电力接收器和充电系统的制作方法

文档序号:7380181阅读:198来源:国知局
电力接收器和充电系统的制作方法
【专利摘要】根据实施例,提供了电力接收器,该电力接收器包括:第一整流电路、第二整流电路、连接部分和控制器。第一整流电路对由第一交流发电装置产生的第一交流电进行整流。第二整流电路对由第二交流发电装置产生的第二交流电进行整流。连接部分并联地电连接第一整流电路的输出端和第二整流电路的输出端。控制器执行控制以使得第一交流发电装置和第二交流发电装置不会同时工作。
【专利说明】电力接收器和充电系统
【技术领域】
[0001]本文描述的实施例涉及电力接收器和充电系统。
【背景技术】
[0002]对于具有有线充电和非接触充电功能的充电器,已知电力转换单元被共享用于两种充电的配置。在该配置中,为了将输入电力转换到电力接收单元之间的电力转换单元,需要为在用于两种充电的电力转换单元与电力接收单元之间的高电流设置继电器或者开关。设置在流过高电流的线路上的这种继电器或者开关是大的并且昂贵的。
【专利附图】

【附图说明】
[0003]图1示出了根据第一实施例的充电系统。
[0004]图2示出了根据第一实施例的充电系统的另一个配置示例。
[0005]图3示出了 PWM栅极信号的示例。
[0006]图4示出了根据第二实施例的充电系统的一部分。
【具体实施方式】
[0007]根据实施例,提供了电力接收器,该电力接收器包括:第一整流电路、第二整流电路、连接部分和控制器。
[0008]第一整流电路对由第一交流发电装置产生的第一交流电进行整流。
[0009]第二整流电路对由第二交流发电装置产生的第二交流电进行整流。
[0010]连接部分并联地电连接第一整流电路的输出端和第二整流电路的输出端。
[0011 ] 控制器执行控制以使得第一交流发电装置和第二交流发电装置不会同时工作。
[0012]在下面将参考附图详细地描述本实施例。
[0013]在图1中示出了根据第一实施例的充电系统。
[0014]充电系统包括电力接收器11和无线电力传输单元12。无线电力传输单元12被布置在接地侧上,以及电力接收器11被布置在移动物体(例如车辆)中。尽管在本实施例中假设移动物体是电动车辆,但是其它示例包括例如插电式混合动力汽车、轻轨列车、机动性踏板车、电动轮椅和小型EV。
[0015]电力接收器11包括无线电力接收单元13、有线电力传输单元14、车载控制器15、电压调节电路16、输入电容器17和蓄电池18。电力接收器11能够执行有线充电和非接触充电。
[0016]接地侧上的无线电力传输单元12和车辆侧上的无线电力接收单元13形成无线电力传输单元21。
[0017]无线电力传输单元21的无线电力传输单元12包括整流电路205、高频电路(交流发电单兀)204、电力传输稱合器201、无线电力传输侧控制器202和无线电力传输侧通信单兀203。无线电力传输单兀12与例如产生第一交流电的第一交流发电装置相对应。无线电力接收单元13包括无线电力接收侧通信单元302、电力接收耦合器301和二极管电桥(整流电路)303。
[0018]接地侧上的无线电力传输侧通信单元203执行与车辆侧上的无线电力接收侧通信单元302的无线通信。任何通信方法都对其适用。
[0019]无线电力传输单元12中的整流电路205连接至外部商用电源。虽然商用电源的频率和电压的值没有特别限制,但是它们是例如,50/60HZ的频率和100V-240V的电压。整流电路205从商用电源的交流电产生直流电,并且将直流电提供至高频电路204。
