光伏器件载流子动力学过程测量装置的制作方法

文档序号:16715818发布日期:2019-01-22 23:14阅读:248来源:国知局
光伏器件载流子动力学过程测量装置的制作方法

本实用新型属于载流子超快动力学测量技术领域,具体涉及一种光伏器件载流子动力学过程测量装置。



背景技术:

胶体量子点(如CdSe,CdS,PbSe和PbS)因量子尺寸效应,禁带宽度可调,且制备成本低,可以在溶液中利用胶体化学法合成,而受到广泛的关注。另外,由于空间尺寸受限引起强烈的载流子相互作用,导致量子点展现出了许多新奇的物理过程,如超快俄歇作用和载流子倍增效应。其中,PbS量子点的禁带宽度为0.41eV,可用于光伏器件将光灵敏度拓展到近红外波段。通过优化量子点结构与量子点表面的配体,基于该量子点的光伏器件性能虽然得到大幅提升,但是光电转化效率仍然很低(<10%)。因此,无论从商用还是科研的角度,光伏器件的性能仍需进一步提升。为了达到这一目标,清楚地理解材料性能和载流子俘获机制至关重要。

限制光电转化效率的一个重要因素是从有源层提取电荷的效率低。量子点表面存在的大量缺陷,容易形成局域的表面态。这些缺陷态作为俘获中心可以俘获光生载流子,降低电荷的迁移率,增加复合的几率,因而这就限制了器件的厚度以及光吸收的效率。因此,控制量子点表面缺陷的浓度与深度成了提高光电转化效率的关键因素。

电荷产生、俘获以及复合过程发生在不同的时间尺度上,一般发生在光激发后的数纳秒(ns)以内。目前材料中载流子产生、跃迁与弛豫等超快过程的研究,主要利用飞秒泵浦-探测的方法。一束强的激光脉冲作为泵浦光,用激光来引起材料性质的变化;一束弱的激光脉冲作为探测光,用于探测泵浦光引起的性质变化。通过空间上的位置变化获得光束在时间上的延迟。改变光学延迟线的距离,使得泵浦光和探测光之间有不同的时间延迟,测量探测光透过材料之后的强度变化。该强度变化反映了材料中激发态载流子的弛豫过程。通过建立探测光强度与时间延迟的关系,就可以得到载流子跃迁与弛豫的时间分辨过程。探测光和泵浦光的波长可以不同,可分为单色、双色或者多色泵浦探测。

最新的研究表明,量子点瞬态吸收过程与移动的载流子和俘获的载流子都有关系,实验得到的图像是一个共同作用的结果。除了微波和太赫兹波(THz)能够探测局域光电导外,纯光学方法既不能把自由载流子和束缚电荷区分开,也不能给出光谱观测量与器件性能的直接关系。另一方面,泵浦探测技术对光伏器件要求较高,比如要求光伏器件具有一定的透光性,而且透过光伏器件的探测光束不能发生明显的散射等。大多数情况下,当把量子点封装成光伏器件后,泵浦-探测技术已经不再适用。因此,急需设计一款适合光伏器件的载流子动力学过程测量装置。



技术实现要素:

为解决不能测量光伏器件中电荷俘获动力学过程的技术问题,本实用新型提供一种光伏器件载流子动力学过程测量装置,能实现电荷俘获动力学过程的测量。

为实现上述目的,本实用新型技术方案如下:

一种光伏器件载流子动力学过程测量装置,其要点在于:包括分光镜、第一光学参量放大器、第二光学参量放大器、泵浦光处理模块、激发光处理模块、光伏器件和测量模块;一束超短脉冲激光由分光镜分为两束,其中一束超短脉冲激光由第一光学参量放大器转化为一束可见光波段的泵浦光,该束泵浦光由泵浦光处理模块进行延时、衰减和偏振处理后聚焦到光伏器件上,并由测量模块测量得到本底电流I,另外一束超短脉冲激光由第二光学参量放大器转化为一束近红外波段的激发光,该束激发光由激发光处理模块进行降频、衰减和偏振处理后聚焦到光伏器件上,并由测量模块在测得本底电流I后测量得到信号电流I1,其中,泵浦光早于激发光到达光伏器件上。

