对电话线路的过电压保护的制作方法

文档序号:12750110阅读:165来源:国知局
对电话线路的过电压保护的制作方法与工艺

本申请要求于2015年7月13日递交的第1556647号法国专利申请的优先权权益,其内容以法律所允许的最大程度通过引用的方式整体并入于此。

技术领域

本公开涉及用于保护被连接到电话线路的电子电路免受例如由于闪电所致的过电压。



背景技术:

图1示出了与第8,687,329号美国专利(通过引用并入)的图2相对应的被连接到电话线路的电子电路的一部分的结构。电子电话信号发送和接收电路1、或者SLIC(“Subscriber Line Interface Circuit”、“订户线接口电路”)被连接到由在电压VTIP和VRING处的两个导体3和5形成的电话线路。例如由于闪电所致的突发过电压(overvoltage)可以在导体3和5上发生并且可能损坏电路1。导体3、5被连接到保护结构7,该保护结构在导体中之一上的电压从两个阈值电压限定的区间出来时能够朝着接地9对过电压放电。电压阈值由具有正电势VH的电源电压源11和具有负电势VL的电源电压源13来限定。保护结构7包括两个阴极-栅极晶闸管(thyristor)15和17,其阴极相应地被连接到导体3和5,并且具有接地的阳极。晶闸管15和17的栅极相应地被连接到NPN类型的两个晶体管19和21的射极,该两个晶体管19和21的集电极被连接到接地9并且其基极被连接到具有负电势VL的电源13。保护结构7还包括两个阳极-栅极晶闸管23和25,其阳极相应地被连接到导体3和5,并且其阴极被连接到接地9。晶闸管23和25的栅极相应地被连接到两个PNP类型的晶体管 27和29的射极,该两个晶体管27和29的集电极被连接到接地9并且其基极被连接到具有正电势VH的电源11。

在正常操作中,导体3和5的电压维持在VL与VH之间。所有晶体管以及所有晶闸管是关断的。

在导体3上的低于负电势VL的负过电压的情况中,晶体管19的基极的电势变得大于其射极的电势,并且晶体管19导通,这导通晶闸管15。在线路上的过电压全过程上,晶闸管15维持导通并且向接地9对过电压放电。

在线路5上的低于负电势VL的负过电压的情况中,该操作与在针对线路3上的负过电压的情况所描述的操作相同,并且涉及(imply)晶闸管17和晶体管21。

类似地,在高于正电势VH的正过电压出现在线路3或5上的情况中,该操作类似于负过电压的情况。在线路3上的正过电压涉及阳极-栅极晶闸管23和PNP晶体管27。在线路5上的正过电压涉及阳极-栅极晶闸管25和PNP晶体管29。

在过电压结束之后,施加的晶闸管仅在流过其的电流变得低于其保持电流时关断。晶闸管的保持电流因而应当高于能够流过电话线路的最大电流。该最大电流例如在150mA的数量级。为了获得高保持电流,该晶闸管设置有射极短路电路,诸如第5,274,524号美国专利中所描述的(通过引用并入)。

射极短路晶闸管的缺点在于它们具有低敏感度,也就是说,它们需要高栅极电流来导通。另外在不能存在过电压的情况中,电流应当不能够在保护结构与电话线路的导体之间流动,该电话线路具有在从VL到VH的范围内的电压。现在,在晶闸管的每个晶闸管中,射极短路电路的存在使得电流能够在栅极与被连接到晶闸管的电话线路的导体之间流动。

因此,晶体管被提供以使得在晶体管的射极与基极之间的结在不存在过电压时阻挡电流的流动。该晶体管还被用于放大由具有电势VL和VH的电源供应的电流以达到导通晶闸管所必需的栅极电流。



技术实现要素:

这里期望提供一种用于保护电话线路免于过电压的结构,其至少部分地克服了一些现有解决方案的缺点。

因此,实施例提供了一种用于保护SLIC电话线路免于低于负阈值或者高于正阈值的过电压的结构,包括至少一个晶闸管,被连接在电话线路的每个导体与参考电势之间,其中对于所有晶闸管,与在栅极侧的电极对应的金属通过金属的整个表面与对应的半导体区域相接触;并且该栅极被直接连接到限定所述阈值之一的电压源。

