一种驱动电路及电子设备的制作方法

文档序号:15023441发布日期:2018-07-25 01:46阅读:152来源:国知局

本发明涉及电路设计技术领域,尤其涉及一种驱动电路及电子设备。



背景技术:

在各种电子产品中,风扇、马达等等是一种常见的感性负载。对此类负载进行调速时,可以通过改变驱动电路的各类参数以调节此类负载的运转速度。

上述负载在启动或者堵转的瞬间,此时负载电流往往过度大于正常运行所需的工作电流。当该负载电流超过电源负载能力时,其会导致系统复位或其他异常问题。



技术实现要素:

为了克服上述技术问题,本发明实施例目的旨在提供一种驱动电路及电子设备,以解决现有技术存在负载处于异常工作状态下导致流过负载的电流过大的技术问题。

为解决上述技术问题,本发明实施例提供以下技术方案:

在第一方面,本发明实施例提供一种驱动电路,所述驱动电路包括第一开关电路、保护电路以及钳位电路;所述第一开关电路包括控制端、输入端和输出端,所述保护电路与电源的输出端连接,并且还与所述第一开关电路的输入端连接,所述第一开关电路的输出端与负载连接,所述第一开关电路的控制端用于输入控制信号,在所述控制信号控制所述第一开关电路导通时,所述电源通过所述保护电路对所述负载供电;所述钳位电路与所述电源的输出端连接,并且还与所述第一开关电路的控制端连接,在流过所述负载的电流大于预定电流时,将流过所述负载的电流限制到所述预定电流内。

可选地,所述钳位电路包括第一二极管和第二二极管;所述第一二极管的正极连接至所述电源的输出端,所述第一二极管的负极与所述第二二极管的正极连接,所述第二二极管的负极连接至所述第一开关电路的控制端。

可选地,所述钳位电路包括一稳压二极管,所述稳压二极管的负极连接至所述电源的输出端,所述稳压二极管的正极连接至所述第一开关电路的控制端。

可选地,所述保护电路包括一第一电阻,所述第一电阻的一端连接至所述电源的输出端,另一端连接至所述第一开关电路的输入端。

可选地,所述第一电阻为正温度系数热敏电阻。

可选地,所述正温度系数热敏电阻邻近所述第一开关电路设置。

可选地,所述驱动电路还包括第二开关电路,所述第二开关电路包括控制端、第一端和第二端,所述第一开关电路的控制端通过所述第二开关电路接收所述控制信号;其中,所述第二开关电路的控制端用于输入所述控制信号,所述第二开关电路的第一端连接所述第一开关电路的控制端,所述第二开关电路的第二端接地。

可选地,所述第一开关电路为PNP型三极管,所述PNP型三极管的基极为所述第一开关电路的控制端,所述PNP型三极管的发射极为所述第一开关电路的输入端,所述PNP型三极管的集电极为所述第一开关电路的输出端;所述第二开关电路为NPN型三极管,所述NPN型三极管的基极为所述第二开关电路的控制端,所述NPN型三极管的集电极为所述第二开关电路的第一端,所述NPN型三极管的发射极为所述第二开关电路的第二端。

可选地,所述驱动电路还包括一第二电阻和一第三电阻,所述NPN型三极管的基极通过所述第三电阻接收所述控制信号;其中,所述第二电阻串接在所述PNP型三极管的基极和所述NPN型三极管的集电极之间,所述第三电阻的一端用于输入所述控制信号,所述第三电阻的另一端连接至所述NPN型三极管的控制端。

可选地,所述驱动电路还包括滤波电路,所述滤波电路连接在所述第一开关电路的输出端和地之间。

可选地,所述滤波电路包括一第一电容和一电解电容;所述第一电容的一端和所述电解电容的正极均连接至所述第一开关电路的输出端,所述第一电容的另一端和所述电解电容的负极均接地。

