基于发热碳纤维的光伏电池板自融冰装置及控制方法与流程

文档序号:18356862发布日期:2019-08-06 23:15阅读:275来源:国知局
基于发热碳纤维的光伏电池板自融冰装置及控制方法与流程

本发明属于太阳能发电监测及表面覆冰融冰技术领域,涉及一种基于发热碳纤维的光伏电池板自融冰装置,本发明还涉及该装置的融冰控制方法。



背景技术:

随着近年对大数据的日益重视,多个行业领域开发了在线监测装置进行不同方面的数据采集、分析及利用,如对输电线路及变电5设备的运行状态监测,利用野外地震台进行数字测震,使用小型极地监测站对极地生态环境进行信息综合等。但上述的几种监测装置,多安装在远离市电接入点区域,采用线路供电费用高且难度较大。理想的户外监测装置应在多种户外情况下,尽量满足长期、持续的监测,因此稳定可靠的电源是先决条件。目前,针对上述场合的供电方式中,主流电源是太阳能或风能结合蓄电池或其它可充电电池的独立光伏电源。

光伏电池板的发电量依赖于透过其表面玻璃面板所能接收到的辐射量。由于安装在户外,运维不便,长期工作后其表面受到环境影响无法保持洁净,降低了其输出功率,导致供电断续。当秋冬季节出现雨雪天气,造成输电线路及光伏电池板覆雪覆冰(以下简称为覆冰)时,输电线路出现故障的概率远大于平时,但电池板也因为冰雪遮挡无法获取太阳辐照产生电能,造成监测装置暂时失效,因此应及时对光伏电池板进行融雪融冰(以下简称为融冰)以保证监测装置的正常工作。目前国内技术的关注点多在灰尘清洗上,融冰除雪方面还处于空白,故急需研制一种运维便捷的光伏电池板自融冰装置。



技术实现要素:

本发明的目的是提供一种基于发热碳纤维的光伏电池板自融冰装置,解决现有技术条件下光伏电源因冰雪覆盖无法获取太阳辐射,影响光伏电池板持续发电的问题。

本发明的另一目的是提供该种光伏电池板的自融冰控制方法,不会对光伏电池板造成高温损害。

本发明所采用的技术方案是,一种基于发热碳纤维的光伏电池板自融冰装置,包括mcu模块,mcu模块分别与电源控制转换模块、传感器模块、产热模块、储能蓄电池连接;传感器模块包括叉指电容式覆冰传感器和温湿度传感器,产热模块由多个碳纤维发热丝组成;同时,mcu模块与光伏电池板的输出电压及输出电流的输出信号线连接,mcu模块与储能蓄电池的剩余容量及电池电压的输出信号线连接。

本发明所采用的另一技术方案是,一种光伏电池板的自融冰控制方法,利用上述的光伏电池板自融冰装置,按照以下步骤实施:

步骤1、利用传感器模块收集覆冰的信息,

结合叉指电容式覆冰传感器及温湿度传感器采集的数据,综合判定当前天气状况及覆冰程度,为mcu模块提供判断依据;

步骤2、启动产热模块发热融冰并监测融冰过程及状态,

储能蓄电池首先为产热模块供电,启动碳纤维发热融冰,在融冰过程中根据叉指电容式覆冰传感器对光伏电池板表面的冰层状态变化持续进行监测,防止融冰不足或过度融冰的情况发生;

步骤3、控制转换供电电源,防止储能蓄电池的过放电;

光伏电池板在覆冰状态下处于无输出或极低输出的情况,因此前期融冰装置需要储能蓄电池进行供电,在融冰过程中mcu模块需对储能蓄电池的荷电状态进行预警监测,荷电状态soc是描述蓄电池状态的一个重要参数,定义如下:

其中,c(t)为某时刻储能蓄电池的剩余电量,cr为储能蓄电池的总容量,单位均为ah,soc=100%表示储能蓄电池处于满电状态,soc=0%表示储能蓄电池处于全放电状态,首先评估储能蓄电池的剩余容量,

mcu模块对光伏电池板的输出电压及输出电流进行监控,当其输出电流能较为稳定地达到碳纤维融冰需要的电流值时,电源控制转换模块将碳纤维发热丝的供电电源切换为光伏电池板;