[0020]高频电路204在无线电力传输侧控制器202的控制下转换由整流电路205提供的直流电的电压和频率以产生高频交流电。例如,产生例如大约几百伏特和10kHz的交流电。用大约300V-400V的直流电压对电动车辆的蓄电池进行充电,并且电压值需要根据电池的充电状态进行调节。相反,50/60HZ的普通商用电源通常具有大约100V或者200V的交流电压。因此,首先由高频电路204产生大约几百伏特的高电压的高频交流电。高频电路204将所产生的高频交流电输入到电力传输稱合器201中。由无线电力传输侧控制器202执行的控制方法可以采用例如,将脉冲宽度调制信号(脉冲宽度调制栅极信号)输入到高频电路204中的配置。在该配置中,可能使用逆变器电路作为接收脉冲宽度调制栅极信号并且输出具有其脉冲宽度的高电压/高电流电力的高频电路204。
[0021]无线电力传输侧控制器202的操作(开/关)通过经由无线电力传输侧通信单元203与无线电力接收侧通信单元302之间的无线通信从车载控制器15接收命令来控制。
[0022]电力传输耦合器201根据从高频电路204输入的高频交流电产生高频电磁场,并且以非接触方式将高频交流电无线地传输至电力接收耦合器301。
[0023]电力接收耦合器301从电力传输耦合器201接收高频交流电,并且将其输出至二极管电桥303。二极管电桥303对来自电力接收耦合器301的高频交流电进行整流。二极管电桥303的输出电力经由连接部分601被输入到电压调节电路16中。另外,输入电容器17作为输入缓冲器被设置在电压调节电路16的输入侧上。二极管电桥303需要具有足以整流大约几百伏特高电压电力的反向击穿电压(即,电力处理能力)。
[0024]在这里,连接部分601并联地电连接二极管电桥303的输出端和有线电力传输单元14中的二极管电桥403的输出端(将要描述)。二极管电桥403也需要具有足以整流大约几百伏特高电压电力的反向击穿电压。二极管电桥303的输出电力还经由连接部分601被施加至二极管电桥403的输出侧,然而,即使当无线电力传输单元21工作时,通过向二极管电桥403提供足够的反向击穿电压,上述连接对二极管电桥403之前的电路没有影响或者影响非常有限。
[0025]有线电力传输单元14包括整流电路406、高频电路404、有线侧控制器401、隔离变压器402和二极管电桥(整流电路)403。整流电路406、高频电路(交流发电单元)404和有线侧控制器401形成例如产生第二交流电的交流发电装置。
[0026]整流电路406连接至外部商用电源。这可以通过例如,用户将插头插入电源的插座中来完成。商用电源的频率和电压的值没有特别限制,但是它们是例如,50/60HZ的频率和100V-200V的电压。整流电路406从商用电源的交流电产生直流电,并且将直流电提供至高频电路404。
[0027]高频电路404在有线侧控制器401的控制下转换由整流电路406提供的直流电的频率和电压以产生高频交流电。例如,产生例如40kHz和大约几百伏特的高电压交流电。由有线侧控制器401执行的控制方法可以采用例如,将脉冲宽度调制栅极信号输入到高频电路404中的配置。在该配置中,可能使用逆变器电路作为接收脉冲宽度调制栅极信号并且输出具有其脉冲宽度的高电压/高电流电力的高频电路404。通过从车载控制器15接收命令来控制有线侧控制器401的操作(开/关)。
[0028]高频电路404经由被设置用于防止事故(例如触电)的隔离变压器402将产生的高频交流电输出至二极管电桥403。二极管电桥403对输入的高频交流电进行整流以输出直流电。整流的直流电经由连接部分601被输入到电压调节电路16中。另外,输入电容器17作为输入缓冲器被设置在电压调节电路16的输入侧上。从二极管电桥403输出的电力还经由连接部分601被施加至二极管电桥303的该侧,然而如上所述通过向二极管电桥303提供足够的反向击穿电压,该施加对二极管电桥303之前的电路没有影响或者影响非常有限。特别地,由于没有将交流电压施加至此,因此电力接收耦合器不产生感应场。
