应用于变电站的多功能装置的制作方法

文档序号:12131948阅读:154来源:国知局
应用于变电站的多功能装置的制作方法

本发明涉及电力系统自动化技术领域,特别是涉及一种应用于变电站的多功能装置。



背景技术:

随着发电厂、变电站自动化水平的提高,各种以计算机技术和通信技术为基础的自动化装置广泛应用,如调度自动化系统、微机保护装置、故障录波装置。其运行实行分层控制,设备的运行往往要靠数百公里外的调度员指挥;电网运行瞬息万变,发生事故后更要及时处理,这些都需要有统一的时间基准。有了统一精确的时间,既可实现全厂(站)各系统在GPS/北斗时间基准下的运行监控,也可以通过事故后各开关动作、调整的先后顺序及准确时间来分析事故的原因及过程。统一精确的时间是保证电力系统安全运行,提高运行水平的一个重要措施。

目前电力系统已开始分层次分阶段构建全电网时间同步系统,在发电厂、变电站、控制中心、调度中心建立集中和统一的电力系统时间同步系统,在各变电站内设置授时装置,且要求该系统能基于不同的授时源建立时间同步并互为热备用,实现统一的全网时间基准,以保证电力系统自动化装置和系统的正常运行和作用的发挥,保障电力系统的安全、稳定、可靠运行。

随着时间同步系统在电力系统中的广泛应用,电力系统管理部门正在加紧建立电力系统中时间同步系统规范化管理制度,如何快速、准确地检测时间同步系统的技术指标是否满足标准或设计要求也成为了急需要解决的问题。



技术实现要素:

基于此,有必要针对一种应用于变电站的多功能装置,能够快速对变电站的授时装置的同时时间进行检测。

一种应用于变电站的多功能装置,包括:壳体,设置在壳体内的GPS/北斗模块、主控模块以及设置在所述壳体外的通信接口、显示器;所述GPS/北斗模块、所述通信接口和所述显示器分别与所述主控模块连接,所述通信接口用于与变电站的授时装置连接以获取所述授时装置的同步时间信息。

在其中一个实施例中,所述通信接口包括RJ45接口、脉冲信号接口和RS485接口的任意一种或多种。

在其中一个实施例中,还包括与所述主控模块连接的以太网模块和/或光模块。

在其中一个实施例中,所述光模块包括接收光模块和发送光模块。

在其中一个实施例中,还包括设置在所述壳体内与所述主控模块连接的无线通信模块。

在其中一个实施例中,所述无线通信模块为WIFI模块和/或4G模块。

在其中一个实施例中,还包括设置在所述壳体内与所述主控模块连接的存储模块。

在其中一个实施例中,还包括设置在所述壳体外与所述主控模块连接的按键。

在其中一个实施例中,还包括电源模块。

在其中一个实施例中,所述电源模块包括锂电池和充电电路。

上述的应用于变电站的多功能装置,通过设置用于变电站的授时装置连接的通信接口,主控模块与通信接口、GPS/北斗模块和显示器连接,能够获取GPS/北斗模块的基准时间和授时装置的同步时间,从而实现对变电站的授时装置的同步时间进行检测,并将检测结果显示在显示器上。该装置操作简单,将变电站的授时装置连接在通信接口上即可实现快速检测。

附图说明

图1为一个实施例的应用于变电站的多功能装置的结构示意图;

图2为另一个实施例的应用于变电站的多功能装置的结构示意图。

具体实施方式

如图1所示,一种应用于变电站的多功能装置,包括壳体10,设置在壳体内的GPS/北斗模块101、主控模块102以及设置在壳体10外的通信接口103、显示器104。GPS/北斗模块101、通信接口103和显示器104分别与主控模块102连接,通信接口103用于与变电站的授时装置连接以获取授时装置的同步时间信息。

变电站内的授时装置用于给变电站的设备时间同步,本实施例中,通过将授时装置通过通信接口103与应用于变电站的多功能装置连接,以获取授时装置的同步时间信息。GPS/北斗模块101接收来自GPS卫星或北斗卫星的基准时间信息。主控模块102通过将接收的授时装置的同步时间信息和GPS/北斗模块101基准时间信息进行比较,GPS/北斗模块101获得的基准时间信息为标准时间,能够得到授时装置的同步时间是否正确的检测结果。显示器104可用于显示授时装置的同步时间的检测结果。

具体的,如图2所示,主控模块102包括FPGA(Field-Programmable Gate Array),即现场可编程门阵列)芯片、DSP(Digital Signal Process,数字信号处理)芯片和中央处理器(CPU)组成。

