基于变压器的混杂功率转换器的制作方法

文档序号:16738471发布日期:2019-01-28 12:48阅读:130来源:国知局
基于变压器的混杂功率转换器的制作方法

本申请要求于2016年6月7日提交的美国临时申请no.62/346,881的权益,其公开内容通过引用整体并入本文。

本主题涉及用于功率转换的技术和设备,其组合了开关电容器转换器和基于变压器的功率转换器的方法和电路。



背景技术:

功率转换器用于将具有一个电压电平(例如12v)的电功率转换为具有不同电压电平(例如,3v)的电功率。功率转换器还可用于将具有一种类型(例如,交流(ac)功率)的功率转换为具有不同类型(例如,直流(dc)功率)的功率。开关模式功率转换器因其高效率而被广泛使用。通常,开关模式转换器是基于电感器和变压器或基于电容器而没有磁性部件。

在基于变压器的架构的情况下,功率转换器包括彼此电感耦合的两个线圈,例如共享由磁性材料形成的共同芯的两个线圈。初级线圈耦合到变压器的输入电路,次级线圈耦合到变压器的输出电路,并且根据初级和次级线圈的匝数比提供功率转换。在电容器-基转换器架构的情况下,功率转换器包括多个开关(例如,诸如场效应晶体管(fet)的晶体管),其在控制器的控制下操作以选择性地串联或并联地对电容器充电,提供所需的输出功率电平。

基于变压器的转换器通常用于输入和输出电压轨之间需要隔离的应用,或具有大电压转换比的应用。然而,基于变压器的转换器由于其较高的交流损耗和有限的开关频率而需要大尺寸的磁性元件。因此,需要一种变压器结构,其能够以更高的开关频率运行并提供减小的磁性元件尺寸。

此外,传统的基于变压器的转换器包括正向、反激、推挽、半桥和全桥pwm转换器以及各种谐振转换器。典型示例将48v输入电压转换为12v输出。对于这样的转换器,由于输入侧的电压应力较高,变压器初级侧的功率mosfet(金属氧化物半导体场效应晶体管)是高压额定mosfet,不仅受到高开关损耗的影响,而且还具有由于高导通电阻rd(on)导致高导通损耗。结果,由于更高的功率耗散和功率器件热应力,转换器的最大开关频率受到限制。由于开关频率有限,传统的基于变压器的解决方案通常需要大尺寸的电力变压器和大尺寸输出电感器,因此提供低转换器功率密度。因此,需要一种变压器结构,其能够提供降低的高功率密度,同时被配置为处理升高的电压电平。

发明概述

本文教导减轻常规功率转换器的一个或多个上述问题。

依照本公开的一个方面,功率转换器包括:切换电容式功率转换器级;和脉冲宽度调制(pwm)或谐振输出电路,耦合到所述切换电容式功率转换器级的切换节点。在一个例子中,切换电容式功率转换器级包括多个开关和多个电容器,并且pwm或谐振输出电路包括具有输入绕组的变压器,该输入绕组通过所述多个开关的开关选择性地耦合到所述多个电容器中的一个或多个电容器,并且电感耦合到所述变压器的输出绕组。

依照本公开的另一个方面,功率转换器具有用于接收变压器输入电压的输入节点和用于输出变压器输出电压的输出节点。功率转换器包括变压器,具有初级绕组和彼此磁性耦合的至少一个次级绕组,其中所述次级绕组耦合到所述功率转换器的输出节点。功率转换器还包括切换电容式电路,耦合在所述输入节点和所述变压器的初级绕组之间,所述切换电容式电路包括多个电容器和多个开关,配置为在第一操作阶段期间将电容器连接到输入节点,并且在第二操作阶段期间将电容器连接到初级绕组。在一个例子中,所述切换电容式电路的多个电容器中的第一和第二电容器在第一操作阶段期间彼此串联耦合并且与所述输入节点串联耦合,并且在第二操作阶段期间所述第一和第二电容器彼此并联耦合并且与所述初级绕组并联耦合。