步骤4、融冰结束,切断产热模块的供电,整体装置转为低功耗监测状态。

本发明的有益效果是,包括以下几个方面:

1)通过自融冰装置融化消除光伏电池板上表面的冰雪,恢复光伏电池板的太阳能获取能力,避免了因覆冰导致供电不连续,导致户外用电装置无法正常工作的问题,尤其是在长期雨雪天气的情况下,能较快恢复光伏电池板的基本供电。

2)考虑到安装在输电线路上或其他户外装置上的光伏电源运维不便,设计嵌入式自启动装置,避免了人工开启关闭,降低人工运维成本,整体成本较低,工作寿命较长。

3)基于覆冰及融冰的物理过程规律设计融冰启动电流及关闭时间,避免了融冰不足或加热过度造成电池板表面热斑的问题,同时在融冰到一定程度时转为由光伏电池板向蓄电池供电,避免蓄电池过度放电。

附图说明

图1本发明装置的结构示意图;

图2本发明装置中光伏电池板11的截面示意图;

图3本发明装置的光伏电池板11中叉指电容式覆冰传感器10及碳纤维发热丝7布置的俯视图;

图4本发明装置中的叉指电容式覆冰传感器10的结构示意图。

图中,1.玻璃面板,2.eva膜,3.铝框,4.太阳能电池片,5.电池片连接线,6.接线盒,7.碳纤维发热丝,8.碳纤维连接线,9.自融冰控制盒,10.叉指电容式覆冰传感器,11.光伏电池板,12.激励电极,13.感应电极,14.介质空隙,15.电极引线,16.mcu模块,17.电源控制转换模块,18.传感器模块,19.产热模块,20.储能蓄电池,21.温湿度传感器,22.输出电压,23.输出电流,24.剩余容量,25.电池电压。

具体实施方式

下面结合附图和具体实施方式对本发明进行详细说明。

参照图1,本发明装置的结构是,包括mcu模块16,采用型号为stc89c51的单片机,mcu模块16分别与电源控制转换模块17、传感器模块18、产热模块19、储能蓄电池20连接;传感器模块18包括叉指电容式覆冰传感器10和温湿度传感器21,产热模块19由多个碳纤维发热丝7组成;同时,mcu模块16与光伏电池板11的输出电压22及输出电流23的输出信号线连接,mcu模块16与储能蓄电池20的剩余容量24及电池电压25的输出信号线连接。即mcu模块16既对光伏电池板11的输出电压22及输出电流23进行监测,又对储能蓄电池20的剩余容量24及电池电压25进行监测,以判断当前储能蓄电池20的能耗情况。

参照图2、图3,光伏电池板11的结构是,包括固定在铝框3中的eva膜2,eva膜2上表面覆盖有玻璃面板1,eva膜2中包裹嵌有多组太阳能电池片4,所有的太阳能电池片4通过电池片连接线5接入接线盒6中,eva膜2中靠近上表面(朝向玻璃面板1)设置有多条碳纤维发热丝7,所有的碳纤维发热丝7(即产热模块19)通过碳纤维连接线8与自融冰控制盒9中的mcu模块16连接;在光伏电池板11的下侧安装有叉指电容式覆冰传感器10。

太阳能电池片4采用现有技术,经过对硅片的制绒、扩散、刻蚀、pecvd和丝网印刷等工序制作而成,太阳能电池片4采用串并联方式利用电池片连接线5连接后获得较大的开路电压和短路电流。在eva胶膜制作过程中将碳纤维发热丝7排布在太阳能电池片4之间一起封装在内部,并通过碳纤维连接线8连接引出到光伏电池板11的背面的自融冰控制盒9中;接线盒6安装在背板的铝框3上,作为光伏电池板11的输出端。为了避免环境的污染和腐蚀,使用eva膜2将所有的太阳能电池片4“上盖下垫”包封,并与上层透光的玻璃面板1、下层作为背板保护材料的铝框3粘合为一体。