上述的应用于变电站的多功能装置,通过设置用于变电站的授时装置连接的通信接口,主控模块与通信接口、GPS/北斗模块和显示器连接,能够获取GPS/北斗模块的基准时间和授时装置的同步时间,从而实现对变电站的授时装置的同步时间进行检测,并将检测结果显示在显示器上。该装置操作简单,将变电站的授时装置连接在通信接口上即可实现快速检测。

在另一个实施例中,通信接口包括RJ45接口、脉冲信号接口和RS485接口的任意一种或多种。

本实施例中,提供多种接口,工作人员在检测时,可根据变电站内的授时装置的接口,在本实施例的应用于变电站的多功能装置上选择对应的接口进行连接。具体的,主控模块通过RS485接口,接收授时装置发送的电PPS、电IRIG-B码和SNTP报文。其中,PPS为GPS秒脉冲信号,IRIG-B码为时间码,SNTP报文为采用SNTP(Simple Network Time Protocol,简单网络时间)协议生成的报文,根据接收到电PPS、电IRIG-B码和SNTP报文获取接入的授时装置的时间信息。主控模块通过脉冲信号接口,接收授时装置发送的PPS和IRIG-码,根据接收到的PPS和IRIG-码获取授时装置的同步时间信息。主控模块通过RJ45接口,接收授时装置发送的IEEE1588(网络测量和控制系统的精密时钟同步协议标准)信号,根据接收的IEEE1588信号获取授时装置的同步时间信息。主控模块将接收到的授时装置的同步时间信息与GPS/北斗模块的基准时间信息进行比较,得到对授时装置的时间同步的精确度的测试结果。

在另一个实施例中,还包括与主控模块连接的以太网模块105和/或光模块106。

具体的,通过以太网模块105集成有100M/bps(兆位/秒)、1000M/bps(兆位/秒)自适应以太网接口,通过以太网接口接收授时装置通过以太网传输的IEEE1588信号,根据接收的IEEE1588信号获取授时装置的同步时间信息。主控模块102将接收到的授时装置的同步时间信息与GPS/北斗模块的基准时间信息进行比较,得到对授时装置的时间同步的精确度的测试结果。同时,本实施例的应用于变电站的多功能装置,向通过以太网接口向连接的其它设备发出光IEEE1588信号,从而对连接的其它设备进行授时以实现时间同步。

光模块106包括电子器件、功能电路和光接口,具体的,包括发送光模块和接收光模块,光模块106的接口具体可采用ST型接口。通过ST接收光模块,接收变电站的授时装置发送的光PPS和光IRIG-B码,从而获得授时装置的同步时间信息。主控模块102将接收到的授时装置的同步时间信息与GPS/北斗模块的基准时间信息进行比较,得到对授时装置的时间同步的精确度的测试结果。通过ST发送光模块107向其它设备发送光PPS,光IRIG-B信号,从而对连接的其它设备进行授时以实现时间同步。

在另一个实施例中,还包括设置在壳体10内与主控模块102连接的无线通信模块108。通过无线通信模块108,本实施例的应用于变电站的多功能装置能够与主站进行通信,将对变电站的授时装置的检测结果发送至主站。具体的,无线通信模块108为WIFI模块和/或4G模块。

在另一个实施例中,还包括设置在壳体10内与主控模块102连接的存储模块109。存储模块109中可用于存储各变电站的信息,包括变电站内的地址信息、变电站内的设备信息等。利用GPS/北斗模块还可以对用应用于变电站的多功能装置进行定位,获取所处的地理位置信息。将获取的地理位置信息与存储在存储模块109的各变电站内地址信息进行匹配,能够自动确认所检测的变电站,例如变电站的名称。同时,上传至主站的检测结果包括变电站的名称和地址信息。在其它的实施方式中,存储模块109还可用于存储对变电站的授时装置的检测结果。主控模块根据GPS/北斗模块的定位,能够形成自身的行动路径轨迹,并通过无线通信模块将行动路径轨迹上传至主站。

在另一个实施例中,还包括设置在壳体外与主控模块连接的按键110,用于与主控模块102进行交互。按键110包括开关按键、测试按键、授时按键和数据上传按键等。通过按键110和显示器104,实现工作人员与多功能装置的人机交互,根据工作人员的操作执行对应功能。

应当理解的是,应用于变电站的多功能装置还包括电源模块111,电源模块为应用于变电站的多功能装置提供电能。具体的,电源模块111包括锂电池和充电电路,通过充电电路为锂电池进行充电。本实施例中的充电电路可采用常规的充电电路实现,在此不再赘述。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1