功率变换装置与功率变换方法与流程

文档序号:14574264发布日期:2018-06-02 00:55阅读:340来源:国知局
功率变换装置与功率变换方法与流程

本发明有关于一种功率变换装置与功率变换方法,且特别是有关于一种双向隔离的功率变换装置与功率变换方法。



背景技术:

随着新能源领域的发展,包括太阳能领域、风力发电领域等,新能源发电在整体发电市场的占有率越来越高。然而,新能源发电受制于天气状况,以致其发电量的波动较大,因此对电网的影响很大。为解决新能源发电对电网造成的不良影响,可采用储能装置以作为新能源发电站与电网间的缓冲装置,进而降低新能源发电输出的电量波动对电网造成的影响。

另一方面,交通领域的电气化,包括轨道交通,电动汽车甚至未来的电推进舰船和飞行器都需要配置储能装置,由此可知未来对于储能装置的需求将与日俱增。在应用储能装置来进行电能的储存时,需要对储能装置内的电池进行充放电,若在部分状况下,必须由同一功率变换器来进行上述电池的充放电,则需要一种可靠的双向功率变换器来进行电池的充放电。

然而,先前的双向功率变换器若以输入侧的转换器来同时进行电源转换与双向隔离,其重量与体积均会较大,且价格会较为昂贵。此外,若以输出侧的转换器来同时进行电源转换与双向隔离,则会有设计不易与效率低落的问题。

由此可见,上述现有的方式,显然仍存在不便与缺陷,而有待改进。为了解决上述问题,相关领域莫不费尽心思来谋求解决之道,但长久以来仍未发展出适当的解决方案。



技术实现要素:

发明内容旨在提供本揭示内容的简化摘要,以使阅读者对本揭示内容具备基本的理解。此发明内容并非本揭示内容的完整概述,且其用意并非在指出本发明实施例的重要/关键元件或界定本发明的范围。

本发明内容的一目的是在提供一种功率变换装置与功率变换方法,藉以改善先前技术的问题。

为达上述目的,本发明内容的一技术方案关于一种功率变换器。功率变换器包含交流/直流转换器、直流/直流转换器及直流/直流隔离转换器。交流/直流转换器用以将交流电转换为第一直流电,或将第一直流电转换为交流电。直流/直流转换器用以将第一直流电转换为第二直流电,或将第二直流电转换为第一直流电。直流/直流隔离转换器耦接于交流/直流转换器与直流/直流转换器之间,用以进行交流/直流转换器与直流/直流转换器间的双向隔离。

在一实施例中,直流/直流隔离转换器包含高频直流/直流隔离转换器。

在另一实施例中,直流/直流隔离转换器包含LLC非调节直流/直流隔离转换器。

于再一实施例中,交流/直流转换器包含D型三电平转换器、T型三电平转换器及二电平转换器其中至少一者。

在又一实施例中,直流/直流转换器包含多相升降压型转换器。

为达上述目的,本发明内容的另一技术方案关于一种功率变换方法,其应用于功率变换装置中。此功率变换装置包含交流/直流转换器、直流/直流隔离转换器及直流/直流转换器。直流/直流隔离转换器耦接于交流/直流转换器与直流/直流转换器之间。上述功率变换方法包含:藉由交流/直流转换器将交流电转换为第一直流电,或将第一直流电转换为交流电;藉由直流/直流转换器将第一直流电转换为第二直流电,或将第二直流电转换为第一直流电;以及藉由直流/直流隔离转换器进行交流/直流转换器与直流/直流转换器间的双向隔离。

在一实施例中,直流/直流隔离转换器进行交流/直流转换器与直流/直流转换器间的双向隔离的步骤包含以下流程:藉由高频直流/直流隔离转换器进行交流/直流转换器与直流/直流转换器间的双向隔离。

在另一实施例中,直流/直流隔离转换器进行交流/直流转换器与直流/直流转换器间的双向隔离的步骤包含以下流程:藉由LLC非调节直流/直流隔离转换器进行交流/直流转换器与直流/直流转换器间的双向隔离。

于再一实施例中,藉由交流/直流转换器将交流电转换为第一直流电,或将第一直流电转换为交流电的步骤包含以下流程:藉由D型三电平转换器、T型三电平转换器及二电平转换器的其中至少一者,以将交流电转换为第一直流电,或将第一直流电转换为交流电。

在又一实施例中,藉由直流/直流转换器将第一直流电转换为第二直流电,或将第二直流电转换为第一直流电的步骤包含以下流程:藉由多相升降压型转换器将第一直流电转换为第二直流电,或将第二直流电转换为第一直流电。

