一种三电平并网变换器的自适应电流分岔控制方法与流程

文档序号:24493460发布日期:2021-03-30 21:20阅读:101来源:国知局
本发明属于电力电子技术应用
技术领域
:,涉及一种三电平并网变换器的自适应电流分岔控制方法。
背景技术
::二极管箝位三电平并网变换器由于其开关器件承受电压应力小、开关损耗低、入网电流谐波少、且能量可以双向流动等优势广泛应用于新能源发电和微电网中,它是连接大电网与微电网、大电网与新能源和储能设备、微电网与新能源和储能等设备的桥梁,是电力系统不可或缺的电力电子变换装备。对并网变换器来说,大电网或微电网中不同功能的电力电子变换器频繁切入和切出,电力变压器等的接入使得大电网和微电网呈现出弱电网特性,并且并网变换器的并网阻抗也会随着时间和环境温度的变化而发生变化,导致并网变换器系统所设计的控制器参数不再适用,进而引起系统发生分岔,并网电流振荡,严重时会引起并网变换器系统崩溃,进而影响大电网及微电网的安全稳定运行。因此抑制并网电流分岔的自适应控制方法的研究具有重要意义。并网变换器工作过程中,通过检测并网电流的变化可有效地判断系统的运行状态,通过分岔控制抑制电流的不稳定是目前研究的一种有效的方法。技术实现要素:本发明的目的是提供一种三电平并网变换器的自适应电流分岔控制方法,该方法通过并网电流的频谱特征确定系统不稳定时的分岔类型,根据分岔类型自动地调整闭环控制器参数kp,使并网变换器运行于分岔边界内。本发明所采用的技术方案是,一种三电平并网变换器的自适应电流分岔控制方法,具体包括如下步骤:步骤1,建立二极管箝位三电平并网变换器系统的离散模型;步骤2,根据步骤1所得的离散模型推导出jacobian矩阵;步骤3,根据步骤2所得的jacobian矩阵在matalab中画取特征值分布图,根据特征分布图确定系统的高频与低频kp分岔边界即kpmin和kpmax;步骤4,根据步骤3所得的特征分布图进行自适应分岔控制。本发明的特点还在于,步骤1的具体过程为:步骤1.1建立主电路的离散模型,如下公式(1)所示:x(n+1)=a11·x(n)+a12·gp+b1·d(1);其中,x(n)为n时刻的电流状态变量,x(n+1)为n+1时刻的电流状态变量,x=[isd,isq]t;其中l为网侧滤波电感,usd与usq为dq坐标系下电网电压;r为网侧滤波电感l的内阻,ω为角频率;t12...j=t1+t2+…+tj,j=1,2,…,7ura、urb和urb为三相调制波,uc为调制波幅值,uh为载波幅值;其中ts为开关周期;gp(n)为n时刻新增状态变量,gp(n+1)为n+1时刻新增状态变量。gp(n+1)=a22gp(n)步骤1.2,建立电流闭环解耦控制的离散模型,如下公式(2)所示:y(n+1)=a31·x(n)+a32·gp(n)+y(n)+b3·d+gts·u(2);其中,y(n)为n时刻积分输出状态变量,y(n+1)为n+1时刻积分输出状态变量;y=[uiconduiconq]ta31=fa-1(a11-i),b3=fa-1(b1-i·ts),其中i为单位矩阵;u=[isd*isq*]t;其中,ki为比例积分控制器积分系数,isd*为d轴电流参考值,isq*为q轴电流参考值;新的状态变量为:χ=[xgpy]t=[isdisqcos(ωnts)sin(ωnts)uiconduiconq]t(3);由式(6)可得加入pi解耦控制后的离散模型:其中,χ(n)为n时刻系统状态变量,χ(n+1)为n+1时刻系统状态变量;步骤1.3,建立spwm脉宽调制的离散模型,如下公式(5)~(7)所示:其中:上述公式(4)~(7)为spwm调制算法下二极管箝位三电平并网变换器的离散时间模型。步骤2的具体过程为:步骤2.1,将加入pi解耦控制后系统的离散模型(4)表示为如下公式(8):χ=f(χ,da,db,dc)(8);结合spwm调制占空比计算公式与控制输出建立如下辅助方程:步骤2.2,根据步骤2.1中的式(9)求偏微分方程:求解式(10)得到:则jacobian矩阵:其中,χd,dad,dbd,dcd:分别为χ,da,db,dc在平衡点的取值。步骤3的具体过程为:将所确定离散迭代模型编写到matlab中,首先,初始化状态变量,并设定kp初值与终值kp.limit;其次,由spwm调制算法占空比计算公式与控制输出建立辅助方程,求偏微分方程得到jacobian矩阵;最后将平衡点χd,dad,dbd,dcd带入jacobian矩阵中求取特征值,并画出复平面中特征根根轨迹,特征根从单位圆左侧穿出点kp值为高频分岔的边界值kpmax;特征根从单位圆右侧穿出点kp值为低频分岔的边界值kpmin,稳定域范围为:kpmin<kp<kpmax。