依照本公开的又一个方面,功率转换器被配置为将输入电压转换为输出电压。功率转换器包括:构件,用于在电路元件的串联连接上将所述输入电压分压,以获得具有低于所述输入电压的电压电平的分压的输入电压;和构件,用于通过至少两个磁性耦合的线圈将所述分压的输入电压转换为输出电压。用于分压输入电压的构件可包括切换构件,被配置为选择性地以串联连接和并联连接方式连接所述电路元件。功率转换器还可包括:构件,用于感测所述输出电压,并且根据感测的输出电压控制所述切换构件。

另外的优点和新颖特征将部分地在下面的描述中阐述,并且部分地对于本领域技术人员在研究以下和附图时将变得显而易见,或者可以通过实施例的制造或操作来学习。通过实践或使用下面讨论的详细示例中阐述的方法、手段和组合的各个方面,可以实现和获得本教导的优点。

附图简述

附图仅以示例的方式描述了根据本教导的一个或多个实施方式,而不是作为限制。在附图中,相同的附图标记表示相同或相似的元件。

图1a是根据本发明的说明性基于变压器的混杂转换器的电路图。

图1b是示出根据本公开的基于变压器的混杂转换器的架构的高级框图。

图1c示出了一系列曲线图,示出了与图1a的说明性基于变压器的混杂转换器相关的模拟结果。

图2a-2g、3和4a-4d是示出根据本发明可用作基于变压器的混杂转换器的组件的说明性电路的电路图。

发明详述

在以下详细描述中,通过示例阐述了许多具体细节,以便提供对相关教导的透彻理解。然而,对于本领域技术人员来说显而易见的是,可以在没有这些细节的情况下实践本教导。在其他情况下,已经相对高级地描述了公知的方法、过程、组件和/或电路,而没有详细描述,以避免不必要地模糊本教导的各方面。

这里公开的各种方法和电路涉及混杂功率转换器。混杂转换器将切换电容式电路与基于变压器的输出电路(例如,脉冲宽度调制(pwm)电路或谐振频率调制电路)组合在同一功率级内,以在高开关频率下实现高功率密度和高效率。与传统的基于变压器的转换器相比,混杂功率转换器具有显着减小的磁性元件尺寸。另外,反馈回路可用于在需要时提供输出调节。对于高功率/电流应用,多个转换器可以与电流共享并联。

现在详细参考在附图中示出并在下面讨论的示例。

图1a是根据本发明的说明性基于变压器的混杂功率转换器的电路图。如图所示,基于变压器的混杂功率转换器100包括在输入节点vin和输出节点vout之间串联耦合的切换电容式转换器级101和基于变压器的输出电路103。基于变压器的输出电路103包括分别连接到变压器的初级和次级线圈绕组的初级侧103a和次级侧103b。

切换电容式转换器级101以及基于变压器的输出电路103的初级侧和次级侧103a和103b的各种电路结构将在下面结合图2a-2g和图3更详细地描述。

如图1a所示,基于变压器的混杂功率转换器在单功功率转换器中将切换电容式转换器101级与基于变压器的输出电路103进行积分。混杂转换器可以是以50%占空比运行的非稳压开环转换器。或者,如果需要输出电压调节,则反馈控制器105可以监视输出电压vout的电平并调节切换电容式转换器101和/或基于变压器的输出电路103的操作以维持所需的输出电压电平,如图1b的方框图所示。特别地,反馈控制器105可以测量或感测输出节点处的输出电压电平vout,并且可以控制切换电容式转换器101和/或基于变压器的输出电路103中的开关的操作,以将电压电平vout调节到所需的水平。例如,反馈控制器105可以控制切换电容式转换器101的开关的开关占空比或开关频率,从而调节电压电平vout。特别是,在基于变压器的输出电路103是包括开关的同步pwm变换器的情况下,反馈控制器105可以控制基于变压器的输出电路103的开关的切换脉冲宽度,以调节电压电平vout。在基于变压器的输出电路103是谐振转换器的情况下,反馈控制器105可以控制输出电路103的开关的开关频率以调节电压电平vout。在这种情况下,同步降压控制器可以例如用作反馈控制器105,以在反馈回路中控制输出电路103和切换电容式转换器101的操作。