[0029]在这里,车载控制器15执行控制以使得仅无线电力传输单元21的高频电路204和有线电力传输单元14的高频电路404中的一个产生高频电力。也就是说,执行控制以使得无线电力传输单元21和有线电力传输单元14不会同时工作。这防止了无线电力传输单元21和有线电力传输单元14同时产生高频电力。
[0030]因此,整流的电力仅从无线电力传输单元21和有线电力传输单元14中的一个被输入到电压调节电路16中。在这里,如上所述,由于二极管电桥303和二极管电桥403各自具有足够的反向击穿电压,即使当有线电力传输单元14或者无线电力传输单元21工作时,对不工作的电力传输单兀的一侧上的电路也没有影响。
[0031]以这种方式,通过利用用于整流的二极管的反向击穿电压,可以在不使用继电器的情况下实现电力接收器,该电力接收器可以以选择性方式执行有线充电和非接触充电。另外,通过共享连接部分601之后的电路(例如电压调节电路),可以减小其体积和成本。
[0032]在图2中示出了本实施例的系统的另一个配置示例。继电器19被添加至图1的车辆侧。继电器19将接地侧上的直流充电器连接至蓄电池18。直流充电器是例如,提供例如400V的高电压的快速充电器。车载控制器15A使用直流充电器控制从直流充电器到蓄电池18的充电。在这种情况下,车载控制器15A执行控制以使得继电器19被连接(导通)并且无线电力传输单元21和有线电力传输单元14两者都不工作。
[0033]图3示出了由无线电力传输侧控制器202和有线侧控制器401产生的脉冲宽度调制栅极信号(PWM栅极信号)的示例。无线电力传输侧控制器202和有线侧控制器401各自包括产生脉冲宽度调制栅极信号的脉冲宽度调制栅极信号发生器(调制信号产生单元)。
[0034]如图3 (A)所示,为了仅使无线电力传输单元21工作,无线侧控制器202的脉冲宽度调制栅极信号发生器向高频电路204输出信号,并且有线侧控制器401的脉冲宽度调制栅极信号发生器停止输出信号。这允许同时工作禁止控制,按照原样使用现有电压控制硬件。
[0035]如图3 (B)所示,为了仅使有线电力传输单元14工作,有线侧控制器401的脉冲宽度调制栅极信号发生器向高频电路404输出信号,并且无线电力传输侧控制器202的脉冲宽度调制栅极信号发生器停止输出信号。这允许同时工作禁止控制,按照原样使用现有电压控制硬件。[0036]进一步地,如图3 (C)所示,为了仅使图2所示的直流充电器工作,无线侧控制器202和有线侧控制器401两者都停止输出信号。
[0037]在图4中示出了根据第二实施例的充电系统。将省略类似于图1的说明,并且下面将主要描述不同于图1的那些说明。
[0038]不同于第一实施例,不需要无线电力传输侧控制器和无线电力传输侧通信单元,因此无线电力传输单元12A不包括它们。然而,无线电力传输单元12A可以具有包括它们的配置。同样地,也不需要无线电力接收侧通信单元,因此无线电力接收单元13A不包括无线电力接收侧通信单元。然而,无线电力接收单元13A可以具有包括无线电力接收侧通信单元的配置。此外,同样地,也不需要有线侧控制器,因此有线电力传输单元14A不包括有线侧控制器。然而,有线电力传输单元14A可以具有包括有线侧控制器的配置。由无线电力传输单兀21A的一侧上的二极管电桥303整流的电力经由输入电容器512被输出到电压调节电路511。由电压调节电路511调节(提高或者降低)的电力经由输入电容器517经由连接部分602被提供给蓄电池18。根据输入电力对蓄电池18进行充电。作为电压调节电路511,使用能够提高和降低电压的升压和降压斩波器。理由如下:电力传输耦合器与电力接收耦合器之间的位置关系可以根据无线电力传输单元21A的使用条件而改变。在这种情况下,由于等效负载条件改变,因此高频电路204A的适当的输出电压或者电流发生改变。因此,来自二极管电桥303的电力的电压可以显著地改变。因此,为了向蓄电池18输出适当的直流电压,除降压功能之外,还可能需要升压功能。为此,能够提高和降低电压的升高和降压斩波器被用作电压调节电路511。注意,所示升压和降压斩波器由NMOS晶体管513、线圈514和二极管516组成,但其不限于此配置。电压调节电路511接收例如脉冲宽度调制栅极信号,并且输出具有其脉冲宽度的高电压电力。