根据实施例,适用于其中正阈值为零的情况,电话线路的每个导体被耦合到一二极管的阳极和一阴极-栅极晶闸管的阴极,所述二极管的阴极和所述晶闸管的阳极被耦合到参考电势;共用负电压源,被连接到两个晶闸管的两个栅极。

根据实施例,每个线路被连接到一阴极-栅极晶闸管的阴极和一阳极-栅极晶闸管的阳极,所述阴极-栅极晶闸管的阳极和所述阳极-栅极晶闸管的阴极被耦合到参考电势;所述阴极-栅极晶闸管的栅极被直接连接到限定负阈值的共用负电压源;并且所述阳极-栅极晶闸管的栅极被直接连接到限定正阈值的共用正电压源。

根据实施例,晶闸管和二极管被形成在同一单片部件中。

根据实施例,所有晶闸管被形成在同一单片部件中。

根据实施例,电压源中的至少一个电压源是SLIC的电源。

根据实施例,电压源中的至少一个电压源包括至少一个电池。

附图说明

以上及其他特征和优点将在以下参照附图对具体实施例的非限制性描述中详细论述,在附图中:

先前描述的图1示出了被连接到电话线路的保护免于低于负阈值或者高于正阈值的过电压的电路;

图2A示出了被连接到电话线路的保护免于低于负阈值或者高于 正阈值的过电压的电路的实施例;

图2B是实现图2A的电路的单片部件的示例的截面图;

图3A示出了根据另一实施例的被连接到电话线路的保护免于低于负阈值或者高于正阈值的过电压的结构;

图3B是实现图3A的电路的单片部件的示例的截面图。

具体实施方式

在不同的附图中,相同的元件用相同的附图标记来表示,并且进另外各个附图未按比例绘制。处于清楚的原因,仅已示出并详细描述对于理解所描述的实施例有用的那些元件。

在以下描述中,在对说明绝对位置,诸如“高”、“低”、“左手”、“右手”之类的术语做出引用时,参照在正常使用位置上的附图的定向。

图2A示出了在SLIC侧的被连接到电话线路的保护免于低于负阈值或者高于正阈值的过电压的电路的实施例。线路的两个导体3和5(在电压VTIP和VRING处)被连接到保护结构30。结构30包括两个阴极-栅极晶闸管32、34,阴极-栅极晶闸管32、34具有栅极36和38,并且其阳极被连接到接地GND。晶闸管32的阴极40被连接到导体3和晶闸管34的阴极42。结构30还包括两个阳极-栅极晶闸管44和46,阳极-栅极晶闸管44和46具有栅极48和50,并且其阴极被连接到接地GND。晶闸管44的阳极52被连接到导体3,并且晶闸管46的阳极54被连接到导体5。

正电势VH由电压源56供应并且负电势VL由电压源58供应。每个电压源可以当将其电势保持在接近VH或VL的值处时供应或者吸收电流。阴极-栅极晶闸管的栅极36和38被直接连接到电压源58,并且阳极-栅极晶闸管的栅极48和50被直接连接到电压源56。电压源56和58可以有可能是SLIC的电源,例如是电池或者稳定化的直流电源。

所有晶闸管被剥夺射极短路电路,也就是说,在每个晶闸管中, 与在栅极侧的主电极对应的金属区域通过其整个表面而与对应的半导体区域相接触,并且不是与具有被连接到其的栅极的层部分接触。

在正常操作中,导体3和5的电压保持在VL与VH之间,并且晶闸管是关断的。

如果在导体3上发生比VL要负的负过电压,则阴极40的电压变得比栅极电压36更低。电流从栅极36流向阴极40。晶闸管32不具有射极短路电路,它是高度敏感的并且迅速导通,这使得能够对过电压向接地放电。

在过电压结束时,第一晶闸管32仍导通,并且传导从接地流向导体3的电流。虽然晶闸管不包括射极短路电路,但是它的保持电流时低的。因此,流过晶闸管的电流通常维持得比其保持电流更高。然而,由于晶闸管栅极被维持在低于阴极电势的电势VL处,因此源自接地的电流的部分朝着电压源58被偏离(deviate)而不是朝着阴极流动,这关断晶闸管。换言之,在晶闸管传导期间存在于栅极层中的电荷被电压源58吸收。由于电荷不再可用于维持晶闸管导通,因此晶闸管关断。这一操作是可能的,这是因为电压源58是能够当吸收电流的部分时维持电势VL的实际电压源。如果电势VL例如由如两个上面提到的专利中描述的齐纳(Zener)二极管限定电势VL,则这一操作会是不可能的。