参照图3,实施例中,叉指电容式覆冰传感器10及碳纤维发热丝7在光伏电池板11中的布置方式是,由于太阳能电池片4对高温敏感,长时间持续高温会造成太阳能电池片4发生热斑效应,因此将碳纤维发热丝7安装嵌入eva膜2时应注意布置在太阳能电池片4的串并联空隙中,并且避开太阳能电池片4的正上方。叉指电容式覆冰传感器10安装在光伏电池板11安装正面下侧的铝框3上,这是考虑到整体太阳能电池板普遍是倾斜放置,因此下半部的积雪及覆冰状况与电池板上半部相比更为显著,能够保证测量更加真实准确。

参照图4,叉指电容式覆冰传感器10的结构是,包括上下相对交错排列的激励电极12和感应电极13,激励电极12和感应电极13相对伸出的叉指之间保持有介质空隙14,激励电极12和感应电极13各自对外连接有电极引线15。

本发明上述的基于发热碳纤维的光伏电池板自融冰装置,根据光伏电池板11的规格配备需要嵌入的碳纤维发热丝7。根据光伏电池板11的规格计算所需碳纤维发热丝7的总长度,并将碳纤维发热丝7嵌入光伏电池板11上表面的玻璃面板1下方的eva膜2中,避开太阳能电池片4的排布位置,纵向布置在太阳能电池片4的串并联间隙之间,在不造成太阳能电池片4局部温度过高的前提下进行发热融冰,具体要求是:

1)确定产热模块19

由于本发明的装置主要是应用在各种户外装置的光伏电源上,处在较为恶劣的户外自然环境中,且过高的温度会导致太阳能电池片4表面出现热斑效应而损坏太阳能电池片4,因此产热模块19既要满足不会造成持续高温,又要做到使用寿命长、方便运维。同时,考虑到发生覆冰情况后光伏电池板11一般处于无输出或低输出,此时备用的储能蓄电池20是整个装置的唯一电源,因此用于产热融冰的组件不应耗能过高,否则会造成mcu模块16供电断续、储能蓄电池20过度放电等不良后果。综合以上因素,选择碳纤维发热丝7作为自除冰装置提供融冰热量的产热模块19的发热主体,利用发热材料的焦耳热效应,热量经结构传导层传递到光伏电池板11的覆冰表面,进而加热使冰雪融化。

碳纤维发热丝7是以聚丙烯腈纤维、粘胶纤维或沥青纤维为原丝,通过加热除去碳以外的其他元素制得的一种高强度、高模量纤维,其在纤维方向上的高导热系数让其具有良好的导热性能,导热系数最高可达700w/(m·k),约是金属铝(237w/(m·k))的2.7倍。因此用其作为发热体能够表现出升温迅速、热滞后小的优异特性,其工作的主要的传热形式为热辐射,电热转换效率较高,节能效果显著。与普通电热碳纤维连接线相比,碳纤维发热丝7显著的特点是:升温迅速,电热转换效率达98%以上,省电节能,使用时可直接缠绕在被加热部位的表面;以长丝碳纤维束为发热体,外层包覆聚氯乙烯、硅胶、铁弗龙等绝缘材料,发热体抗氧化性能好,不易老化,使用寿命长。

2)确定碳纤维发热丝7的配置参数

设l为碳纤维发热丝7的总长度,单位是m;r热为产热模块19的单位电阻,单位是ω,其电阻由碳纤维发热丝7的型号确定,如东丽牌6k硅橡胶碳纤维电热线电阻为74ω,12k硅橡胶碳纤维电热线电阻为33ω,24k硅橡胶碳纤维电热线电阻为17ω。由于产生的温度过低不足以迅速达到融冰效果,产生的温度过高会造成较大的耗能,因此综合考虑,12k的硅橡胶碳纤维电热线较为合适,其半径为1.5mm,能够满足嵌入eva膜2中的相邻太阳能电池片4空隙内。

参照图3,一般太阳能电池板由太阳能电池片4通过电池片连接线5串并联后使用eva膜2将电池串“上盖下垫”包封,因此碳纤维发热丝7应安装在两排串联或并联太阳能电池片4之间的空隙中。除此之外,光伏电池板制造时多在铝框3与电池板之间留出一定距离的空白,还可以在铝框3内侧附加加装一圈碳纤维发热丝7,加快融冰速度。根据待配置的光伏电池板11的面积与边框3,确定碳纤维发热丝7的长度,以达到较合适的融冰效果。