因此,根据本发明的技术内容,本发明实施例藉由提供一种功率变换装置与功率变换方法,藉由上述元件设计或操作方式,使其成为适应性广泛的双向功率变换装置,而得以适应很宽的电池电压范围和电网电压范围,并且具有转换效率高及输入输出端间的安全隔离。

在参阅下文实施方式后,本发明所属技术领域中的相关技术人员当可轻易了解本发明的基本精神及其他发明目的,以及本发明所采用的技术手段与实施态样。

附图说明

图1为依照本发明一实施例绘示一种功率变换装置的示意图。

图2为依照本发明另一实施例绘示一种如图1所示的功率变换装置的交流/直流转换器的详细电路示意图。

图3为依照本发明再一实施例绘示一种如图1所示的功率变换装置的交流/直流转换器的详细电路示意图。

图4为依照本发明又一实施例绘示一种如图1所示的功率变换装置的交流/直流转换器的详细电路示意图。

图5为依照本发明一实施例绘示一种功率变换装置的示意图。

图6为依照本发明另一实施例绘示一种如图1或图5所示的功率变换装置的直流/直流隔离转换器的详细电路示意图。

图7为依照本发明再一实施例绘示一种如图1或图5所示的功率变换装置的直流/直流转换器的详细电路示意图。

图8为依照本发明又一实施例绘示一种如图5所示的功率变换装置的详细电路示意图。

图9为依照本发明一实施例绘示一种功率变换方法的流程示意图。

其中,附图标记

100、100A:功率变换装置

110、110A:交流/直流转换器

120、120A:直流/直流隔离转换器

130、130A:直流/直流转换器

900:功率变换方法

910~930:步骤

具体实施方式

根据惯常的作业方式,图中各种特征与元件并未依比例绘制,其绘制方式是为了以最佳的方式呈现与本发明相关的具体特征与元件。此外,在不同图式间,以相同或相似的元件符号来指称相似的元件/部件。

为了使本揭示内容的叙述更加详尽与完备,下文针对了本发明的实施态样与具体实施例提出了说明性的描述;但这并非实施或运用本发明具体实施例的唯一形式。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,亦可利用其他具体实施例来达成相同或均等的功能与步骤顺序。

除非本说明书另有定义,此处所用的科学与技术词汇的含义与本发明所属技术领域中具有通常知识者所理解与惯用的意义相同。此外,在不和上下文冲突的情形下,本说明书所用的单数名词涵盖该名词的复数型;而所用的复数名词时亦涵盖该名词的单数型。

另外,关于本文中所使用的“耦接”,可指二或多个元件相互直接作实体或电性接触,或是相互间接作实体或电性接触,亦可指二或多个元件相互操作或动作。

图1为依照本发明一实施例绘示一种功率变换装置100的示意图。如图所示,功率变换装置100包含交流/直流转换器110、直流/直流隔离转换器120及直流/直流转换器130。于连接关系上,直流/直流隔离转换器120耦接于交流/直流转换器110与直流/直流转换器130之间。

于操作上,交流/直流转换器110用以将交流电转换为直流电,以完成非隔离的交流/直流转换。直流/直流隔离转换器120用以进行交流/直流转换器110与直流/直流转换器间130的双向隔离,于此,直流/直流隔离转换器120是用以实现线路间的高频隔离,基本上不需要调节电压,只完成双向隔离任务。接着,经交流/直流转换器110转换而得的直流电提供给直流/直流转换器130,由直流/直流转换器130将具有第一电压的直流电转换为具有第二电压的直流电,在此,直流/直流转换器130完成了输出电压的大范围调节,同时实现各种输出电压下的高效率转换。

再者,功率变换装置100可作为双向功率变换装置,以于必要状况下对外部装置,例如储能装置内的电池进行充放电,因此,功率变换装置100的直流/直流转换器130更可将具有第二电压的直流电转换为具有第一电压的直流电,换言之,直流/直流转换器130可进行双向转换。此外,功率变换装置100的交流/直流转换器110更可将具有第一电压的直流电转换为交流电,换言之,交流/直流转换器110可进行双向转换。

