一种双源无轨电源通信控制系统及方法与流程

文档序号:23723966发布日期:2021-01-26 14:32阅读:56来源:国知局
一种双源无轨电源通信控制系统及方法与流程

[0001]
本发明属于电源控制领域,涉及一种双源无轨电源通信控制系统及方法。


背景技术:

[0002]
纯电动新能源客车目前已广泛使用,随着长里程的需要,运营过程中减少充电次数的需求,当前新能源客车动力电池电量呈上升趋势,随着动力电池的的电量越来越大,车辆的自重增加,车辆能耗也在逐渐上升,同时车辆购车成本也在增加。考虑到车辆使用的经济性,设计双源无轨客车无需加装大电量动力电池,使用集电杆接入电网,进行自动充电,同时也减少了对充电桩的依赖,双源无轨客车作为一种新能源车辆补充形式,在实际运营中更显经济性。
[0003]
双源无轨客车在接入电网运行时需要整流电站的配合,当前整流电站和电网受硬件条件限制,提供功率有限制,在单位整流电站区域内车辆控制充电功率难以达到有效平衡,尤其在多线路、多电网并接时,如不能有效控制功率,多车辆运行时长时间超出限制功率,会对电网和电站造成损坏。在高峰时间段会限制车辆数正常接入电网工作,整流电站故障或进入无源区域时影响车辆正常运行。


技术实现要素:

[0004]
本发明目的是:提供一种双源无轨电源通信控制系统及方法,基于plc和5g通信技术以及大数据控制平台,双源无轨车辆复杂并网情况下,通过电网内实时在线通信控制功率,做到电源均衡控制。同时通过5g技术实现大数据深度分析,控制动力电池放电深度,提高动力电池使用寿命。
[0005]
本发明的技术方案是:第一方面,一种双源无轨电源通信控制系统,包括:电池、车辆负载、单/双向dc/dc、车辆控制器、plc、5g终端;所述车辆负载连接在电池两端,所述车辆负载与所述单向或双向dc/dc并联,所述单向或双向dc/dc的一端用于连接电网,另一端用于连接整车电源的输入端;所述plc和所述5g终端分别连接到所述车辆控制器;所述5g终端连接整车数据端口;所述plc用于实现在线实时信息传输,在接入电网后实时传输本车辆电源系统信息以及读取其他接入电网车辆信息,在已知接入电网车辆信息后根据整流电站功率进行协调控制;所述5g终端用于组建大数据监控控制平台,在云端对接入电网运行车辆运行数据进行实时监控,在车辆超出整流电站节点或电量控制异常时,根据整体车辆运行情况对控制异常车辆进行行为矫正。
[0006]
第二方面,一种双源无轨电源通信控制方法,应用于如第一方面所述的双源无轨电源通信控制系统中,所述双源无轨电源通信控制方法包括:根据电网所能输出的最大功率和车辆累计请求功率对比,若请求功率大于电网输出能
力则判定为多车辆,若请求功率小于或等于电网输出能力则判定为少车辆;在少车辆情况下,当有车辆动力电池soc较低时,开启dc/dc对动力电池进行补电;若电网内车辆都需要补电,则进行车辆动力电池soc判断,低soc车辆优先大功率补充,功率分配依次进行,达到相对平衡区间;在少辆车情况下,当有车辆动力电池soc较高时,根据车辆当前能好,控制从电网获取功率,达到满足正常车辆运行;在多车辆情况下,当有车辆动力电池soc较低时,其他车辆降低需求功率,释放电网功率,给低soc车辆进行补电;在多车辆情况下,当车辆动力电池soc在相对平衡区间时,所有车辆根据电网功率,进行平均分配;在多车辆情况下,若有多辆车动力电池soc较低,均有补电需求,且电网功率不足,则在整流电站内由较高soc车辆反向给电网补电,给低soc区间车辆进行反向充电,从最高soc车辆由高到低依次补电,达到相对平衡区间。
[0007]
其进一步的技术方案是:当plc通信检测到整流电站内电网故障,电网无功率输出时,若整流电站内所有车辆动力电池soc在相对平衡区间,则车辆关闭电网功率需求,各车辆正常运行;当整流电站内有车辆动力电池soc较低,有补电需求时,由较高soc车辆反向给电网充电,正常soc区间车辆不采用电网功率,给低soc区间车辆进行补电,从最高soc车辆由高到低依次补电给低soc车辆,达到相对平衡区间。