可选地,所述控制信号为PWM脉冲调制信号。

在第二方面,本发明实施例提供一种电子设备,所述电子设备包括上述的驱动电路。

在各个实施例中,当一些因素造成流过负载的电流发生变化,并且流过负载的电流大于预定电流时,驱动电路可以通过钳位电路将流过负载的电流限制到预定电流,从而避免负载电流过大而对电源或负载产生不良影响。

附图说明

一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。

图1是本发明实施例提供一种驱动电路的原理框图;

图2是本发明实施例提供一种驱动电路的结构示意图;

图3是本发明又一实施例提供一种驱动电路的原理框图;

图4是本发明再一实施例提供一种驱动电路的原理框图;

图5是本发明又一实施例提供一种驱动电路的结构示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

图1是本发明实施例提供一种驱动电路的原理框图。如图1所示,该驱动电路10和电源20连接,用于驱动负载30工作,其中负载30例如可以是电机。该驱动电路10包括第一开关电路101、保护电路102以及钳位电路103。

其中,第一开关电路101包括控制端101A、输入端101B和输出端101C,保护电路102连接在电源20的输出端20A和第一开关电路101的输入端101B之间,第一开关电路101的输出端101C和负载30连接,第一开关电路101的控制端101A用于输入控制信号40。当控制信号40控制第一开关电路101导通时,电源20通过保护电路102对负载30供电。

钳位电路103连接在电源20的输出端20A和第一开关电路101的控制端101A之间,在流过负载30的电流大于预定电流时,将流过负载30的电流限制到预定电流内。在电源20通过驱动电路10为负载30提供电流的正常工作状态下,正常电流是小于预定电流的。其中,该预定电流与负载30处于正常工作状态下的负载电流关联,用于评价当前负载30的工作状态,当流过负载30的电流大于预定电流时,该负载30被认为工作在异常状态,若负载30持续工作在异常状态,则流过负载的电流对负载的性能及系统的稳定造成严重威胁。于是,通过对负载30设定预定电流,其能够很好地保护负载并且维护系统的稳定性。当流过负载30的电流小于预定电流时,该负载30能够评价为工作在正常状态。

在本实施例中,当一些因素造成流过负载30的电流发生变化,并且流过负载30的电流大于预定电流时,驱动电路10可以通过钳位电路103将流过负载30的电流限制到预定电流,从而避免负载电流过大而对电源20或负载30产生不良影响。

第一开关电路101可以根据加载于第一开关电路101的控制端101A的控制信号,以实现对输入电压或电流的导通或截止。在一些实施例中,开关电路可以是电子开关管,例如是双极性晶体管(bipolar junction transistor,BJT)、场效应晶体管(Field Effect Transistor,FET)、晶闸管以及等等。在一些实施例中,开关电路可以由各个分立元件组成具有受外部的控制信号进行控制的电路单元,该电路单元的具体组成由设计者根据业务需求和整体电路的工作特点进行设计。

请一并参阅图1和图2,在一些实施例中,钳位电路103包括第一二极管D1和第二二极管D2,保护电路102包括第一电阻R1,第一开关电路101为PNP型三极管Q1。其中PNP型三极管Q1的基极为第一开关电路101的控制端101A,PNP型三极管Q1的发射极为第一开关电路101的输入端101B,PNP型三极管Q1的集电极为第一开关电路101的输出端101C。第一二极管D1的正极连接至电源20的输出端20A,第二二极管D2的正极和第一二极管D1的负极连接,第二二极管D2的负极和PNP型三极管Q1的基极连接。第一电阻R1的一端连接至电源20的输出端20A,另一端连接至三极管Q1的发射极。

进一步地,请一并参阅图2和图3,驱动电路10还包括一第二开关电路104、一第二电阻R2、一第三电阻R3以及一滤波电路105。其中,负载30用电阻RL表示。第二开关电路104包括控制端104A、第一端104B和第二端104C,第一开关电路101的控制端101A通过第二开关电路104接收控制信号40;其中,第二开关电路104的控制端104A用于输入控制信号40,第二开关电路104的第一端104B连接第一开关电路101的控制端101A,第二开关电路104的第二端104C接地。