图1a示出了混杂功率转换器的初级侧电路的一种实施方式。初级侧电路包括切换电容式转换器101和基于变压器的输出电路103的初级侧103a。如图所示,切换电容式转换器101是切换电容式分压器转换器。切换电容式初级侧的分压器转换器可以具有2∶1的比率,从in节点到mid节点,如图1a所示,但是更一般地可以具有不同的升压或降压比(例如,3∶1比率,4∶1比率,3∶2比率,4∶3比率等)具有不同的开关电容器拓扑结构,例如图4a-4d中所示的那些。在图1a中,切换电容式分压器转换器的功率mosfet仅暴露于vin/2的电压应力,因为输入节点in和地之间(通过开关q1和q3)的电容器cf和cm的串联互连用于将输入电压除以2。

在图1a中,开关q3和q4由前端开关电容变换器101和基于变压器的输出电路103共享。节点mid的电压,也是电容器cm两端的电压,用作基于变压器的输出电路103的输入电压。输出电压vout可以由开关q3的pwm占空比控制。基于变压器的输出电路103的初级侧103a还包括变压器初级侧绕组np,其通过dc去耦电容器c1在切换节点sw2处连接到切换电容式转换器101。dc去耦电容器c1确保变压器初级侧绕组np仅在稳态下提供ac电压。基于变压器的输出电路103的次级侧103b包括用于提高高效率的同步整流器开关q5和q6,尽管如果需要提供较低效率的简化电路,开关q5和q6也可以替换为功率二极管(参见例如图2d)。

图1c示出了与图1a的电路的功能相关的模拟波形。具体波形示出了流过飞电容器cf的电流icf、流过电容器c1和变压器绕组np的电流ic1、流过开关q3的电流iq3、流过开关q4的电流iq4、切换节点sw2处的电压vsw2、节点mid处的电压vmid,输入电压vin和输出电压vout通过混杂转换器100的若干操作循环示出。

如图1c所示,在切换电容式转换器101中,快速电容器电流icf在每个开关周期中在0a附近开始和结束。因此,mosfetq1-q2以零电流开关状态运行,开关损耗最小,而mosfetq3-q4则用作切换电容式fet和集成pwm转换器fet。mosfetq1-q4具有降低的电压应力(例如,q1-q4两端的电压保持在vin/2或低于vin/2),因此额定电压较低的fet可用作mosfetq1-q4。通常,具有较低额定电压的fet(例如用作mosfetq1-q4的fet)具有比具有较高额定电压的fet更低的导通电阻。此外,在fet导通时间段期间iq3=ic1-icf,因此与传统的基于变压器的功率转换器相比,q3和q4开关的电流应力减小。混杂转换器开关的降低的电压和电流应力使转换器更有效。结果,转换器100可以以更高的开关频率fsw运行而不会遭受高功率损耗,从而导致变压器和功率电感器尺寸显着减小并且导致高功率密度。

在切换电容式转换器级101的操作中,反馈控制器105控制mosfet开关q1-q4的操作。通常,开关q1和q3一致地操作,并且开关q2和q4一致地操作。此外,开关q1和q3与开关q2和q4互补地操作,使得开关q1和q3通常不与开关q2和q4同时断开/导通。

以这种方式,在一个例子中,开关q1和q3在第一操作阶段期间闭合,而开关q2和q4断开。反过来,在第二个操作阶段,开关q1和q3断开,而开关q2和q4闭合。在该示例中,功率转换器可以在第一和第二操作阶段之间交替,并且反馈控制器105可以改变第一和第二阶段的相对长度(例如,控制控制开关q1-q4的信号的脉冲宽度)以调节输出电压电平vout达到(并保持)特定电压。在第一操作阶段期间,电容器cf和cm通过闭合的开关q1和q3串联耦合在vin和地之间,并且电容器由电压vin充电。在该操作阶段中,电容器cf和cm共用的切换节点sw2因此可以被充电到大约vin/2的电压。反过来,在第二操作阶段期间,电容器cf和cm彼此并联耦合,并且切换节点sw2通过开关q4接通地电压。

总的来说,如图1c所示,使用接近50%的占空比将48v输入信号vin转换成接近12v的输出电压vout。仿真还表明转换器具有另一个优点。具体地,切换电容式转换器电流和集成的pwm转换器电流在每个开关周期中通过fetq3和q4在相反方向上。因此,fetq3和q4净电流应力减小,导致功率损耗降低并且可能具有高效率和功率密度。

