一种可调虚拟阻抗的孤岛微网逆变器控制方法与流程

文档序号:14078369阅读:1276来源:国知局
一种可调虚拟阻抗的孤岛微网逆变器控制方法与流程

本发明涉及分布式发电及电力电子技术领域,特别是一种基于可调虚拟阻抗的孤岛微网逆变器控制方法。



背景技术:

微网的发展越来越得到各个国家的重视,其运用越来越广泛,在各个国家的建设中也愈显重要。微网包含分布式电源,各个电源通过逆变器接入微网,将自身生成的电能注入微网,所以如何控制逆变器以保障微网稳定运行成为必须解决的问题。各个逆变器之间相互并联,各模块的特性应尽量保持一致,它们的控制性能直接影响到微电网的供电质量和系统可靠性。

在微电网孤岛工作模式下,此时系统的母线电压是由微网内的分布式电源来调节的,必须维持电压幅值和频率稳定的同时实现功率的准确分配,所有分布式电源应根据自己的本地信息进行自主调节。根据即插即用与“对等”的控制思想和设计理念,以下垂控制为基础的逆变器并联技术由于降低了对通讯可靠性的依赖而在微网中得到了广泛的应用。分布式电源只需要检测接入点的信息,通过调整自身输出电压的频率和幅值来控制输出的有功和无功功率,无需通信环节,因此具有比较高的可靠性和灵活性。有文献假定微电网线路阻抗呈感性,基于下垂控制策略对微电网控制系统进行了整体设计。然而,接入中低压电网的微电网的线路阻抗一般呈复阻抗特性,逆变器的输出阻抗特性也依赖于所采取的控制策略和系统参数,而且分布式电源和负载的分布导致线路阻抗不平衡。线路阻抗不平衡使得各逆变器的接入点电压存在差异,导致逆变器的无功下垂控制偏离理想运行点,逆变器间存在环流和功率分配不均现象,当微电网的负荷突变时,环流会增加变流器过电流故障的可能性。因此,采用传统下垂控制的微电网不但无法有效实现功率解耦和均分,同时系统的稳态和动态性能也会受到影响。

为实现微网系统在线路阻抗不平衡情况下的稳定运行,有学者在系统中串联电感或电阻,不但增加额外的装置,增加了系统的建设费用还会引起电压降落。有学者提出在下垂控制中结合虚拟阻抗控制改善分布式电源之间环流问题,其中的虚拟阻抗大于微电网分布式电源的输出阻抗和线路阻抗,从而改变分布式电源总体等效阻抗。但此种方法中的虚拟阻抗为定值,当线路阻抗受各种因素影响而阻抗值发生变化时,固定的虚拟阻抗显然不能达到环流抑制的目的。



技术实现要素:

本发明所要解决的技术问题是,针对现有技术不足,提供一种基于可调虚拟阻抗的孤岛微网逆变器控制方法。

为解决上述技术问题,本发明所采用的技术方案是:一种可调虚拟阻抗的孤岛微网逆变器控制方法,包括以下步骤:

1)获取微网逆变器lc滤波器的a相电容电压ucan,将ucan作为锁相环pll电路的输入信号,获取参考电压角频率ωn;

2)参考电压发生器得到正弦信号sinωnt、sin(ωnt-120°)和sin(ωnt+120°),并乘以给定参考电压幅值un,得到三相参考电压ucrefabcn=(ucrefan,ucrefbn,ucrefcn),即;

t为时间量;

3)将三相参考电压从三相静止abc坐标系转换到静止两相坐标系,得到urefαβn=(urefαn,urefβn),其中转换矩阵为

4)给定三相交流公共点电压为uacabcn=(uacan,uacbn,uaccn),将三相交流公共点电压从三相静止abc坐标系转换到静止两相坐标系,得到uacαβn=(uacαn,uacβn);

5)检测三相线路电流iabcn=(ian,ibn,icn),将三相线路电流从三相静止abc坐标系转换到静止两相坐标系,得到两相线路电流iαβn=(iαn,iβn);

6)在初始状态,即线路阻抗zline没有发生变化,各条支路的线路阻抗相等的情况下,获得两相参考线路电流irefαβn=(irefαn,irefβn);