3)计算热量功率及电流

融化不同程度的覆冰需要的热量不同,自融冰装置的产热模块19产生的热功率p热由式(1)计算得到:

其中,u为产热模块19的供电电压,一般户外装置及输电线路在线监测装置的电压多为12v,则对产热模块19的供电电压u也为12v。以规格为0.6m×0.4m的光伏电池板11面积为例,大约可配备总长度为3.2m的碳纤维发热丝7,采用单位电阻为33ω的12k硅橡胶碳纤维电热线,其热功率为1.36w。在实际的应用环境中,发热结构会受到环境中风速等气流扰动的影响,导致强迫对流的发生,造成发热体与周围环境的热交换,导致发热体热量散失以及被加热体能量吸收降低。但是在无热对流的情况下热交换在融雪化冰过程中所耗费的能量占总能量的比值很小,在此可以忽略不计。

本发明光伏电池板的自融冰控制方法,利用上述的光伏电池板自融冰装置,按照以下步骤实施:

步骤1、利用传感器模块18收集覆冰的信息,

本发明装置需要在覆冰的情况下启动,因此本发明装置需要结合叉指电容式覆冰传感器10及温湿度传感器21采集的数据,综合判定当前天气状况及覆冰程度,为mcu模块16提供判断依据,

1.1)收集气象数据,

结冰是受到温湿度、冷暖空气对流及风等影响的物理现象。冷锋过境气温骤降,与暖湿气流交汇,过冷却液滴在风的吹送下碰撞到光伏电池板11的表面。由于寒冷环境下其表面温度低于0℃,过冷却液滴会冻结形成冰,不透明的冰层或覆雪造成玻璃面板1接收辐射的透明度降低。

由于相邻电容传感器边缘电场分布的不均匀性,造成传感器不同感应区域内的灵敏度不同,一般传感器的灵敏度随着测量物体到传感器极板距离的增加而降低。本发明采用叉指电容式覆冰传感器10对覆冰情况进行判定。如图4所示,两种电极由厚度为0.1mm的铜箔制成。叉指电容式覆冰传感器10看作由若干个相邻的叉指单元组成,根据待测覆冰的厚度变化规律,对组成叉指传感器电极的每个叉指单元的宽度和间距进行独立的优化设计,即在保证穿透深度的条件下,使得电极宽度尽量大,以获得最大的信号强度和检测灵敏度。如图4所示,设叉指的宽度为w,相邻两叉指边缘间距为g,规定叉指宽度w和相邻两叉指边缘间距g之和为一个基本叉指单元宽度c,并用极板覆盖率τ表征叉指宽度w在传感器基本单元c中所占的比例,即τ=w/(w+g)。当叉指个数一定时,随着极板覆盖率的增大,电容值逐渐增加。这主要因信号极板有效面积增加所引起;当极板覆盖率一定时,随着覆冰厚度的增加,电容值逐渐趋于稳定值。

1.2)判定覆冰的情况,

综合而言,光伏电池板11表面结冰的条件可以总结为:(1)风速大于1m/s;(2)空气相对湿度大于85%;(3)气温及设备表面温度在0℃以下。为确保判断的正确性,在叉指电容式覆冰传感器10判断结果的基础上,自融冰装置还需对光伏电池板11周围温湿度利用温湿度传感器21进行监测,当空气相对湿度大于70%且气温及设备表面温度在0℃以下时,可以判定光伏电池板11表面发生了覆冰情况,并将获取的覆冰密度数据送入mcu模块16。正常气象条件下叉指电容式覆冰传感器10两极板之间只有空气介质,当覆冰时,介电常数会有明显变化,且能通过此变化对光伏电池板11的覆冰情况进行监测。

步骤2、启动产热模块19发热融冰并监测融冰过程及状态,

融化不同程度的覆冰需要的热量不同。储能蓄电池20首先为产热模块19供电,启动碳纤维发热融冰。在融冰过程中应根据叉指电容式覆冰传感器10对光伏电池板11表面的冰层状态变化持续进行监测,防止融冰不足或过度融冰的情况发生。