在线路5上的比电势VL负的负过电压的情况中,操作是一样的并且涉及阴极-栅极晶闸管34。

在线路3或5上的比VH大的正过电压的情况中,操作是相似的,并且涉及对应的阳极-栅极晶闸管44或46。

在上文中,应当理解到过电压与电势值的比较可以在前向二极管电压降以内。

图2B是使用图2A的电路的单片部件的示例的截面图。该单片部件由轻掺杂的N型半导体衬底60形成,半导体例如为硅。该部件的前表面在截面图的顶部并且后表面在底部。该部件被分为相对于绘图轴的两个对称的部分。左半边包含晶闸管32和44,并且右半边包含 晶闸管34和46。这里仅详述左半边,右半边是对称的并且具有一样的操作。

晶闸管具有垂直结构并且在该部件的后部,金属62限定参考电势GND。

阳极-栅极晶闸管44位于在前表面处的金属64与金属62之间。它包括与金属64相接触的P型阳极区域66、不与金属64直接接触并且包含区域66的N型栅极区域68、包含区域68的P型阱70,以及与金属62接触的重掺杂的N型阴极层72。阳极区域66与栅极区域68之间的P/N雪崩电压大于VH。栅极区域68经由重掺杂的N型区域74与金属76相接触。

阴极晶闸管32位于前表面金属78与金属62之间。它包括与金属78相接触的N型阴极区域80、不与金属78直接接触并且包含区域80的P型栅极区域82、N型衬底60的一部分、经由重掺杂的P型阳极层86与金属62相接触的P型后表面阱84。在栅极区域82与阴极区域80之间的P/N雪崩电压大于VL。栅极区域82经由重掺杂的P型区域88与金属90相接触。常规地,该部件包括沟道阻止区域92。

金属64和78意在被一起连接到导体3(VTIP)。

晶闸管44的栅极金属76意在与具有电势VH的电压源56直接接触。晶闸管32的栅极金属90意在与具有电势VL的电压源58直接接触。

图3A示出了保护结构的另一实施例,该保护结构适用于其中正阈值为0(也就是说,在接地GND的电势处)到前向二极管电压降以内的情况。电话线路的两个导体3和5被连接到保护结构100。负电势VL由电压源58供应。结构100包括按与前文所描述的保护结构30相同的方式连接的晶闸管32和34。结构100还包括二极管102和104,该二极管102和104其阳极相应地被连接到导体3和5并且其阴极被连接到接地GND。

在负过电压的情况中,保护结构100的操作与图2A的保护结构 的操作相似。在导体3上的大于PN结的前向电压降的正过电压的情况中,该过电压通过二极管102被偏离到接地。该操作与在导体5上的正过电压的情况中的二极管104相似。

图3B是使用图3A的电路的单片部件的示例的截面图。该部件时相对于绘图轴对称的,并且仅将描述左手边部分。这一部件由轻掺杂的N型半导体衬底60形成,设置有后表面金属62。左手边部分包括二极管102和晶闸管32,并且右手边部分包括二极管104和晶闸管34。晶闸管32和34以与图2B中描述的方式来形成。二极管102被形成在前表面金属106和金属62之间,其阳极区域对应于经由重掺杂的P型层110与金属106相接触的P型阱108,其阴极区域对应于衬底60的一部分和重掺杂的N型层112。金属106与金属78相接触并且意在被连接到导体3。

本文所描述的其中晶闸管没有射极短路电路的保护结构的优点在于操作不需要晶体管,这使得能够减少部件表面积,并且没有外部部件(二极管或晶体管),这减少了成本和批量(bulk)。

另一优点在于不包括射极短路电路的晶闸管是高度敏感的,这允许了快速启动并且因而改善了保护质量。

此外,所述晶闸管的特性可以独立于能够流过电话线路的最大电流来进行选择。因而,具有不同特性的电话线路可以由具有相同特性的保护结构来保护。

已经描述的具体实施例。本领域技术人员能够想到各种变更、修改和改进。特别地,虽然已经描述由N型衬底形成单片部件,本领域技术人员应当清楚单片部件可以由P型衬底形成。

变更、修改和改进意在为本公开的一部分,并且意在本发明的精神和范围之内。因此,以上描述仅通过示例方式做出并且不意在为限制性的。本发明仅在以下权利要求书所限定的及其等同物中进行限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1