7)设置最终线路阻抗为zlineαβn=(δzvirαn,δzvirβn);

8)将最终线路阻抗乘以两相线路电流iαβn,得到两相虚拟阻抗电压uvirαβn=(uviαrn,uviβrn);

9)将两相参考电压urefαβn与两相交流公共点电压ucαβn相减,差值再减去两相虚拟阻抗电压uvirαβn,得到的信号送入pr控制器;

10)pr控制器输出变化的两相参考线路电流δirefαβn,将变化的两相参考线路电流δirefαβn与两相线路电流i0αβn相减,然后送入p控制器,将得到的信号从两相的αβ坐标系下转换到三相abc坐标系,结果送入pwm,从而实现对微网逆变器中功率器件的通断控制。

所述pr控制器中的比例系数设置为0.05,谐振系数为93。

与现有技术相比,本发明所具有的有益效果为:本发明实现了多台逆变器并联运行时的即插即用和环流抑制。各台逆变器根据其负载的大小自动调节各自虚拟阻抗大小,提高了逆变器的动态性能,实现了输出电压自动跟随参考电压和逆变器之间环流的抑制。当某台逆变器出现故障,其余逆变器仍然可以继续工作,提高了系统的稳定裕度。

附图说明

图1是孤岛微网的等效电路图;

图2是基于可调虚拟阻抗的逆变器控制方法总体控制框图。

具体实施方式

图1为孤岛微网的等效电路图。系统主要参数如下:各个逆变器的直流侧电压值为800v,控制每个逆变器输出电压的峰值为311v,频率为50hz。负载电阻值为10ω,电感值为1mh。线路阻抗为rl=2ω,xl=5mh。lc滤波器中ln为滤波电感,cn为滤波电容。

图2是基于可调虚拟阻抗的逆变器控制方法总体控制框图,即图1中各个逆变器对应控制器的控制算法。具体实施步骤如下:

1)利用电压互感器获得微网逆变器输出电压经过lc滤波器的a相电容电压ucan,经过锁相环pll电路,获取参考电压角频率ωn;

2)参考电压发生器得到正弦信号sinωnt、sin(ωnt-120°)和sin(ωnt+120°),并乘以给定参考电压幅值un,得到三相参考电压ucrefabcn=(ucrefan,ucrefbn,ucrefcn),即

3)将三相参考电压从三相静止abc坐标系转换到静止两相坐标系,得到urefαβn=(urefαn,urefβn),其中转换矩阵为

并且有c23=c32-1

4)给定三相交流公共点电压为uacabcn=(uacan,uacbn,uaccn),即

将三相交流公共点电压从三相静止abc坐标系转换到静止两相坐标系,得到uacαβn=(uacαn,uacβn);

5)检测三相线路电流iabcn=(ian,ibn,icn),将三相线路电流从三相静止abc坐标系转换到静止两相坐标系,得到iαβn=(iαn,iβn);

6)在初始状态,即线路阻抗zline没有发生变化,各条支路的线路阻抗相等的情况下,获得两相参考线路电流irefαβn=(irefαn,irefβn),即

7)线路阻抗受各种外部因素影响阻抗值发生变化,设置虚拟阻抗为

则最终线路阻抗为zlineαβn=(δzvirαn,δzvirβn),即

8)将最终线路阻抗乘以两相线路电流iαβn,得到两相虚拟阻抗电压uvirαβn=(uvirαn,uvirβn);

9)将两相参考电压urefαβn与两相交流公共点电压ucαβn相减,差值再减去两相虚拟阻抗电压uvirαβn,得到的信号送入pr控制器,输出变化的两相参考线路电流δirefαβn=(δirefαn,δirefβn);所用pr控制器中的比例系数设置为0.05,谐振系数为93;

10)将变化的两相参考线路电流δirefαβn与两相线路电流iαβn相减,然后送入p控制器,将得到的信号从两相的αβ坐标系下转换到三相abc坐标系,结果送入pwm,从而实现对微网逆变器中功率器件的通断控制;所用p控制器中的比例系数为0.08。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1