并联电池组充放电管理方法及电子装置与流程

文档序号:21540471发布日期:2020-07-17 17:42阅读:404来源:国知局
并联电池组充放电管理方法及电子装置与流程

本申请涉及电源技术领域,尤其涉及一种并联电池组充放电管理方法及电子装置。



背景技术:

为应对用户对储能电池的功率及续航时间的需求增长,若仍采用单电池组方案,势必增加电池组电芯的能量密度及电芯容量,从而增加电池组的体积及重量,并增加电池组的研发、制造、运输及安装成本。而采用电池组并联方案,从研发角度来讲,只需要设计一套低容量方案,减少了开发商研发及安规认证成本。电池组并联的关键在于主机电池组需实时监控各从机电池组的状态信息,在电池组出现故障时,主机电池组及时反馈故障信息给储能逆变器(pcs),pcs可立即进行降功率或者切断负载运行以确保并联后电池组的安全运行。

现有储能系统的并联技术存在如下问题:1、电池组必须在静置情况下,电压保持一致的情况下进行并联,在进行充放电使用,电池组电压必须人工进行调整,增加了安装调试的复杂度和成本;2、电池组在充放电情况下进行并机,只能以电压为并机的唯一依据,增加了电池组并联时功率回路因环流过大导致烧毁的风险。

现有技术中解决上述问题的解决方案有:1:并联的各电池组在并联之前,人工进行电池组的总电压调整,将各个电池组的总压充电或放电至一个固定的电压值,当所有的电池组总电压都调整完毕,再将各个电池组并联在一起使用;2、并联的各电池组在充放电过程中进行并联,但并机参考量仅为电池组电压,并且并联过程中的充放电电流取决于后级负载,当充放电过程中,先并入功率回路的电池组电压升高或者降低,与未并入的电池组电压一致时,则将未并入的电池组并联接入功率回路。

然而,现有技术中的解决方案存在以下缺点:1、方案1中,电池组电压需人工调整,电池组并联不够智能,增加了安装调试的复杂度和成本;2、方案2中,电池组并联时的参量量单一,充放电电流不受限制,导致并联的电池组之间的电压一致但实际容量差异大,并联之后电池组间环流过大,电池组电芯、功率回路及器件亦因环流大电流导致损坏损伤。



技术实现要素:

有鉴于此,有必要提供一种并联电池组充放电管理方法及电子装置,可以提升电池组并机的自动化程度,增强并机系统的适应性,可以提高并机的执行效率,进一步降低运营维护成本,提升用户的体验度。

本申请一实施方式提供一种并联电池组充放电管理方法,所述并联电池组充放电管理方法包括:获取多个电池组的电压值及荷电状态;将所述电池组的电压值及荷电状态分别与参考电压值及参考荷电状态进行比较;及根据比较结果对所述多个电池组进行充放电管理。

根据本申请的一些实施方式,所述参考电压值可通过以下方法获取:当所述多个电池组均未接入功率总线时,以所述多个电池组的电压值中的最小值为所述参考电压值。

根据本申请的一些实施方式,所述参考荷电状态可通过以下方法获取:当所述多个电池组均未接入功率总线时,以所述多个电池组的荷电状态中的最小值为所述参考荷电状态。

根据本申请的一些实施方式,所述参考电压值还可通过以下方法获取:当所述电池组已接入功率总线时,以已接入功率总线的所述电池组的电压值中的最小值为所述参考电压值。

根据本申请的一些实施方式,所述参考荷电状态还可通过以下方法获取:当所述电池组已接入功率总线时,以已接入功率总线的所述电池组的荷电状态中的最小值为所述参考荷电状态。

根据本申请的一些实施方式,所述并联电池组充放电管理方法还包括:获取已接入功率总线的所述电池组的数量;及确定储能逆变器的充电限流值icharge及放电限流值idischarge。

根据本申请的一些实施方式,所述充电限流值icharge满足以下公式:

icharge=a×k1×pm;

其中,a为电池组的1c电流,k1为充电限流系数,pm为已接入功率总线的所述电池组的数量。

根据本申请的一些实施方式,所述放电限流值idischarge满足以下公式:

idischarge=a×k2×pm;

其中,a为电池组的1c电流,k2为放电限流系数,pm为已接入功率总线的所述电池组的数量。

根据本申请的一些实施方式,所述根据比较结果对所述多个电池组进行充放电管理的步骤还包括:当所述多个电池组均未接入功率总线时,判断所述多个电池组的电压值与参考电压值的差值是否均小于第一阈值且所述多个电池组的荷电状态与所述参考荷电状态的差值是否均小于第二阈值;及若所述多个电池组的电压值与参考电压值的差值均小于第一阈值且所述多个电池组的荷电状态与所述参考荷电状态的差值均小于第二阈值,控制所述多个电池组依次接入功率总线。