如此一来,由于本发明的功率变换装置100可作为双向功率变换装置,且其输入侧的转换器(如交流/直流转换器110)只完成本身的转换任务,不额外负责隔离任务,因此,其重量与体积相较于先前技术来说均可缩减,且价格会较为低廉。另外,功率变换装置100的输出侧的转换器(如直流/直流转换器130)亦仅完成本身的转换任务,不额外负责隔离任务,据此,相较于先前技术来说,其设计较为容易且转换效率较高。此外,功率变换装置100还可藉由直流/直流隔离转换器120实现线路间的高频隔离,因此,藉由上述元件设计与配置,使功率变换装置100成为适应性广泛的双向功率变换装置,而得以适应很宽的电池电压范围和电网电压范围,并且具有转换效率高及输入输出端间的安全隔离。

图2~图4为依照本发明另一实施例绘示一种如图1所示的功率变换装置100的交流/直流转换器110的详细电路示意图。如图2所示,交流/直流转换器110可采用D型三电平转换器(D-type three level inverter/converter)来实现。如图3所示,交流/直流转换器110可采用T型三电平转换器(T-type three level inverter/converter)来实现。如图4所示,交流/直流转换器110可采用二电平转换器(two level inverter/converter)来实现。于本实施例中,交流/直流转换器110通过电磁干扰滤波器(EMI filter)的输入端R、S和T接收三相交流电并将三相交流电转换为直流电,该直流电从直流母线正极端B+和直流母线负极端B-输出。然本发明不以上述实施例为限,其仅用以例示性地说明本发明的实现方式之一。

图5为依照本发明一实施例绘示一种功率变换装置100A的示意图。如图所示,功率变换装置100A的交流/直流转换器110A可采用三电平转换器(three level inverter/converter)来实现。直流/直流隔离转换器120A可采用LLC非调节直流/直流隔离转换器(DCX)来实现。直流/直流转换器130A可采用单相或多相升降压型转换器(one or multi-phase buck boost converter)来实现。图5所示的功率变换装置100A的操作方式类似于图1所示的功率变换装置100A的操作方式,为使说明书简洁,于此不作赘述。

图6为依照本发明另一实施例绘示一种如图1或图5所示的功率变换装置100/100A的直流/直流隔离转换器120/120A的详细电路示意图。如图所示,功率变换装置100/100A的直流/直流隔离转换器120/120A可采用LLC非调节直流/直流隔离转换器(DCX)来实现。

图7为依照本发明再一实施例绘示一种如图1或图5所示的功率变换装置100/100A的直流/直流转换器130/130A的详细电路示意图。如图所示,直流/直流转换器130/130A可采用多相升降压型转换器(multi-phase buck boost converter)来实现。

在一实施例中,若功率变换装置100/100A的直流/直流隔离转换器120/120A与直流/直流转换器130/130A采用串联的两级D2D(直流/直流(DC/DC))方案,直流/直流隔离转换器120/120A采用LLC非调节直流/直流隔离转换器(DCX)(开环控制,工作频率保持不变,同时工作频率和理论上的谐振频率基本相同,如两者的偏差小于10%),或者虽然是死循环控制,但是通过设定特定的输出电压参考,使得工作频率也是非常接近LLC的谐振频率(如fs=fresonant±10%);直流/直流转换器130/130A采用多相升降压型转换器(multi-phase buck boost converter),通过脉冲宽度调变(Pulse Width Modulation,PWM)的控制方法,实现输出电压的调节和效率的最优化。

相较于本发明采用三级架构(交流/直流转换器110、直流/直流隔离转换器120及直流/直流转换器130)的线路,先前技术中采用两级架构的线路会有以下问题。假设变换器的输出电压变化率H=2,输入电压固定,则于设定在输出电压为最大值Vmax时,该电路的有效占空比为90%,另外的10%为原边电流换向的时间,那么,在输出电压为最小值Vmin时,该电路的有效占空比为45%,另外的45%为线路续流的时间,还有10%为原边电流换向的时间。问题的重点在于这45%的线路续流的时间内,电感电流的续流路径不仅要经过副边的同步整流金氧半场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),还有变压器的原副边绕组,还有原边等效的续流电流流过原边的金氧半场效应晶体管和金氧半场效应晶体管的反并联二极管以及原边的串联电感器,正因为电感电流续流的路径中有许多器件,所以会产生比较大的通态损耗。而且很显然,续流时间占比越大,整体损耗越大,效率就越低。所以当输出电压比较低的时候,电路的有效占空比就越低(电路的有效占空比和输出电压基本上是成正比的),所以效率就比较低。