第二开关电路104为NPN型三极管Q2。如图2所示,三极管Q2的基极作为第二开关电路104的控制端,并且与第三电阻R3的一端连接,第三电阻R3的另一端用于输入控制信号40。三极管Q2的集电极作为第二开关电路104的第一端,与第二电阻R2的一端连接,第二电阻R2的另一端与三极管Q1的基极连接;三极管Q2的发射极作为第二开关电路104的第二端104C,该三极管Q2的发射极连接至地。在一些实施例中,控制信号40为PWM脉冲调制信号。

如图2所示,滤波电路105包括一第一电容C1和一电解电容C2。第一电容C1的一端和电解电容C2的正极均连接至第一开关电路101的输出端101C,第一电容C1的另一端和电解电容C2的负极均接地。

通过本实施例的驱动电路10,其不仅能够限制流过负载30的电流于预定电流之下,并且还可以实现加载于负载30的输出电压的调整。该驱动电路10的工作原理如下:

当控制信号40为低电平时,NPN型三极管Q2与PNP型三极管Q1均断开,电压输出端10A无电压输出。

当控制信号40为高电平时,NPN型三极管Q2导通,其中,第一二极管D1、第二二极管D2、第二电阻R2及NPN型三极管Q2形成第一偏置回路,第一电阻R1、PNP型三极管Q1、第二电阻R2及NPN型三极管Q2形成第二偏置回路,第一偏置回路及第二偏置回路共同构成PNP型三极管Q1的偏置回路,从而实现对PNP型三极管Q1的工作状态进行配置。当负载电流IL≈I0≈Ie较小时,并且R1*Ie+VCE<2VD1,第一偏置回路可以将PNP型三极管Q1的工作状态设置于导通状态。当负载电流IL≈I0≈Ie电流较大,并且满足条件R1*Ie+Veb>2VD1时,两个偏置回路共同起作用,第一二极管D1及第二二极管D2的正向压降对R1-Veb形成钳位,I0≈Ie=(2VD1-Veb)/R1由于VD1为定值,Veb≈0.7V,在此种情况下,当负载30出现异常导致电流过大时,钳位电路将R1和Veb两端的电压限制在恒定的2VD1,进而使得负载电流被恒流限制,因此电源20或负载30被保护。在一些实施例中,可以将负载电流限制为预定电流Imax,通过适当选取R1的值,确定预定电流Imax。此处的钳位指的是通过第一二极管D1及第二二极管D2的作用,其能够将PNP型三极管Q1的基极所在的电势钳位在固定不变的预设电势。

在一些应用过程中,可以根据负载30正常工作时的消耗电流,选择合适的电路参数,并且设定适当的恒流输出,可以充分提高电源的利用率和降低电源的设计要求。例如:一个负载马达的正常工作条件为12V直流电压,150mA直流,当该马达堵转或启动瞬间时,负载电流最大会达到8倍的工作电流,即150mA*8=1.2A,因此,设计马达电源时,马达电源须提供12V*1.2A=14.4W的设计容量。但是,采用本实施例提供的驱动电路,将恒流选定在2倍的工作电流,即为300mA时,马达正常工作时的电流为150mA,启动或堵转时的最大电流却被限制在300mA,马达电源的设计只需12*0.3=3.6W,因此大大降低了对马达电源的要求,从而降低产品成本。

在一些实施例中,当负载长期处于异常工作状态时,负载各个功能组件的使用寿命会受到极大影响。例如,电机长期处于短路状态而使流过电机的电流过大时,电机会产生过多热量,该热量增加电机的工作温度,进而影响电机的工作效率与使用寿命。特此,为了将处于异常状态的负载从驱动电路进行隔离,以保护负载,本实施例提供的第一电阻R1为正温度系数热敏电阻(Positive Temperature Coefficient,PTC)。第一电阻R1的动作电流小于预设电流Imax,预设电流Imax可以根据负载的额定电流以设定,例如,15KW的电机的额定电流为28.6A,预设电流Imax可以为28.6A,亦可以为29.5A。