根据本申请的一些实施方式,所述根据比较结果对所述多个电池组进行充放电管理的步骤还包括:当至少一个电池组已接入功率总线且电池组处于充电状态时,判断未接入功率总线的电池组的电压值与参考电压值之间的差值是否在第一区间内且未接入功率总线的电池组的荷电状态与所述参考荷电状态之间的差值是否在第二区间内;若未接入功率总线的电池组的电压值与参考电压值之间的差值均在第一区间内且未接入功率总线的电池组的荷电状态与所述参考荷电状态之间的差值均在第二区间内,控制电池组依次接入功率总线。

根据本申请的一些实施方式,所述根据比较结果对所述多个电池组进行充放电管理的步骤还包括:当至少一个电池组均接入功率总线且未接入功率总线的电池组处于放电状态时,判断所述参考电压值与未接入功率总线的电池组的电压值之间的差值是否在第三区间内且所述参考荷电状态与未接入功率总线的电池组的荷电状态之间的差值是否在第四区间内;若所述参考电压值与未接入功率总线的电池组的电压值之间的差值均在第三区间内且所述参考荷电状态与未接入功率总线的电池组的荷电状态之间的差值均在第四区间内,控制电池组依次接入功率总线。

根据本申请的一些实施方式,所述并联电池组充放电管理方法还包括:当电池组出现故障告警时,接收到所述故障告警信息;控制所有电池组切出功率总线或将故障的电池组单独切出功率总线。

本申请一实施方式还提供一种电子装置,所述电子装置包括:

多个电池组;

电池管理单元,用于执行如上述所述的充放电管理方法。

根据本申请的一些实施方式,所述电子装置还包括与所述多个电池组一一对应的多个开关,每一所述开关连接于电池组与储能逆变器之间。

本申请实施方式提供的并联电池组充放电管理方法及电子装置,通过获取多个电池组的电压值及荷电状态,并将所述电池组的电压值及荷电状态分别与参考电压值及参考荷电状态进行比较,再根据比较结果对所述多个电池组进行充放电管理。如此,本申请所提供的技术方案可以提升电池组并机的自动化程度,增强并机系统的适应性,可以提高并机的执行效率,进一步降低运营维护成本,提升用户的体验度。

附图说明

图1是根据本申请一实施方式的并联电池组的并机系统架构示意图。

图2是根据本申请一实施方式的并联电池组充放电管理方法的流程图。

图3是根据本申请另一实施方式的并联电池组充放电管理方法的流程图。

图4是根据本申请另一实施方式的并联电池组充放电管理方法的流程图。

图5是根据本申请另一实施方式的并联电池组充放电管理方法的流程图。

图6是根据本申请另一实施方式的并联电池组充放电管理方法的流程图。

图7是根据本申请一实施方式的并联电池组充放电管理系统的模块图。

主要元件符号说明

电子装置100

并联电池组10

电池组10a、10b、10c

储能逆变器20

并联电池组充放电管理系统30

开关k

电池管理单元bmu1、bmu2、bmu3

获取模块301

比较模块302

控制模块303

如下具体实施方式将结合上述附图进一步说明本申请。

具体实施方式

下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。

基于本申请中的实施方式,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施方式,都是属于本申请保护的范围。

请参阅图1,图1为根据本申请一实施方式的并联电池组10进行并机的系统架构示意图。

本申请实施方式中的电子装置100电连接于储能逆变器20,所述电子装置100可以包括并联电池组10。

具体而言,所述并联电池组10可包括多个并联连接的电池组(图1仅以三个电池组10a、10b、10c为例进行说明,可以多于三个或者少于三个)。

每一电池组10a、10b、10c均包括正极b+及负极b-,每一电池组10a-10c的正极b+连接在一起构成并联电池组10的正极,每一电池组10a-10c的负极b-连接在一起构成并联电池组10的负极。并联电池组10的输出汇流至储能逆变器20的直流输入侧。具体地,每一电池组10a、10b、10c的负极b-电连接于所述储能逆变器20的功率总线p-,每一电池组10a、10b、10c的正极b+分别通过开关k电连接于所述储能逆变器20的功率总线p+。本申请的实施方式中,所述开关的数量与电池组的数量相同且一一对应。即,各电池组功率线可通过对应的开关k并联在功率总线p+、p-上。