采用以上结构,可见光波段的泵浦光辐照处于可工作的光伏器件上,产生自由载流子和俘获载流子,自由载流子形成一个参考电流,即本底电流I;在一定时间延迟后,近红外波段的激发光辐照同一光伏器件,将被由泵浦光产生的电子和空穴吸收,因此给它们提供了额外的能量,如果这些载流子是自由载流子,它们的动力学过程不会受到这些额外能量的影响,将会快速返回到激发前的状态,如果这些是被浅能级俘获的电荷,额外的能量能够使载流子去俘获,因此为光伏器件提供了额外的信号电流I1;调节泵浦光处理模块的延时时间,就能改变激发光相对泵浦光的时间延迟,获得不同时刻的电流信号,由此可以得到I1/I随着延迟时间的关系,进而获得载流子俘获与去俘获的动力学过程,其中,归一化的I1/I反映的是器件中俘获态的相对量。

作为优选:所述泵浦光处理模块包括依次设置在第一光学参量放大器和光伏器件之间的延时组件、半波片、第一偏振片和第一聚焦透镜。采用以上结构,通过延时组件可以控制激发光相对泵浦光的时间延迟,通过半波片结合第一偏振片能够衰减泵浦光,通过第一偏振片可沿确定泵浦光的偏振,而通过第一聚焦透镜则能够将泵浦光聚焦到光伏器件上。

作为优选:所述延时组件包括平移台和设置在平移台上的中空回射器,所述中空回射器位于第一光学参量放大器和半波片之间。采用以上结构,平移台采用高精度平移台,通过调节中空回射器在平移台上的位置能够精确控制泵浦光相对激发光的时间延迟,操作便捷,易于实现。

作为优选:所述第一光学参量放大器为宽带非共线飞秒光参量放大器,所述半波片为宽带半波片。采用以上结构,宽带非共线飞秒光参量放大器受超短脉冲激光照射后能够产生可见光波段的泵浦光,而宽带半波片结合第一偏振片则能够对泵浦光起到衰减的效果。

作为优选:所述激发光处理模块包括依次设置在第二光学参量放大器和光伏器件之间的光学衰减片、斩波器、第二偏振片和第二聚焦透镜。采用以上结构,通过斩波器能够精确控制激发光的重复频率,通过光学衰减片能够衰减激发光,通过第二偏振片可沿确定激发光的偏振,而通过第二聚焦透镜则能够将激发光聚焦到光伏器件上

作为优选:在所述第二偏振片和第二聚焦透镜之间设置有小孔光阑。采用以上结构,能够滤除干扰激光。

作为优选:所述第二光学参量放大器为近红外波段飞秒脉冲光学参量放大器,所述光学衰减片为中性滤波片。采用以上结构,近红外波段飞秒脉冲光学参量放大器受超短脉冲激光照射后能够产生近红外波段的激发光,中性滤波片能够承受激发光的高强度照射,并有效衰减激发光。

作为优选:所述光伏器件包括呈层状结构且依次贴合的玻璃层、透明电极层、空穴传输层、量子点吸光层、空穴阻挡层和电子传输层,在所述电子传输层设置有金属电极,其中,所述量子点吸光层为PbS量子层。采用以上结构,PbS量子点的禁带宽度为0.41eV,可用于光伏器件将光灵敏度拓展到近红外波段,制备成本低。

作为优选:所述测量模块包括低噪声电流放大器和锁相放大器,所述低噪声电流放大器的输入端分别与透明电极层和金属电极电连接,该低噪声电流放大器的输出端与锁相放大器电连接。采用以上结构,光伏器件产生的电流经低噪声电流放大器放大后由锁相放大器进行放大测量。

与现有技术相比,本实用新型的有益效果是:

采用本实用新型提供的光伏器件载流子动力学过程测量装置,通过泵浦-激发的方式测量瞬态光电流获得光伏器件中束缚电荷的信息,可以在光伏器件工作状态下进行测量,无需开展分解实验;通过改变泵浦光与激发光的相对偏振方向,可以得到不同偏振配置情况下的时间分辨电流,从而得到光伏器件的各向异性参数;测量分辨率可以根据测量需求不同调节;并且,适用范围广,不仅适用于光伏器件,也适用于其他类似的有源器件;因此,本实用新型具有时间分辨率高、可调谐、适用范围广等优点。

附图说明

图1为本实用新型的结构示意图;

图2为光伏器件的剖面图。

具体实施方式

以下结合实施例和附图对本实用新型作进一步说明。

如图1所示,一种光伏器件载流子动力学过程测量装置,包括分光镜1、第一光学参量放大器2、第二光学参量放大器12、泵浦光处理模块、激发光处理模块、光伏器件23和测量模块。

请参见图1,所述泵浦光处理模块包括依次设置在第一光学参量放大器2和光伏器件23之间的延时组件、半波片9、第一偏振片10和第一聚焦透镜11。其中,所述第一光学参量放大器2为宽带非共线飞秒光参量放大器(请参见中国专利CN200610105338.9),该宽带非共线飞秒光参量放大器能够通过入射的超短脉冲激光产生可见光波段的泵浦光。所述延时组件包括平移台4和设置在平移台4上的中空回射器5,所述平移台4采用高精度平移台,其精度优于1um,所述中空回射器5位于第一光学参量放大器2和半波片9之间,能够在平移台4的控制下移动,改变光路长度,从而控制泵浦光的延迟时间。所述半波片9为宽带半波片,能够承受泵浦光的高强度照射,结合第一偏振片10并对泵浦光起到衰减的效果。所述第一偏振片10用于确定泵浦光的偏振。所述第一聚焦透镜11用于将泵浦光聚焦到光伏器件23。

进一步地,在所述第一光学参量放大器2和中空回射器5之间设置有第一反射镜3,第一光学参量放大器2产生的泵浦光经第一反射镜3反射到中空回射器5上。在所述中空回射器5和半波片9之间设置有依次排列的第二反射镜6、第三反射镜7和第四反射镜8,从中空回射器5出射的泵浦光依次经第二反射镜6、第三反射镜7和第四反射镜8后射向半波片9。通过这些反射镜能够便于泵浦光传输路径和时间的控制,简单可靠,易于操作。

请参见图1,所述激发光处理模块包括依次设置在第二光学参量放大器12和光伏器件23之间的光学衰减片14、斩波器15、第二偏振片18、小孔光阑19和第二聚焦透镜20。其中,所述第二光学参量放大器12为近红外波段飞秒脉冲光学参量放大器,该近红外波段飞秒脉冲光学参量放大器用于产生近红外波段的激发光。所述光学衰减片14为中性滤波片,用于调节激发光的强度。所述斩波器15用于改变激光的重复频率,并与锁相放大器21电连接。所述第二偏振片18用于确定激发光的偏振。所述小孔光阑19能够滤除干扰激光。所述第二聚焦透镜20用于将激发光聚焦到光伏器件23。

进一步地,在所述第二光学参量放大器12和光学衰减片14之间设置有第五反射镜13,第二光学参量放大器12产生的激发光经第五反射镜13反射到光学衰减片14上。在所述斩波器15和第二偏振片18之间设置有依次排列的第六反射镜16和第七反射镜17,从斩波器15出射的激发光依次经第六反射镜16和第七反射镜17后射向第二偏振片18。通过这些反射镜能够便于激发光传输路径和时间的控制,简单可靠,易于操作。