[0039]由有线电力传输单元14A的一侧上的二极管电桥403整流的电力通过输入电容器522被输出到电压调节电路521。作为电压调节电路521,使用降压斩波器,其具有更简单的配置并且比升压和降压斩波器更容易达到高效率。理由如下:输入到有线电力传输单元14A中的商用电源的电压是稳定的并且通常不会显著地改变。因此,由于来自二极管电桥403的电力的电压中的改变很小,因此电压调节电路521具有降压功能以向蓄电池输出适当的直流电压通常就足够了。为此,降压斩波器被用作电压调节电路521。注意,所示降压斩波器由NMOS晶体管523、二极管526和线圈524组成,但其不限于此配置。电压调节电路521接收例如脉冲宽度调制栅极信号,并且输出具有其脉冲宽度的高电压电力。
[0040]车载控制器615执行控制以使得仅电压调节电路511和电压调节电路521中的一个工作,也就是说,使得无线电力传输单元21A和有线电力传输单元14A不同时工作。利用该控制,电力仅从无线电力传输单兀2IA和有线电力传输单兀14A中的一个被输入到蓄电池18中。
[0041]在这里,连接部分601并联地电连接电压调节电路511的输出端和电压调节电路521的输出端。在该配置中,需要使用二极管电桥303和403,以及具有足够反向击穿电压的电压调节电路511和521。例如,它们各自需要具有足以整流大约几百伏特高电压电力的反向电压容忍度。由此,即使当电压调节电路521工作时,也就是说,当有线电力传输单元14A工作时,对二极管电桥303之前的电路也没有影响或者影响有限。此外,即使当电压调节电路511工作时,也就是说,当无线电力传输单元2IA工作时,对二极管电桥403之前的电路也没有影响或者影响有限。
[0042]如上所述,车载控制器615控制电压调节电路511和电压调节电路521的方法能够使用脉冲宽度调制栅极信号。为了仅使无线电力传输单元21A工作,如图3 (A)所示的脉冲宽度调制栅极信号被输出到电压调节电路511。为了仅使有线电力传输单元14A工作,如图3 (B)所示的脉冲宽度调制栅极信号被输出到电压调节电路521。这允许同时工作禁止控制,按照原样使用现有电压控制硬件。
[0043]另外,如第一实施例,第二实施例的充电系统还可以具有通过继电器从直流充电器对蓄电池18进行充电的配置。在该配置中,只有当直流充电器用于充电时,车载控制器615才执行控制,以使得继电器被连接并且无线电力传输单元21A和有线电力传输单元14A两者都不工作。
[0044]如上所述,根据本实施例,在不使用继电器的情况下,通过在电压调节电路511和电压调节电路521上执行同时工作禁止控制以及通过利用用于整流的二极管的反向击穿电压,能够实现能够以选择性方式执行有线充电和非接触充电两者的电力接收器。
[0045]尽管第一和第二实施例示出了有线充电和非接触充电之间转换的示例,但是本发明不限于此。例如,本发明能够可以适用于转换两种有线充电、转换两种非接触充电或者转换超过三种充电。
[0046]尽管已经描述了某些实施例,但是这些实施例仅以示例的方式呈现,并不旨在限制本发明的范围。实际上,本文描述的新颖实施例可以以多种其它形式来体现;此外,可以在不背离本发明精神的情况下,对本文描述的实施例的形式进行各种省略、替代和改变。所附权利要求书及其等同物旨在覆盖将落在本发明范围和精神内的此类形式或者修改。
【权利要求】