本申请一实施方式中,每一电池组10a、10b、10c还包括有内部总线接口及外部总线接口,内部总线接口可以实现内部总线通信功能,外部总线接口可以实现外部总线通信功能。可以理解的是,内部总线通信功能可用于实现每一电池组10a-10c之间的内部通信,外部总线通信功能可用于实现主机与储能逆变器20之间的通信。

在一较佳实施方式中,所述内部总线及外部总线可以为can通信总线或者rs485通信总线。

本申请的一实施方式中,所述并联电池组10中的其中一个电池组可为主机,其余电池组可为从机。

可以理解的是,每一电池组中均可设有电池管理单元,其中每个电池组由对应的电池管理单元来进行电芯管理。也即,本申请实施方式中,多个开关k可分别由对应的电池管理单元来控制开关状态。具体地,本申请的实施方式中,所述电池组10a为主机,所述电池组10b、10c为从机。所述电池组10a中设有电池管理单元bmu1,所述电池组10b、10c中分别设有电池管理单元bmu2、bmu3。

接着,从机中的电池管理单元将对应电池组的数据信息及状态通过内部总线发送给主机中的电池管理单元。由此,主机中的电池管理单元可将各个电池管理单元(包括主机的电池管理单元)的数据信息及状态进行汇总及分析,并计算出对应的控制参数,再通过内部总线分别对各个电池管理单元进行控制,同时还将可通过外部总线与储能逆变器20进行数据交互与运行调度。

请参阅图2,图2为根据本申请一实施方式的并联电池组充放电管理方法的步骤流程图。所述并联电池组充放电管理方法可以包括以下步骤。

步骤s21:获取多个电池组的电压值及荷电状态。

本申请实施方式中,各从机的电池管理单元将对应电池组的数据信息及状态通过内部总线发送给主机的电池管理单元。举例而言,所述电池组10a中的电池管理单元bmu1可以通过电池管理单元bmu2、bmu3来获取电池组10b、10c的电压值以及荷电状态。

可以理解的是,荷电状态(stateofcharge,soc)是指电池的剩余容量与该电池的满充容量的比值。

步骤s22:将所述电池组的电压值及荷电状态分别与参考电压值及参考荷电状态进行比较。

具体而言,在进行功率动态并机时,需要将各电池组的总电压值与参考电压值进行比较,并且还需要将各电池组的荷电状态与参考荷电状态进行比较。

其中,功率动态并机的参考电压值与参考荷电状态均由主机的电池管理单元来计算。

在较佳的一个实施方式中,所述参考电压值可通过以下方法来获取:若所述多个电池组10a-10c均未接入功率总线,所述多个电池组10a-10c的电压值中的最小值即可为作为所述参考电压值。

在较佳的一个实施方式中,所述参考荷电状态可通过以下方法来获取:若所述多个电池组10a-10c均未接入功率总线,所述多个电池组10a-10c的荷电状态中的最小值可作为所述参考荷电状态。

在另一个较佳的实施方式中,所述参考电压值也可通过以下方法来获取:若所述多个电池组10a-10c中已存在功率切入功率总线,即以已接入功率总线的所述电池组的电压值中的最小值来作为所述参考电压值。

在另一个较佳的实施方式中,所述参考荷电状态也可通过以下方法来获取:若所述多个电池组10a-10c中已存在功率切入功率总线,即以已接入功率总线的所述电池组的荷电状态中的最小值来作为所述参考荷电状态。

步骤s23:根据比较结果对所述多个电池组进行充放电管理。

本申请实施方式中,当所述参考电压值及所述参考荷电状态被确定后,所述主机的电池管理单元将所述电池组的电压值及荷电状态分别与参考电压值及参考荷电状态进行比较,即可根据比较结果对所述多个电池组进行充放电管理。

功率动态并机需要储能逆变器的配合执行,即在电池组动态并机进行过程中,储能逆变器需要按照主机的电池管理单元计算得出的限流值进行充电或放电。

在一较佳实施方式中,请参阅图3,主机的电池管理单元计算充电限流值及放电限流值,具体可以通过以下步骤进行:

步骤s31:获取已接入功率总线的所述电池组的数量。

本申请实施方式中,所述主机的电池管理单元获取已切入功率总线的所述电池组的数量。

步骤s32:确定储能逆变器的充电限流值及放电限流值。

本申请实施方式中,储能逆变器的充电限流值记为icharge,所述放电限流值记为idischarge。

具体而言,所述充电限流值icharge满足以下公式:

icharge=a×k1×pm(1)

