含分布式电源的配电网电压偏差和有功网损的优化方法与流程

文档序号:14447056阅读:342来源:国知局
含分布式电源的配电网电压偏差和有功网损的优化方法与流程

本发明涉及配电网技术领域,尤其涉及一种含分布式电源的配电网电压偏差和有功网损的优化方法。



背景技术:

随着我国配电系统的快速发展,用户用电越发普及。在实际配电网中,各种用电设备的负荷出现不确定性和多样性,如在时间特性上的快速而不均衡的发展变化,在空间特性上的随着季节性发展变化而变化,因而,在局部地区的配电系统中常常出现电压不合格等的电压质量问题。

为解决由用电负荷不确定性和多样性引起的电压质量问题,通常在配电网中接入分布式电源、静置无功补偿装置和分组投切电容器等电压调节装置,以保持配电网的电压水平以及降低系统网损。分布式电源为功率为数千瓦至50mw小型模块式的、与环境兼容的独立电源,用于满足电力系统和用户特定的要求,如调峰、为边远用户或商业区、居民区供电,节省输变电投资、提高供电可靠性等。配电网中接入分布式电源在一定程度上能够减少系统网损,也能够治理局部电压偏低的问题。如,在日负荷高峰期,部分地区因负荷过重或功率因数低而导致部分电压出现越下限的情况,若此时在区域接有分布式电源,则能够利用分布式电源发出的无功调整电压水平。

但在日负荷低谷期,全配电网出现电压超越上线的情况,若此时在配电网中接入分布式电源,则分布式电源发出的无功易导致接入点产生大量的无功功率,进一步导致电压超越上限。由此,需要对含有分布式电源的配电网的电压偏差和有功网损进行优化,以使得在配电网中接入分布式电源能够有效调节电压、降低网损。



技术实现要素:

本发明提供一种含分布式电源的配电网电压偏差和有功网损的优化方法,以解决现有含分布式电源的配电网无法有效调节电压、降低网损的问题。

本发明提供一种含分布式电源的配电网电压偏差和有功网损的优化方法,所述方法包括:

计算配电网各节点的电压以及节点之间的电导、电纳和相角差;

根据所述电压以及节点之间的电导、电纳和相角差选取有功网损最小为有功优化的目标函数;

根据所述电压选取电压偏离值最小为无功优化的目标函数;

根据所述有功优化的目标函数和所述无功优化的目标函数建立多目标优化函数;

采用矢量化跟踪轨迹内点法对所述多目标优化函数优化计算,得到优化后的电压偏差和有功网损。

优选地,所述采用矢量化跟踪轨迹内点法对所述多目标优化函数优化计算包括:

将所述多目标优化函数转化为单目标优化函数;

建立与所述单目标优化函数相对应的对数型惩罚函数;

根据所述对数型惩罚函数构建惩罚函数;

采用无约束优化方法求得所述惩罚函数的极值点(x*,r(k));

判断前后两次计算得到的极值点差值的范数是否大于允许误差;

若所述范数小于或等于允许误差,则得到优化后的电压偏差和有功网损;

若所述范数大于允许误差,则设定r(k+1)=cr(k),x(0)=x*r(k),k=k+1,c=0.1,并重新带入所述对数型惩罚函数,直至所述范数小于或等于允许误差。

优选地,所述单目标优化函数为

优选地,所述对数型惩罚函数为

优选地,所述根据所述对数型惩罚函数构建惩罚函数包括:

选取初始惩罚因子r(0)>0,设定允许误差ε>0;

在可行域内选取初始点x(0),设定计数k=1;

根据所述初始惩罚因子、所述初始点和所述对数型惩罚函数建立惩罚函数。

优选地,所述范数的计算公式为:||x*r(k)-x*r(k-1)||。

优选地,所述有功优化的目标函数为:

优选地,所述无功优化的目标函数为:

本发明的实施例提供的技术方案可以包括以下有益效果:

本发明提供一种含分布式电源的配电网电压偏差和有功网损的优化方法,该方法包括计算配电网各节点的电压以及节点之间的电导、电纳和相角差;根据所述电压以及节点之间的电导、电纳和相角差选取有功网损最小为有功优化的目标函数;根据所述电压选取电压偏离值最小为无功优化的目标函数;根据所述有功优化的目标函数和所述无功优化的目标函数建立目标优化函数;采用矢量化跟踪轨迹内点法将所述目标优化函数优化计算,得到优化后的电压偏差和有功网损。本发明提供的优化方法通过采用矢量化跟踪轨迹内点法进行优化,能够快速得到优化后的电压偏差和有功网损,且优化后的电压偏差和有功网损能够使含分布式电源的配电网有效调节电压、降低网损。本发明提供的优化方法不受系统规模大小的影响,具有较广泛的适用性。

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。

附图说明

为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的含分布式电源的配电网电压偏差和有功网损的优化方法的流程示意图;

图2为本发明实施例提供的多目标优化函数优化计算的流程示意图;

图3为本发明实施例提供的含分布式电源的33节点配电网的结构示意图;

图4为本发明实施例提供的含分布式电源的33节点配电网优化后的对比结果示意图;

图5为本发明实施例提供的不含分布式电源的21节点配电网的结构示意图;