流过第一电阻R1的电流足以使第一电阻R1自热温升超过居里温度时,该电流称为第一电阻R1的动作电流I1,其中,动作电流I1对应的第一电阻R1的阻值为RK。在一些实施例中,考虑到第一电阻R1的材料性质而使第一电阻R1额定的动作电流与实际动作电流不对称、第一电阻R1所处环境因素导致的电流误差以及驱动电路中各个分立元件的电流误差(例如,PNP型三极管Q1的材料性质导致实质流过第一电阻R1的电流偏小),为了更加可靠、安全地将流过负载的电流限制在预设电流Imax之内,选定的第一电阻R1的动作电流I1应该小于(2VD1-Veb)/RK。

当PNP型三极管Q1处于导通状态,并且由于某种原因造成负载短路或其他异常而导致输出电流IO增加时,PNP型三极管Q1进入放大状态,Vec上升,Vec是PNP型三极管Q1的发射极和集电极之间的压差。当流过负载30的负载电流达到预定电流Imax=(2VD1-Veb)/R1时,驱动电路10处于恒流状态。当负载30持续异常时,由于第一电阻R1的动作电流小于(2VD1-Veb)/R1,根据焦耳定律Q=Ie^2*R1*T,由于此时的Ie等于Imax,随着时间T的增加,第一电阻R1的热量越大(温度升高),从而触发第一电阻R1(PTC)进入高阻状态,第一电阻R1的阻值随着温度的升高而增大,由公式Ie=(2VD1-Veb)/R1可知,R1增大,Ie减小,因此,流过负载30的负载电流同时降低,实现将处于异常状态的负载30自动隔离,因此,流过负载30的电流可以恢复至正常电流,从而将之前处于异常大电流状态的负载切换正常电流状态,完成异常负载的隔离。例如,15KW电机额定电流为28.6A,预设电流Imax为29.5A,第一电阻R1的动作电流I1为29A。由于电机短路,使流过电机的负载电流达到29.3A,此时,第一电阻R1的动作电流I1被触发,第一电阻R1的阻值开始随着温度的增加而增加,从而将流过电机的负载电流降低至29.3A之下。

在一些实施例中,为实现第一电阻R1能够迅速进入高阻状态,在装配过程中,可以邻近第一开关电路101设置第一电阻R1,即可以将第一电阻R1贴近PNP型三极管Q1,由于PNP型三极管Q1处于电流放大状态时,其发热量多,一部分热量能够传导给第一电阻R1,使第一电阻R1迅速升温进入高阻状态,从而提高第一电阻R1迅速响应异常负载的情况而将异常负载进行隔离。

通过利用驱动电路的恒流特性和正温度系数热敏电阻器,当负载30持续处于异常状态时,其能够自动实现对负载30进行隔离,防止负载30长时间处于过流状态而被损坏。

请再参阅图2。驱动电路10除了能够对负载30进行恒流保护及自动隔离处于异常状态的负载,可选地,其还能够调节负载30的两端电压。具体的,驱动电路10调节负载30的两端电压的工作原理如下:

驱动电路10利用恒流对电解电容C2进行充电时,根据公式:Q=CΔU=IT其中,Q为电解电容C2的存储电量,C为电解电容C2的电容值,T为充放电时间,ΔU为电解电容C2两端电压差。在电容值C为固定值的情况下,通过控制充放电时间即可对第一开关电路101输出的电压进行调压。具体的,当控制信号40为高电平时,其中,该高电平的持续时间为T1,此时,第一开关电路101输出的电压对负载30进行供电,与此同时,还对电解电容C2进行充电。当控制信号40为低电平时,其中,该低电平的持续时间为T2,此时,电解电容C2通过负载30进行放电。

电容的充电电流Ich=I0-IL,充电时间为T1,放电时间为T2;