其中,a为电池组的1c电流,k1为充电限流系数,pm为已切入功率总线的所述电池组的数量。

进一步地,所述放电限流值idischarge满足以下公式:

idischarge=a×k2×pm(2)

其中,a为电池组的1c电流,k2为放电限流系数,pm为已接入功率总线的所述电池组的数量。

本申请实施方式中,当功率总线上没有电池组的功率切入时,即pm=0,由上述公式可以得出,储能逆变器的充电限流值icharge与放电限流值idischarge亦等于0。

在一较佳实施方式中,请参阅图4,所述电池管理单元根据所述电池组的电压值及荷电状态与参考电压值及参考荷电状态的比较结果,确定所述多个电池组的充放电管理方式具体可以通过以下方法步骤:

步骤s41:确定所述多个电池组均未接入功率总线。

本申请实施方式中,所述主机的电池管理单元可根据各从机的电池管理单元反馈的电池组的数据信息及状态,可以确定所述多个电池组是否均未接入功率总线。

具体地,若确定各电池组均未功率切入功率总线,即本申请实施方式中的所述电池组10a、10b、10c均没有切入功率总线时,所述电池组10a的电池管理单元bmu1将通过外部总线向储能逆变器发送充电限流值icharge及放电限流值idischarge均为0。此时,功率动态并机的参考电压值将被确定为所述多个电池组的电压值中的最小值,并且功率动态并机的参考荷电状态将被确定为所述多个电池组的荷电状态中的最小值。

步骤s42:判断所述多个电池组10a-10c的电压值与参考电压值的差值是否均小于第一阈值且所述多个电池组10a-10c的荷电状态与所述参考荷电状态的差值是否均小于第二阈值。若是,则进入步骤s43。

本申请实施方式中,所述电池组10a的电池管理单元bmu1将收集的每一电池组的总电压与参考电压值作比较,还将收集的每一电池组的荷电状态与参考荷电状态作比较。

接着,所述电池组10a的的电池管理单元bmu1将会判断所述多个电池组的电压值与参考电压值的差值是否均小于第一阈值,并且所述多个电池组的荷电状态与所述参考荷电状态的差值是否均小于第二阈值。

步骤s43:控制电池组依次接入功率总线。

本申请实施方式中,若所述多个电池组10a-10c的电压值与参考电压值的差值均小于第一阈值,并且所述多个电池组10a-10c的荷电状态与所述参考荷电状态的差值亦均小于第二阈值,此时所述电池组10a的电池管理单元bmu1将置位各电池组的功率并机切入命令,接着各电池管理单元bmu1、bmu2、bmu3亦将闭合开关k,所述多个电池组10a-10c将依次接入功率总线,则各电池组功率并机切入功率总线完成,功率并机完成标志置位。

在另一较佳实施方式中,请参阅图5,所述电池管理单元根据所述电池组的电压值及荷电状态与参考电压值及参考荷电状态的比较结果,确定所述多个电池组的充放电管理方式具体还可以通过以下方法步骤:

步骤s51:确定至少一个电池组已接入功率总线且电池组处于充电状态。

本申请实施方式中,若确定至少一个电池组已接入功率总线且电池组处于充电状态,主机的电池管理单元将会通过外部总线向储能逆变器20发送充电限流值icharge及放电限流值idischarge。由此,储能逆变器20将会按照相应的充电限流值及放电限流值进行充放电电流的输出。

步骤s52:判断未接入功率总线的电池组的电压值与参考电压值的差值是否在第一区间内且荷电状态与所述参考荷电状态的差值是否在第二区间内。若是,则进入步骤s53。

举例而言,本申请实施方式中,当所述电池组10a已接入功率总线,但电池组10b、10c没有接入功率总线。此时,所述电池管理单元bmu1将会判断所述电池组10b、10c的电压值与参考电压值的差值是否在第一区间内。此外,所述电池管理单元bmu1还将会判断所述电池组10b、10c的荷电状态与所述参考荷电状态的差值是否在第二区间内。

步骤s53:控制电池组依次接入功率总线。

本申请实施方式中,若未接入功率总线的电池组的电压值与参考电压值的差值在第一区间内,并且荷电状态与所述参考荷电状态的差值也在第二区间内。此时,所述主机的电池管理单元bmu1将置位各电池组的功率并机切入命令,接着电池管理单元将闭合开关k,未接入功率总线的电池组将依次接入功率总线,则各电池组功率并机切入功率总线完成,功率并机完成标志置位。