本发明采用三级架构的线路可改善上述问题,说明如后。假设本发明的升降压型转换器的输出电压变化率H=2,输入电压固定,则于设定在输出电压为最大值Vmax时,该电路的有效占空比为95%,这个线路不存在原边电流换向的时间,那么,在输出电压为Vmin时,该电路的有效占空比为47.5%,另外的52.5%为电感电流续流的时间。对于升降压型转换器而言,在电感电流续流过程中,电流只流过一个续流金氧半场效应晶体管,相比于先前技术,续流过程中的损耗大大减小了,因此在同样比较低的输出电压下,升降压型转换器的效率远高于移相全桥线路。通常在上述假设的例子中,当H=2,输出电压Vmin=0.5Vmax的情况下,升降压型转换器的效率会高过移相全桥线路2.5%~3%,在某些应用如H=10,输出电压Vmin=0.1Vmax的情况下,升降压型转换器的效率甚至会高过移相全桥线路10%。当然对于本发明的三级架构的线路,其中直流/直流(DC/DC)部分的效率是由第二级LLC非调节直流/直流隔离转换器(DCX)的效率和第三级升降压型转换器的效率相乘得到的。其中典型的LLC非调节直流/直流隔离转换器(DCX)的效率在最终的输出电压(也就是升降压型转换器的输出电压)Vmax,0.5Vmax,0.1Vmax的状况下为98.5%,99%,97%,所以在0.5Vmax和0.1Vmax的情况下,三级架构方案的效率会分别比两级架构的方案高出1.5%和7%,而且最终输出电压越低,三级架构相对于二级架构的效率优势越明显。

图8为依照本发明又一实施例绘示一种如图5所示的功率变换装置100A的详细电路示意图。如图所示,功率变换装置100A的交流/直流转换器110A可采用T型三电平转换器(T-type three level inverter/converter)来实现。直流/直流隔离转换器120A可采用LLC非调节直流/直流隔离转换器(DCX)来实现。直流/直流转换器130A可采用单相或多相升降压型转换器(multi-phase buck boost converter)来实现。然本发明不以上述实施例为限,其仅用以例示性地说明本发明的实现方式之一。

图9为依照本发明一实施例绘示一种功率变换方法900的流程示意图。如图所示,本发明的功率变换方法900包含以下步骤:

步骤910:藉由交流/直流转换器将交流电转换为直流电,或将直流电转换为交流电;

步骤920:藉由直流/直流转换器将具有第一电压的直流电转换为具有第二电压的直流电,或将具有第二电压的直流电转换为具有第一电压的直流电;以及

步骤930:藉由直流/直流隔离转换器进行交流/直流转换器与直流/直流转换器间的双向隔离。

为使本发明实施例的功率变换方法900易于理解,请一并参阅图1及图9。于步骤910中,藉由交流/直流转换器110将交流电转换为直流电,或将直流电转换为交流电。举例而言,可藉由D型三电平转换器(D-type three level inverter/converter)、T型三电平转换器(T-type three level inverter/converter)或二电平转换器(two level inverter/converter)以将交流电转换为直流电,或将直流电转换为交流电。

于步骤920中,藉由直流/直流转换器130将具有第一电压的直流电转换为具有第二电压的直流电,或将具有第二电压的直流电转换为具有第一电压的直流电。举例而言,可藉由多相升降压型转换器(multi-phase buck boost converter)以将具有第一电压的直流电转换为具有第二电压的直流电,或将具有第二电压的直流电转换为具有第一电压的直流电。

于步骤930中,藉由直流/直流隔离转换器120进行交流/直流转换器110与直流/直流转换器130间的双向隔离。举例而言,可藉由高频直流/直流隔离转换器以进行交流/直流转换器110与直流/直流转换器130间的双向隔离。此外,可藉由LLC非调节直流/直流隔离转换器(DCX)以进行交流/直流转换器110与直流/直流转换器130间的双向隔离。

所属技术领域中具有通常知识者当可明白,功率变换方法900中的各步骤依其执行的功能予以命名,仅为了让本发明的技术更加明显易懂,并非用以限定该等步骤。将各步骤予以整合成同一步骤或分拆成多个步骤,或者将任一步骤更换到另一步骤中执行,皆仍属于本揭示内容的实施方式。

由上述本发明实施方式可知,应用本发明具有下列优点。本发明实施例藉由提供一种功率变换装置与功率变换方法,藉由上述元件设计与操作方式,使其成为适应性广泛的双向功率变换装置,而得以适应很宽的电池电压范围和电网电压范围,并且具有转换效率高及输入输出端间的安全隔离。

虽然上文实施方式中揭露了本发明的具体实施例,然其并非用以限定本发明,本发明所属技术领域中具有通常知识者,在不悖离本发明的原理与精神的情形下,当可对其进行各种更动与修饰,因此本发明的保护范围当以附随申请专利范围所界定者为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1