚的二极管。
4.如权利要求1所述的系统,其特征在于,所述的PSM用于将所述的电流从所述接脚的二极管迁移到所述接脚的绝缘栅双极晶体管。
5.如权利要求1所述的系统,其特征在于,所述的PSM用于修改调制信号,该调制信号用于为所述的逆变电路提供PWM控制信号。
6.如权利要求1所述的系统,其特征在于,所述的PSM用于转换PWM参考电压,该参考电压用于为所述的逆变电路提供PWM控制信号。
7.如权利要求1所述的系统,其特征在于,所述的电流迁移与PWM载波频率无关。
8.如权利要求1所述的系统,其特征在于,在耦合到所述的逆变电路的电动机的非转子锁定运转期间执行所述的电流迁移。
全文摘要
本发明是降低逆变器热点区温度和整体损耗的脉冲宽度调制方案。根据本发明,可执行PWM方案降低驱动同步电动机的逆变电路中的装置的功率损耗和热点区的温度。本发明的方法包括将相电流从高损耗的功率装置迁移到低损耗的功率装置。可以修改PWM调制信号以改变逆变器的占空比以及向低损耗的方向迁移相电流。例如,PWM参考信号可以转换为较低的值。当电动机处于转子锁定状态时可移执行PWM损耗降低方案以降低装置热点区的温度。当电动机处于正常运转状态时也可以执行PWM损耗降低方案,将脉冲宽度调制(PWM)推进为不连续的脉冲宽度调制(DPWM),以降低开关和总体损耗。当永磁同步电动机(PMSM)作为电动机运转时可以实施该方案,再生制动期间也可实施。
文档编号H02M7/5395GK103001557SQ20121034246
公开日2013年3月27日 申请日期2012年9月14日 优先权日2011年9月16日
发明者陈礼华, 陈清麒, 迈克尔·W·德格尼尔, 沙拉姆·萨雷 申请人:福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1