上述的判断结果送入mcu模块16中判定覆冰程度,启动储能蓄电池20为产热模块19供电,启动碳纤维发热融冰。

当光伏电池板11表面温度稍高于零摄氏度时,碳纤维发热丝7产生的热交换融化沉积的覆冰,融化所消耗的热量为:

δqm=lmα(1-γ)βrφ(2)

其中,lm=335kj/kg,α为覆冰融化率,γ为初始液态水含量(单位是%),β为积聚系数,当雪花穿过光伏电池板11安装位置上空时,只有一部分β因空气动力学和机械原因会落在玻璃面板1并增长,r为降水通过玻璃面板1的气流表面s(长度为1m,宽度为φm)的流量,r是p(p是在地面降水成分的水当量,单位是mm/h)、u(u是水平风速,单位是m/s)和w(w是雪花垂直下降速度,平均值取1m/s)及s的函数,函数关系为:

对应地,有电流通过的碳纤维发热丝7在与冰雪的界面上会因焦耳效应产生热交换,单位长度碳纤维发热丝7在通过强度为i的电流时释放热量为:

δq热=r热i2(4)

其中,由辐射效应产生的热交换及冰晶到冰晶颗粒转变释放的能量均可忽略不计,因此只要控制碳纤维发热丝7产生的热量与融冰需要的热量大致相等,即可持续融冰。在融冰过程中应根据叉指电容式覆冰传感器10对光伏电池板11表面的冰层状态变化持续进行监测。当融冰到一定程度,四周产生水膜,叉指电容式覆冰传感器10中的介质成分及比例发生变化,造成测量得到的介电常数发生改变,根据介电常数调整融冰电流,控制融冰过程,防止融冰不足或过度融冰的情况发生。

步骤3、控制转换供电电源,防止储能蓄电池20的过放电;

光伏电池板11在覆冰状态下处于无输出或极低输出的情况,因此前期融冰装置需要储能蓄电池20进行供电。一般而言,在同一热流密度下,随着环境温度的降低,融雪所需要的时间越长在一定的雪层厚度下,越低的环境温度所消耗的时间和能量越多。但若因需要电能过多,储能蓄电池20进入过放电状态,电池端电压加速跌落,极容易造成供电突然中断,引发突然事故。另外,过放电很可能会造成活性物质的消耗或从极板上脱落,导致储能蓄电池20不可逆转的损伤。因此在融冰过程中mcu模块16需对储能蓄电池20的荷电状态进行预警监测,荷电状态soc是描述蓄电池状态的一个重要参数,定义如下:

其中,c(t)为某时刻储能蓄电池20的剩余电量,cr为储能蓄电池20的总容量,单位均为ah,soc=100%表示储能蓄电池20处于满电状态,soc=0%表示储能蓄电池20处于全放电状态。由于冰雪天气发生时户外安装的储能蓄电池20的荷电状态soc的数值决定了能对融冰装置提供的电能,因此在光伏电池板11发生覆冰后,需要首先评估储能蓄电池20的剩余容量24。

受限于光伏电池板11内部太阳能电池片4的空间排布,融冰用的碳纤维发热丝7无法做到板面整体均匀布置。但根据冰层的物理特性,当光伏电池板11覆冰区域温度高于融化温度时,冰层从里逐渐融化,形成一层水膜,冰层会在水膜及玻璃面板1的憎水性下发生滑落。光伏电池板11表面融冰后裸露出的太阳能电池片4获得一定的太阳辐照度后将恢复部分正常输出。

mcu模块16对光伏电池板11的输出电压22及输出电流23进行监控,当其输出电流23能较为稳定地达到碳纤维融冰需要的电流值时,电源控制转换模块17将碳纤维发热丝7的供电电源切换为光伏电池板11,避免造成储能蓄电池20的过放。

步骤4、融冰结束,切断产热模块19的供电,整体装置转为低功耗监测状态,

光伏电池板11表面的融冰完成后,叉指电容式覆冰传感器10的叉指电容电极之间恢复为空气介质,监测到的介电常数发生了变化,叉指电容式覆冰传感器10将这种变化传输到mcu模块16与空气介电常数比较,判断在误差范围内,切断对产热模块19的供电,停止加热,将自融冰装置转为极低功耗的监测状态。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1