在另一较佳实施方式中,请参阅图6,所述电池管理单元根据所述电池组的电压值及荷电状态与参考电压值及参考荷电状态的比较结果,确定所述多个电池组的充放电管理方式具体还可以通过以下方法步骤:

步骤s61:确定至少一个电池组已接入功率总线且电池组处于放电状态。

本申请实施方式中,若确定至少一个电池组已接入功率总线且电池组处于放电状态,主机的电池管理单元将会通过外部总线向储能逆变器20发送充电限流值icharge及放电限流值idischarge。由此,储能逆变器20将会按照相应的充电限流值及放电限流值进行充放电电流的输出。

步骤s62:判断所述参考电压值与未接入功率总线的电池组的电压值的差值是否在第三区间内,且所述参考荷电状态与未接入功率总线的电池组的荷电状态的差值是否在第四区间内。若是,则进入步骤s63。

举例而言,本申请实施方式中,当所述电池组10a已接入功率总线,但电池组10b、10c没有接入功率总线。此时,所述电池管理单元bmu1将会判断参考电压值与电池组10b、10c的电压值的差值是否在第三区间内。此外,所述电池管理单元bmu1还将会判断所述参考荷电状态与电池组10b、10c的荷电状态的差值是否在第四区间内。

步骤s63:控制电池组依次接入功率总线。

本申请实施方式中,若所述参考电压值与未接入功率总线的电池组的电压值之间的差值在第三区间内,并且所述参考荷电状态与未接入功率总线的电池组的荷电状态之间的差值也在第四区间内。此时,所述主机的电池管理单元bmu1将置位各电池组的功率并机切入命令,接着电池管理单元将闭合开关k,未接入功率总线的电池组将依次接入功率总线,则各电池组功率并机切入功率总线完成,功率并机完成标志置位。

可以理解,随着储能逆变器20的充电或放电的持续进行,所述主机的电池管理单元将会实时计算并更新参考电压值与参考荷电状态。未功率并机的电池组在充电或放电过程中电压值与荷电状态逐一满足功率并机将会逐一进行功率并机切入,电池组功率并机完成标志逐一置位。随着并机电池组数量的逐一增加,充电限流值icharge及放电限流值idischarge亦将实时地计算并更新,直至所有的电池组均完成功率并机切入,所有电池组功率并机完成标志都置位,主机置位功率并机完成总标志,退出参考电压值与参考荷电状态的计算,充电限流值icharge及放电限流值idischarge的计算方法由功率并机模式限流方法变更为储能系统正常运行模式的充放电限流值方法,即储能系统所有电池组将退出功率并机模式。储能逆变器接收到主机电池管理单元发出的功率并机完成总标志与正常运行模式充放电限流值,储能逆变器与储能系统同步进入正常运行模式。

本申请实施方式中,当各电池组的电池管理单元(如电池组10b中的bmu2)出现故障告警时,主机的电池管理单元(如电池组10a中的bmu1)接收到各电池组的故障告警信息后,将会控制所有电池组全部切出功率总线,或者将故障的电池组单独切出功率总线,被功率切出的电池组将会清除功率并机完成标志置位,主机中的电池管理单元bmu1清除功率并机完成总标志,储能系统退出正常运行模式,重新进入功率并机判断模式。

图7为根据本申请一实施方式中的并联电池组充放电管理系统30的示意图。在本实施方式中,所述并联电池组充放电管理系统30可以被分割成一个或多个模块,所述一个或多个模块存储在所述电池管理单元bmu1中,并由所述电池管理单元bmu1执行,所述电池管理单元bmu1执行所述计算机程序时实现上述并联电池组充放电管理方法实施例中的步骤,以完成本申请。所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,所述指令段用于描述所述并联电池组充放电管理系统30在所述电子装置100中的执行过程。例如,所述并联电池组充放电管理系统30可以被分割成图7中的获取模块301、比较模块302、控制模块303。

所述获取模块301用于获取多个电池组的电压值及荷电状态。

所述比较模块302用于将所述电池组的电压值及荷电状态分别与参考电压值及参考荷电状态进行比较。

所述控制模块303用于根据比较结果对所述多个电池组进行充放电管理。

通过所述并联电池组充放电管理系统30可以对电池组10a-10c进行充放电管理,可以提升电池组并机的自动化程度,增强并机系统的适应性,可以提高并机的执行效率,进一步降低运营维护成本,提升用户的体验度。具体内容可以参见上述并联电池组充放电管理方法的实施例,在此不再详述。

可以理解的是,以上所描述的模块划分,为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在相同处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在相同单元中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。

本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1