T1+T2=1/F,F为控制信号PWM的周期。为了保持稳定的输出电压,充电电荷需等于放电电荷,根据公式,得到:

△U*C=Ich*T1=IL*T2,其中IL=VO/RL,V0为负载两端电压,RL为负载的等效电阻。

根据上述公式,可以推导出:

T1/(T1+T2)=IL/(Ich+IL)

Ich+IL=(VD1+VD2-Vbe)/R1,VD1为PNP型三极管Q1的导通压降,VD2为NPN型三极管Q2的导通压降。

由于T1/(T1+T2)为控制信号的脉冲占空比,T1+T2即为控制信号的脉冲周期,1/(T1+T2)为脉冲频率,因此,通过控制控制信号的脉冲频率,便可以控制输出电压,从而实现输出电压的调整。

在马达类负载的软启动时,驱动电路10根据控制逻辑,驱动电路10控制输出电压从0V按一定的斜度平滑缓慢上升至预设电压,使电机的平稳启动,从而减少大电流对电机的冲击和降噪,并且提高电机及设备整机寿命。在马达类负载的调速时,驱动电路输出高电压时,流经电机的电流大,电机的转速快;输出低电压时,流经电机的电流小,电机的转速慢,从而实现对电机全面调速。

在对继电类负载的功耗控制过程中,当后端负载为继电器线圈时,可利用调压作用实现降低功耗的作用。例如,对于12V的继电器,启动时的正常电压为12V,在继电器吸合后,驱动电路10将输出电压降到继电器的保持电压3V左右,从而使流经继电器线圈的电流将降低到原来的1/4,功耗降低到原来1/16。

如图4所示,在一些实施例中,该驱动电路10还包括采样电路106和控制电路107,采样电路106的输入端106A和第一开关电路101的输出端101C连接,采样电路106的输出端106B和控制电路107连接。当负载30短路或者工作于异常状态而导致第一开关电路101的输出电压异常时,采样电路106采集第一开关电路101的输出电压,输出采集信号给控制电路107,控制电路107对该采集信号进行模数转换和分析,采用对应的控制策略,通过调节控制信号的脉冲占空比以调节负载30的电压,使负载30能够工作可靠和维护系统的稳定。设计者可以根据驱动电路的工作特点和性能要求,对采样电路106选择合适的元件进行设计。例如,可以在第一开关电路101的输出引出一采集电阻,采集电阻能够将第一开关电路101的输出电压反馈至控制电路107,从而实现开关电路101的输出电压的采集。

在一些实施例中,控制电路107可以是处理器。其中,该处理器还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合。还有,此处的处理器可以是任何传统处理器、控制器、微控制器或状态机。处理器也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP核、或任何其它这种配置。

请参阅图5,图5所示的驱动电路与上述各个实施例所示的驱动电路的不同点在于,该钳位电路103可以包括稳压二极管ZD1,具体的,稳压二极管ZD1的负极连接至电源20的输出端20A,正极连接至第一开关电路101的控制端,即连接至PNP型三极管Q1的基极。当PNP型三极管Q1处于导通状态时,由于稳压二极管ZD1处于反向偏置状态,因此,稳压二极管ZD1能够对(R1-Veb)形成钳位。本技术领域人员应当明白,为了对(R1-Veb)形成钳位,钳位电路103可以采用除了上述所介绍的两种电路结构方式之外的电路设计,应当认为,设计者根据本发明所训导的内容,对实施例所示的钳位电路进行等效替换或者修改,均应当落入本发明的保护范围之内。

作为本发明实施例的又一方面,本发明实施例提供一种电子设备。如图1至图5所示的驱动电路用于该电子设备中,其中,该电子设备可以是马达,继电器以及等等。

当一些因素造成流过负载的电流发生变化,并且流过负载的电流大于预定电流时,电子设备可以将流过负载的电流限制到预定电流,从而避免负载电流过大而对电子设备产生不良影响。

以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1