[0008]
其进一步的技术方案是:通过5g终端实时监控整流电站内的车辆数,对未正常接入电网工作或电量控制异常车辆进行矫正提醒,将相关数据传输给车辆控制器,通过车辆控制器对dc/dc和plc的功率请求控制进行及时修订;通过5g终端对所有车辆的动力电池工作状态进行监控,实时监控分析,确保动力电池性能一致性。
[0009]
其进一步的技术方案是:当首辆车检测到电网故障或进入无源区域时,将当前电网状态信息通过plc通信将相关信息传送到后面车辆中。
[0010]
本发明的优点是:1.通过运行车辆对电网功率数据获取和数据传输采用plc进行实时通信,plc通信具备可靠性高、稳定性好、抗干扰性强等优点,采用在线实时通信便于对电网内车辆电源信息和电源控制情况及时收集和处理,使得双源无轨车辆在电网中运行时,对功率分配实时性收集和处理时效性进行提升,避免多辆车同时接入电网后不能合理分配当前电网可使用功率,在多线路复杂电网并行使用时不同车辆汇入后不能有效平衡动力电池电量的情况,通过plc在线实时通信在单位整流电站电网内可以最大限度多加入更多车辆,使电网利用率最大化,同时进行有效功率分配,避免造成电网损坏;2.基于5g通信网络的建立,对整体双源无轨车辆进行统筹控制,建立大数据平台,对车辆电源功率控制异常能够及时有效进行提示,建立数据库,及时分析控制问题,合理有效控制车辆动力电池电量,使动力电池电量控制在相对平衡区间,延长动力电池使用寿命,采用5g通信,数据传输快,稳定性高,能够适应复杂工作场景,对云计算过程中数据上传和控制下发指令能够快速响应。
附图说明
[0011]
下面结合附图及实施例对本发明作进一步描述:图1是本申请提供的双源无轨电源通信控制系统的结构框图;图2是本申请提供的多辆车辆接入整流电站的示意图;图3是本申请提供的双源无轨电源通信控制方法的示意图。
具体实施方式
[0012]
实施例:本申请提供了一种双源无轨电源通信控制系统,包括:电池、车辆负载、单向或双向dc/d、车辆控制器、plc、5g终端。
[0013]
车辆负载连接在电池两端,车辆负载与单向或双向dc/dc并联,单向或双向dc/dc的一端用于连接电网,另一端用于连接整车电源的输入端;plc和5g终端分别连接到车辆控制器;5g终端连接整车数据端口。
[0014]
目前双源无轨车辆系统中的通信方案采用硬线直连,5g终端主要是无线通信,采集整车整体运行数据,进行大数据整合和云计算。
[0015]
双源无轨客车基于plc进行通信,plc用于实现在线实时信息传输,在接入电网后实时传输本车辆电源系统信息以及读取其他接入电网车辆信息,在已知接入电网车辆信息后根据整流电站功率进行协调控制。
[0016]
可选的,电源系统信息包括动力电池编码、soc、总电压、电流、单体电压、温度、故障信息等。
[0017]
双源无轨客车装载5g终端,5g终端用于组建大数据监控控制平台,在云端对接入电网运行车辆运行数据进行实时监控,在车辆超出整流电站节点或电量控制异常时,根据整体车辆运行情况对控制异常车辆进行行为矫正。
[0018]
异常情况比如不同车辆动力电池soc差异过大,采用高soc先放电,低soc优先充电的方式进行矫正。
[0019]
在整流电站节点内车辆可以自动识别,根据电网当前工作状态和进入整流电站节点内车辆动力电池电量进行识别,给车辆进行充电或给电网反向补电。
[0020]
通过动力电池编码对应的车辆编号可以进行自动识别。
[0021]
是进行在线信息采集,为车辆控制提供依据。由于实时数据无法进行整体统计计算,因此通过5g来整合数据进行大数据运算。5g监控主要是进行大数据采集计算,对历史运行情况进行对比,便于对历史运行数据和车辆信息进行分析,5g通信可以对所有线上车辆进行监控和行为矫正提醒。云端监控包括所有动力电池信息、车辆制动信息、车辆动力情况、故障情况、站点客流量等相关信息的监控。
[0022]