1.一种电力接收器,包括: 第一整流电路,用以对由第一交流发电装置产生的第一交流电进行整流; 第二整流电路,用以对由第二交流发电装置产生的第二交流电进行整流; 连接部分,用以并联地电连接所述第一整流电路的输出端和所述第二整流电路的输出端;以及 控制器,用以执行控制以使得所述第一交流发电装置和所述第二交流发电装置不同时工作。
2.根据权利要求1所述的电力接收器,包括: 电力接收耦合器,用以从所述第一交流发电装置无线地接收所述第一交流电;以及 所述第二交流发电装置, 其中所述第二交流发电装置通过利用外部电源产生所述第二交流电。
3.根据权利要求2所述的电力接收器,进一步包括用于产生脉冲宽度调制信号的调制信号发生单元,其中 所述外部电源提供交流电, 所述第二交流发电装 置包括: 第三整流电路,用以整流从所述外部电源提供的所述交流电;以及交流发电单元,用以根据所述脉冲宽度调制信号调制所述第三整流电路的输出电力以由此产生所述第二交流电,以及 所述控制器控制所述调制信号发生单元的工作。
4.根据权利要求1所述的电力接收器,进一步包括在所述连接部分之后布置的电压调节电路,所述电压调节电路用以调节经由所述连接部分输入的所述第一或者第二整流电路的输出电力的电压。
5.根据权利要求4所述的电力接收器,进一步包括用由所述电压调节电路调节的所述电压的电力进行充电的蓄电池。
6.根据权利要求1所述的电力接收器,其中所述第一整流电路和所述第二整流电路各自包括二极管电桥。
7.一种充电系统,包括: 根据权利要求1所述的电力接收器;以及 所述第一交流发电装置,其中 所述第一交流发电装置包括: 调制信号发生单元,用以产生脉冲宽度调制信号; 第四整流电路,用以整流从外部电源提供的交流电;以及 交流发电单元,用以根据由所述调制信号发生单元产生的所述脉冲宽度调制信号调制所述第四整流电路的输出电力以由此产生所述第一交流电,以及所述控制器控制所述第二调制信号发生单元的工作。
8.根据权利要求7所述的充电系统,其中 所述第一交流发电装置包括用于无线地传输所述第一交流电的电力传输耦合器,所述电力接收器包括用于从所述电力传输耦合器无线地接收所述第一交流电的电力接收耦合器,以及所述第一整流电路对由所述电力接收耦合器接收的所述第一交流电进行整流。
9.一种电力接收器,包括: 第一整流电路,用以对由第一交流发电装置产生的第一交流电进行整流; 第一电压调节电路,用以调节所述第一整流电路的输出电力的电压; 第二整流电路,用以对由第二交流发电装置产生的第二交流电进行整流; 第二电压调节电路,用以调节所述第二整流电路的输出电力的电压; 连接部分,用以并联地电连接所述第一电压调节电路的输出端和所述第二电压调节电路的输出端;以及 控制器,用以执行控制以使得所述第一电压调节电路和所述第二电压调节电路不同时工作。
10.根据权利要求9所述的电力接收器,其中 所述控制器仅向所述第一电压调节电路和所述第二电压调节电路中的一个提供脉冲宽度调制信号, 所述第一电压调节电路根据从所述控制器提供的所述脉冲宽度调制信号对所述第二整流电路的输出电力的所述电压进行调节,以及 所述第二电压调节电路根据从所述控制器提供的所述脉冲宽度调制信号对所述第二整流电路的输出电力的所述电压进行调节。
11.根据权利要求9所述的电力接收器,进一步包括在所述连接部分之后布置并且用经由所述连接部分输入的所述第一或者第二电压调节电路的输出电力充电的蓄电池。
12.根据权利要求9所述的电力接收器,其中所述第一整流电路和所述第二整流电路各自包括二极管电桥。
【文档编号】H02J7/00GK104037951SQ201410079563
【公开日】2014年9月10日 申请日期:2014年3月6日 优先权日:2013年3月7日
【发明者】尾林秀一, 大高章二, 司城徹 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1