如图1a的例子所示,基于变压器的输出电路103的初级侧103a耦合到切换电容式转换器101的切换节点sw2。或者,基于变压器的输出电路103的初级侧103a可以耦合到切换节点sw1和切换电容式转换器101的节点mid。

图1a另外示出了单功率转换器中的基于变压器的输出电路103级的说明性次级侧103b。图1a中所示的次级侧103b电路是可以在混杂功率转换器100中使用的次级侧电路的一个示例。变压器次级侧电路的其他示例在图2a-2d中示出。

特别地,图2a-2d示出了耦合的变压器次级侧103b绕组整流器电路的可能配置。图2a和2d是具有同步整流器输出的中心抽头绕组结构的示例,其中变压器的次级线圈绕组上的中心抽头提供两个次级侧线圈绕组ls1和ls2,它们都磁耦合到输入线圈绕组np,类似于图1a中所示的变压器二次侧103b。图2b是全桥整流器输出,图2c是电流倍增器同步整流器输出。图2a和2c的同步整流器可用于高效率,特别是对于具有较低vout的应用。非同步整流器输出级,例如图2b和2d中所示的那些,更简单但效率更低,并且可以用于具有更高vout电压的应用。

图1a中所示的初级侧103a电路是可以用作混杂功率转换器的初级侧电路的一个说明性示例,并且可以替代地使用各种其他初级侧电路。例如,图2e示出了集成混杂转换器103可以是谐振转换器,其具有谐振电感器lr和谐振电容器cr,其串联耦合在切换电容式转换器101的切换节点sw2和变压器的初级绕组np之间。或者,谐振电感器lr和谐振电容器cr可以在切换节点sw1和变压器的初级绕组np之间串联耦合,而np的另一个端子连接到节点mid。在这两种情况下,变压器的次级绕组ns可以耦合到图2f和2g中所示的任何次级侧整流器电路。另外,图2f和2g示出了在次级侧整流器电路中不需要输出电感器的集成谐振llc转换器结构。在图2f和2g的电路中,初级侧103a与图2e中所示的相同,而次级侧103b包括不包括任何电感器的修改电路。

图3示出了切换电容式转换器级101和初级侧103a电路的另一说明性实现。在图3的说明性实现中,该电路将切换电容式转换器101与隔离的半桥转换器集成在一起。图3的切换电容式转换器级101可以与关于图1a和2a-2g示出和描述的任何初级侧103a和/或次级侧103b电路结合使用。

图4a-4d示出了切换电容式转换器级101电路的各种替代实施方式,其可以与上述任何基于变压器的输出电路103(包括初级侧103a和次级侧103b电路)组合使用。在图4a-4d中,每个切换电容式转换器级101包括耦合在输入节点vin和节点vsw2之间的电容器和开关的组合,节点vsw2耦合到基于变压器的输出电路103的初级侧103a。详细地,图4a示出了包括六个开关s1-s6和三个电容器c1-c3的说明性电容器梯形电路,图4b示出了包括八个开关s1-s8和三个电容器c1-c3的说明性的dickson电路,图4c示出了包括十个开关s1-s10和三个电容器c1-c3的说明性斐波纳契电路,图4d示出了包括十个开关s1-s10和三个电容器c1-c3的说明性串联-并联电路。

在操作中,在图4a的电路中,反馈控制器105控制mosfet开关s1-s4的操作。通常,开关s2、s4和s6一致地操作,并且开关s1、s3和s5一致地操作。此外,开关s2、s4和s6互补地操作或以180度相移操作到开关s1、s3和s5,使得开关s2、s4和s6通常不与开关s1、s3和s5同时打开/导通。

在图4b的电路中,反馈控制器105控制mosfet开关s1-s8的操作。通常,开关s2、s4、s6和s8一致地操作,并且开关s1、s3、s5和s7一致地操作。此外,开关s2、s4、s6和s8互补地或以180度相移操作到开关s1、s3、s5和s7,使得开关s2、s4、s6和s8通常不与开关s1、s3、s5和s7同时打开/导通。