图6为本发明实施例提供的不含分布式电源的21节点配电网优化后的对比结果示意图。

具体实施方式

请参考附图1,附图1示出了本发明实施例提供的含分布式电源的配电网电压偏差和有功网损的优化方法的流程示意图。

从附图1可知,本发明实施例提供的含分布式电源的配电网电压偏差和有功网损的优化方法包括:

s01:计算配电网各节点的电压以及节点之间的电导、电纳和相角差。

对于含有分布式电源的配电网,根据实际情况计算配电网中各节点处的电压以及节点之间的电导、电纳和相角差。

s02:根据所述电压以及节点之间的电导、电纳和相角差选取有功网损最小为有功优化的目标函数。

根据计算得到的各节点的电压以及节点之间的电导、电纳和相角差选取有功网损最小作为有功优化的目标函数。本发明实施例中,有功优化的目标函数计算公式为:,其中,vi、vj为节点i,j的电压,gij、bij和θij分别为节点i和j之间的电导、电纳和相角差。

s03:根据所述电压选取电压偏离值最小为无功优化的目标函数。

考虑到电压质量,根据计算得到的各节点的电压选取电压偏离值最小作为无功优化的目标函数。本发明实施例中,无功优化的目标函数计算公式为:其中,δv为偏差电压,vmin为电压允许的下限值,vmax为电压允许的上限值,n为节点数目。当v>vmax时,δv=v-vmax;当v<vmin时,δv=vmin-v;当vmin<v<vmax时,δv=0。

s04:根据所述有功优化的目标函数和所述无功优化的目标函数建立多目标优化函数。

根据有功优化的目标函数和无功优化的目标函数建立多目标优化函数,其中,该多目标优化函数为

s05:采用矢量化跟踪轨迹内点法对所述多目标优化函数优化计算,得到优化后的电压偏差和有功网损。

采用矢量化跟踪轨迹内点法对建立的多目标优化函数进行优化计算,进而得到优化后的电压偏差和有功网损。

请参考附图2,附图2示出了多目标优化函数优化计算的流程示意图。由附图2可知,采用矢量化跟踪轨迹内点法对所述多目标优化函数优化计算的具体过程包括:

s051:将所述多目标优化函数转化为单目标优化函数。

采用矢量化跟踪轨迹内点法将所述多目标优化函数转化为单目标优化函数,该单目标优化函数的计算公式为:其中,s.t.表示使f1满足f1,max<f1<f1,min,f1,max和f1,min分别为f1的上限值和下限值。

s052:建立与所述单目标优化函数相对应的对数型惩罚函数。

建立与单目标优化函数相对应的对数型惩罚函数,该对数型惩罚函数的计算公式为:其中,为对数型惩罚函数,x为可行解,r为惩罚因子。

s053:根据所述对数型惩罚函数构建惩罚函数。

选取初始惩罚因子r(0)和允许误差ε,且r(0)>0,ε>0。

在可行域内选取初始点x(0),并设定计数k=1。

根据初始惩罚因子r(0)、初始点x(0)和对数型惩罚函数构建惩罚函数

s054:采用无约束优化方法求得所述惩罚函数的极值点(x*,r(k))。

采用无约束优化方法从x(k-1)点开始计算惩罚函数的极值点(x*,r(k)),进而得到多个计数点的极值点。

s055:判断前后两次计算得到的极值点差值的范数是否大于允许误差。

判断前后两次计算得到的极值点差值的范数是否大于允许误差,即判断||x*r(k)-x*r(k-1)||是否≤ε。

s056:若所述范数小于或等于允许误差,则得到优化后的电压偏差和有功网损。

若计算得到的极值点差值的范数小于或等于允许误差,则得到优化后的电压偏差和有功网损。

s057:若所述范数大于允许误差,则设定r(k+1)=cr(k),x(0)=x*r(k),k=k+1,c=0.1,并重新带入所述对数型惩罚函数,直至所述范数小于或等于允许误差。

若计算得到的极值点差值的范数大于允许误差,则设定r(k+1)=cr(k),x(0)=x*r(k),k=k+1,c=0.1,并将r(k+1)、x、k带入s052中的对数型惩罚函数重新迭代计算,直至范数小于或等于允许误差。

请参考附图3,附图3示出了本发明实施例提供的含分布式电源的33节点配电网的结构示意图。

由附图3可知,在含有33个节点的配电网中,在第9节点处接入70kw的燃料电池,即在第9节点处接入分布式电源。采用本发明实施例提供的优化方法对该配电网系统进行优化,经过13次迭代、用时0.40s后得到各节点处的优化电压偏差和有功网损,其中,最小网损为0.0460pu,电压偏差为6.6160×10-06pu,具体请参考附图4。另外,从附图4中还能够看出,在各节点处,优化前后的电压幅值变动较大,由此说明,对于含有分布式电源的配电网,本发明实施例提供的优化方法具有很好的适用性。

请参考附图5,附图5示出了本发明实施例提供的不含分布式电源的21节点配电网的结构示意图。

由附图5可知,在含有21个节点的配电网中,没有接入分布式电源。采用本发明实施例提供的优化方法对该配电网系统进行优化,经过11次迭代、用时0.27s后得到各节点处的优化电压偏差和有功网损,其中,最小网损为0.0043pu,电压偏差为2.46×10-06pu,具体请参考附图6。另外,从附图6中还能够看出,在各节点处,优化前后的电压幅值变动不大,由此说明,对于不含有分布式电源的配电网,本发明实施例提供的优化方法的适用性较差。

本发明实施例提供的优化方法通过采用矢量化跟踪轨迹内点法进行优化,能够快速得到优化后的电压偏差和有功网损,且优化后的电压偏差和有功网损能够使含分布式电源的配电网有效调节电压、降低网损。本发明实施例提供的优化方法不受系统规模大小的影响,且系统规模越大,优化效果越好,寻优速度较快,因而具有较广泛的适用性。

本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。

本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于……实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。

以上所述的本发明实施方式并不构成对本发明保护范围的限定。

本领域技术人员在考虑说明书及实践这里发明的公开后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。

应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1