本申请还提供了一种双源无轨电源通信控制方法,应用于如图1所示的双源无轨电源通信控制系统中,可以根据当前电网内不同车辆电量不同,进行低电量优先请求充电功率,随电量升高,请求功率依次递减,平衡电网内车辆动力电池电量,当进入整流电站故障或无源电网区域时,调整单位区域内车辆电源平衡状态,高电量反向充电给低电量车辆进行补电,在多线路复杂电网内,根据不同车辆当前电量情况,非必要情况不对动力电池进行大功率补电,该双源无轨电源通信控制方法包括以下步骤。
[0023]
第一步,根据电网所能输出的最大功率和车辆累计请求功率对比,若请求功率大
于电网输出能力则判定为多车辆,若请求功率小于或等于电网输出能力则判定为少车辆。
[0024]
示例性的,如图2所示,其示出了n辆车接入的示意图,若n辆车的请求功率大于电网输出能力,则确定当前整流站点内车辆较多,若n辆车的请求功率小于或等于电网输出能力,则确定当前整流站点内车辆较少。
[0025]
第二步,若双源无轨车辆根据plc通信检测到整流站点内运行车辆较少,则电网功率充足时平衡电源控制方式如下:(1)在少车辆情况下,当有车辆动力电池soc较低时,开启dc/dc对动力电池进行补电;若电网内车辆都需要补电,则进行车辆动力电池soc判断,低soc车辆优先大功率补充,功率分配依次进行,达到相对平衡区间;(2)在少辆车情况下,当有车辆动力电池soc较高时,根据车辆当前能好,控制从电网获取功率,达到满足正常车辆运行。
[0026]
第三步,若双源无轨车辆根据plc通信检测到整流电站站点内运行车辆较多,则平衡电源控制方式如下:(1)在多车辆情况下,当有车辆动力电池soc较低时,其他车辆降低需求功率,释放电网功率,给低soc车辆进行补电;(2)在多车辆情况下,当车辆动力电池soc在相对平衡区间时,所有车辆根据电网功率,进行平均分配;(3)在多车辆情况下,若有多辆车动力电池soc较低,均有补电需求,且电网功率不足,则在整流电站内由较高soc车辆反向给电网补电,给低soc区间车辆进行反向充电,从最高soc车辆由高到低依次补电,达到相对平衡区间。
[0027]
对于高soc车辆反向补电的情况,根据检测到当前电网中车辆电源信息状态,再根据电网中的功率允许情况来控制,按照平均soc,从最高soc开始,达到平均值后关闭反向充电,再根据当前电网中的最高soc开始,以此类推,当soc最大与最小的差距不超过10%停止。
[0028]
其中,相对平衡区间是根据当前电网中车辆的整体运行车辆soc分布区间进行判断,示例性的,根据soc离散分布情况,根据车辆数取中间50%的区间进行计算,取最大最小区间。
[0029]
第四步,若双源无轨车辆根据plc通信检测到整流电站站点内电网故障,电网无功率输出,则平衡电源控制方式如下:(1)若整流电站内所有车辆动力电池soc在相对平衡区间,则车辆关闭电网功率需求,各车辆正常运行;(2)当整流电站内有车辆动力电池soc较低,有补电需求时,由较高soc车辆反向给电网充电,正常soc区间车辆不采用电网功率,给低soc区间车辆进行补电,从最高soc车辆开始反向电网充电,由高到低依次补电给低soc车辆,低soc车辆根据高soc车辆反向充电获得电能,达到相对平衡区间。
[0030]
第三步和第四步中的工作机理相同,根据不同工作状态进行处理。
[0031]
结合参考图3,示例性的,a和b在相对平衡区间内,则不需要充电,c为低soc车辆,d为高soc车辆,c根据d反向充电可以获得电能,最终a、b、c、d均达到相对平衡区间。
[0032]
第五步,双源无轨车辆装载5g终端,建立大数据平台,通过云计算对所有并网车辆相关信息进行实时监控,包括以下实现:
(1)通过5g终端实时监控整流电站内的车辆数,对未正常接入电网工作或电量控制异常车辆进行矫正提醒,将相关数据传输给车辆控制器,通过车辆控制器对dc/dc和plc的功率请求控制进行及时修订;(2)通过5g终端对所有车辆的动力电池工作状态进行监控,预防个别车辆动力电池充放电深度、功率和吞吐量过大造成动力电池寿命降低,实时监控分析,确保动力电池性能一致性,延长生命周期。