在图4c的电路中,反馈控制器105控制mosfet开关s1-s10的操作。通常,开关s2、s4、s6、s8和s10一致地操作,并且开关s1、s3、s5、s7和s9一致地操作。此外,开关s2、s4、s6、s8和s10互补地操作或以180度相移操作到开关s1、s3、s5、s7和s9,使得开关s2、s4、s6、s8和s10通常不与开关s1、s3、s5、s7和s9同时打开/导通。

在图4d的电路中,反馈控制器105控制mosfet开关s1-s10的操作。通常,开关s1-s6一致地操作,并且开关s7-s10一致地操作。此外,开关s1-s6互补地操作或者以180度相移操作到开关s7-s10,使得开关s1-s6通常不与开关s7-s10同时断开/导通。

这里描述的转换器可以是双向转换器。另外,切换电容式转换器101不限于2∶1降压分压器。更一般地,混杂转换器100中使用的切换电容式转换器101可以是n:1切换电容式转换器。

与传统pwm或谐振转换器中的fet相比,所提出的基于变压器的混杂功率转换器在基于变压器的输出电路级的集成fet上提供降低的电压应力和降低的功率损耗。结果,混杂转换器有利地允许更低的功率损耗和更高的开关频率、更小的磁性部件尺寸和更高的功率密度。

除非另有说明,否则本说明书中阐述的所有测量值、值、额定值、位置、大小、尺寸和其他规格,包括在随后的权利要求中,都是近似的,而不是精确的。它们旨在具有与它们所涉及的功能以及它们所属领域中的惯例一致的合理范围。

保护范围仅受现在的权利要求限制。该范围旨在并且应当被解释为与根据本说明书和随后的起诉历史解释并且包含所有结构和功能等同物而在权利要求中使用的语言的普通含义一致时。尽管如此,没有一项权利要求旨在包含不满足专利法第101、102或103节要求的主题,也不应以这种方式解释它们。特此放弃对此类主题的任何无意的拥抱。

除非上文所述,否则任何已陈述或说明的内容均无意或应被解释为致使任何组成部分、步骤、特征、对象、利益、优势或等同于公众的奉献,无论其是否在权利要求中叙述。

应当理解,除非本文另有说明的具体含义,否则这里使用的术语和表达具有与其相应的相应研究和研究领域相关的这些术语和表达的普通含义。诸如第一和第二之类的关系术语可以仅用于将一个实体或动作与另一个实体或动作区分开,而不一定要求或暗示这些实体或动作之间的任何实际的这种关系或顺序。术语“包括”、“包含”或其任何其他变型旨在涵盖非排他性包含,使得包括元素列表的过程、方法、物品或装置不仅包括那些元素,而是可以包括未明确列出的或者这种过程、方法、物品或装置固有的其他元件。在没有进一步限制的情况下,由“一”或“一个”继续的元素不排除在包括该元素的过程、方法、物品或装置中存在另外的相同元素。另外,被描述为“连接到”或“耦合到”另一元件的任何元件可以直接“连接到”或“耦合到”另一元件,或者一个或多个其他元件可以在其间连接或耦合。相反,当一个元件被称为“直接连接到”或“直接耦合到”另一个元件时,它们之间可能没有中间元件。

提供本公开的摘要以允许读者快速确定技术公开的本质。提交时的理解是,它不会用于解释或限制权利要求的范围或含义。另外,在前面的具体实施方式中,可以看出,为了简化本公开,各种特征在各种实施例中被组合在一起。该公开方法不应被解释为反映所要求保护的实施例需要比每个权利要求中明确记载的更多特征的意图。而是,如以下权利要求所反映的,发明主题在于少于单个公开实施例的所有特征。因此,以下权利要求在此并入具体实施方式中,每个权利要求自身作为单独要求保护的主题。

虽然前面已经描述了被认为是最佳模式和/或其他示例,但是应当理解,可以在其中进行各种修改,并且本文公开的主题可以以各种形式和示例实现,并且本教导可以应用于许多应用中,这里仅描述了其中的一些应用。所附权利要求旨在要求保护落入本教导的真实范围内的任何和所有应用、修改和变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1