请参见图2,所述光伏器件23包括呈层状结构且依次贴合的玻璃层231、透明电极层232、空穴传输层233、量子点吸光层234、空穴阻挡层235和电子传输层236,在所述电子传输层236设置有金属电极237。其中,所述透明电极层232采用ITO导电玻璃;所述空穴传输层233为沉积在ITO透明电极上的PEDOT:PSS空穴传输层,厚度优选为50nm;所述量子点吸光层234为PbS量子层,通过喷涂法制备,厚度优选为10um,厚度可根据实际情况改变;所述空穴阻挡层235采用PCBM材质,厚度优选为100nm,采用在空气中沉积的方式附着在PbS量子层上;所述电子传输层236为ZnO材质,厚度优选为40nm,同样采用在空气中沉积的方式附着在空穴阻挡层235上;所述金属电极237为Au材质,厚度优选为80nm,在真空蒸镀仪内被蒸镀上去。

请参见图1和图2,所述测量模块包括低噪声电流放大器22和锁相放大器21,所述低噪声电流放大器22的输入端分别与透明电极层232和金属电极237电连接,该低噪声电流放大器22的输出端与锁相放大器21电连接。具体地说,所述光伏器件23经光辐照可以产生光电流,所述玻璃层231远离透明电极层232的一侧朝着入射激光,在光伏器件23的透明电极层232和金属电极237上分别引出导线与低噪声电流放大器22连接,产生的电流经低噪声电流放大器22放大,然后连接到锁相放大器21进行放大测量。

进一步地,以上所有器件都放置在光学平台24上,以保证便于各个器件的安装、调节和使用。

本实用新型的工作原理如下:

可见光波段的泵浦光辐照在光伏器件23上,产生自由载流子和俘获载流子,其中,自由载流子形成一个参考电流,也就是上述的本底电流I;在一定时间延迟后,近红外波段的激发光辐照在光伏器件23上,将被由泵浦光产生的电子和空穴吸收,因此给它们提供了额外的能量,如果这些载流子是自由载流子,它们的动力学过程不会受到这些额外能量的影响,将会快速返回到激发前的状态,如果这些是被浅能级俘获的电荷,额外的能量能够使载流子去俘获,为光伏器件23提供了额外的信号电流I1。通过平移台4上改变中空回射器5的位置,也就是改变激发光与泵浦光之间的时间延迟,能够获得不同时刻的电流信号,由此我们可以得到I1/I随着延迟时间的关系,进而获得载流子俘获与去俘获的动力学过程。其中,归一化的I1/I反映的是器件中俘获态的相对量。

以上电流的测量都是在短路情况下进行的,也就是没有外加电源。其中,本底电流I的测量:在没有激发光的情况下,只用泵浦光进行辐照光伏器件23,连接锁相放大器21进行测量。信号电流I1的测量:泵浦光和激发光同时辐照光伏器件23,采用锁相放大器21进行测量。

本实用新型的工作过程如下:

一束超短脉冲激光由分光镜1分为两束,其中一束超短脉冲激光由第一光学参量放大器2转化为一束可见光波段的泵浦光,该束泵浦光由泵浦光处理模块进行延时、衰减和偏振处理后聚焦到光伏器件23上,并由测量模块测量得到本底电流I,另外一束超短脉冲激光由第二光学参量放大器12转化为一束近红外波段的激发光,该束激发光由激发光处理模块进行降频、衰减和偏振处理后聚焦到光伏器件23上,并由测量模块测量得到信号电流I1,其中,泵浦光早于激发光到达光伏器件23上。

需要指出的是,第一聚焦透镜11和第二聚焦透镜20能够将泵浦光和激发光聚焦到光伏器件23上的同一个位置,焦斑半径优选为50um。泵浦光与激发光的能量比优选为1:1000。并且,通过改变泵浦光与激发光的相对偏振方向,即采用不同配置的第一偏振片10和第二偏振片18,可以得到不同偏振配置情况下的时间分辨电流,从而得到光伏器件23的各向异性参数。本实施例中采用的是泵浦光和激发光的相对偏振方向为54°,此时可以获得没有分子取向效应影响的激发态动力学信息。泵浦激光的重复频率优选为1kHz,激发光的频率由斩波器15调节,优选设置为400Hz。

最后需要说明的是,上述描述仅仅为本实用新型的优选实施例,本领域的普通技术人员在本实用新型的启示下,在不违背本实用新型宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1