[0033]
第六步,当首辆车检测到电网故障或进入无源区域时,将当前电网状态信息通过plc通信将相关信息传送到后面车辆中。使得正常运行车辆在获取电网状态时能够提前进行保护处理,避免后续车辆突然进入该区域后因电网电压跳变对车辆集电系统造成损坏或产生安全隐患。
[0034]
需要说明的是,第二步至第四步是并列关系,根据实际情况进行控制,第五步和第六步是全程监控机制。
[0035]
其中,针对电网的复杂性,在电网中通信需要提高plc的通信质量和抗干扰性,因此,在设计plc通信模块时需要对通信信号做增强处理,避免来自电网中的高压带来的干扰。可选的,在plc模块中相关信息需要做加密和多层级校验,提高车辆在电网中运行的数据可靠性。
[0036]
可选的,plc模块中的信息可以通过mac层aes加密,传输层tls加密。
[0037]
在实际应用中,双源无轨车辆在电网中运行时在对动力电池soc区间的设定维持在40%~80%范围内。设定最低soc的值,在集电系统出现故障或长距离电网无源时,能够有一定的续航能力,设定相对soc窄区间有利于提高动力电池寿命。40%~80%为示例性的说明,只要在合理区间即达到平衡。
[0038]
在其中一辆车出现soc偏低情况下,其他车辆相对随即降低对电网的需求功率,当低soc车辆充电完成恢复到正常soc区间后,其他车辆根据电网功率进行平衡调节。
[0039]
在多线路复杂电网交叉运行中,通过5g信号定位,车辆在交汇中,降低功率需求,保持最低功率需求,防止在电网交汇节点由线路连接摩擦产生的拉弧,对线路或集电系统造成损坏。当所有车辆soc达到平衡区间时,根据当前电网输出能力,进行功率平衡分配,即都采用小功率输入。
[0040]
由于多线路电网交汇处有很多电网节点,当同一节点路段同时汇入多车辆时,电网功率不足,电网中电压波动比加大,为了避免车辆在运行过程中电网电压突变,因此降低功率需求,使电压趋于平稳。在多线路交汇处,电网功率降至满足车辆最低启动功率即可。
[0041]
综上所述,本申请提供的双源无轨电源通信控制系统及方法,通过运行车辆对电网功率数据获取和数据传输采用plc进行实时通信,plc通信具备可靠性高、稳定性好、抗干扰性强等优点,采用在线实时通信便于对电网内车辆电源信息和电源控制情况及时收集和处理,使得双源无轨车辆在电网中运行时,对功率分配实时性收集和处理时效性进行提升,避免多辆车同时接入电网后不能合理分配当前电网可使用功率,在多线路复杂电网并行使用时不同车辆汇入后不能有效平衡动力电池电量的情况,通过plc在线实时通信在单位整流电站电网内可以最大限度多加入更多车辆,使电网利用率最大化,同时进行有效功率分配,避免造成电网损坏。
[0042]
另外,基于5g通信网络的建立,对整体双源无轨车辆进行统筹控制,建立大数据平
台,对车辆电源功率控制异常能够及时有效进行提示,建立数据库,及时分析控制问题,合理有效控制车辆动力电池电量,使动力电池电量控制在相对平衡区间,延长动力电池使用寿命,采用5g通信,数据传输快,稳定性高,能够适应复杂工作场景,对云计算过程中数据上传和控制下发指令能够快速响应。
[0043]
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含所指示的技术特征的数量。由此,限定的“第一”、“第二”的特征可以明示或隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或者两个以上。
[0044]
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
[0045]
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器、磁盘或光盘等。
[0046]
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1