步骤4的具体过程为:步骤4.1,设定三电平并网变换器稳态情况下并网电流的chri与faori,并将所述电流设为chriref与faoriref;步骤4.2,根据系统闭环控制器参数设置δkpg、δkpd和kp初值;步骤4.3,根据式(13)计算此时并网电流的特征谐波频率,利用fft算法提取出其特征谐波电流的幅值与基波幅值:其中,fs:开关频率,f0:基波频率,fi:第i个特征谐波频率,i=1,2,3,4;步骤4.4,根据式(14)计算综合谐波电流含有率,根据式(15)计算基波电流偏移率:综合谐波电流含有率为:其中,sfairef为并网变换器系统稳定时的网侧基波电流幅值;cphai为综合特征谐波电流幅值:基波电流偏移率为:其中,fairef为并网变换器的网侧的基波电流幅值;步骤4.5,将步骤4.4所得的chri与设定值chriref比较,当chri≥chriref时,则发生高频分岔,以δkpg为变化量减小kp值;若未发生高频分岔则将步骤4.4所得faori与设定值faoriref相比较,当faori≥faoriref,则发生低频分岔,以δkpd为变化量增加kp值;反之,未发生低频分岔时,kp不变。本发明的有益效果是,本发明通过二极管箝位三电平并网变换器系统的离散模型,建立状态变量的jacobian矩阵,根据jacobian矩阵特征值根轨迹图,确定并网电流的kp分岔边界。提取现行并网电流的特征谐波参数,并计算其综合谐波电流含有率和基波电流偏移率,判断并网变换器系统的分岔类型并进行自适应分岔控制。当并网变换器系统在参数设置不当或弱电网等情况下运行时,并网变换器系统的控制参数kp能够随系统运行情况的变化进行自动调节,有效避免系统发生分岔行为,抑制并网电流的振荡,提高了系统的稳定性。附图说明图1是本发明一种三电平并网变换器的自适应电流分岔控制方法中二极管箝位三电平并网变换器的控制框图;图2是本发明一种三电平并网变换器的自适应电流分岔控制方法中自适应电流分岔控制流程图;图3是本发明一种三电平并网变换器的自适应电流分岔控制方法中绘制jacobian特征根根轨迹的流程图;图4是本发明一种三电平并网变换器的自适应电流分岔控制方法中绘制的jacobian矩阵特根根轨迹图;图5是本发明一种三电平并网变换器的自适应电流分岔控制方法实施例中未加入自适应电流分岔控制前并网电感l突变时发生高频分岔时并网变换器的并网电流isd,isq仿真波形;图6(a)~(d)是本发明一种三电平并网变换器的自适应电流分岔控制方法实施例中加入自适应电流分岔控制后并网电感l突变时发生高频分岔时并网变换器的各参数仿真波形;图7是本发明一种三电平并网变换器的自适应电流分岔控制方法实施例中未加入自适应电流分岔控制前并网电感l突变发生低频分岔时并网变换器的并网电流isd,isq仿真波形;图8(a)~(d)是本发明一种三电平并网变换器的自适应电流分岔控制方法实施例中加入自适应分岔控制后并网电感l突变时发生低频分岔时并网变换器的各参数仿真波形。图中,1.park变换模块,2.电流双闭环解耦控制模块,3.park反变换模块,4.正弦脉宽调制模块,5.三电平并网变换器主电路模块。具体实施方式下面结合附图和具体实施方式对本发明进行详细说明。本发明一种三电平并网变换器的自适应电流分岔控制方法,本发明所采用的闭环控制框图如图1所示,采用基于dq旋转坐标系的电流解耦控制,包括以下五个模块:park变换模块1,作用是将三相静止abc坐标系下的电流isa,isb和isc或电压usa,usb和usc经过park变换转换为两相旋转dq坐标系下的电流isd和isq或电压usd和usq。电流双闭环解耦控制模块2,作用是实现并网电流的解耦控制,通过pi(proportionintegration)调节器使输出电流跟随给定值,其输出为并网变换器交流侧电压在d轴和q轴分量ucond与uconq。park反变换模块3,其作用是将pi解耦控制模块的输出,即并网变换器交流侧电压ucond与uconq变换为三相静止abc坐标系下得到三相调制波。正弦脉宽调制(sinusoidalpulsewidthmodulation,spwm)模块4,采用同相层叠的载波与三相调制波比较得到spwm脉冲,进而驱动三电平并网变换器。三电平并网变换器主电路模块5,采用二极管箝位三电平变换器拓扑,开关器件根据spwm脉冲要求实现能量的双向流动。模块1将三相电压usa、usb和usc与三相电流isa、isb和isc变换到两相旋转dq坐标系下,为模块2提供dq轴下的电压反馈值usd与usq和电流反馈值isd与isq;模块2由电压电流反馈值进行电流双闭环解耦控制,为模块3提供变换器交流侧电压在d轴和q轴分量ucond与uconq;模块3将并网变换器交流侧电压ucond与uconq变换到三相静止abc坐标系下,为模块4提供三相调制波;模块4将三相调制波与同相层叠载波相比较得到pwm脉冲,为模块5提供驱动信号;模块5是并网变换器主电路,根据驱动信号开通和关断相应的开关器件产生三相桥臂输出电压。本发明的自适应分岔控制流程图如图2所示,chri(compositeharmonicratiofori)为综合谐波电流含有率,faori(fundamentalamplitudeoffsetratiofori)为基波电流幅值偏移率,cphai(compositepropertyharmonicamplitudefori)为综合特征谐波电流幅值,相应的基波电流幅值为fai(fundamentalamplitudefori)。并网变换器系统稳定时,基波电流幅值为基波电流幅值设定值sfairef(stablefundamentalamplitudefori),此时综合谐波电流含有率为综合谐波电流含有率限定值chriref,基波幅值偏移率为基波幅值偏移率限定值faoriref。kp为比例积分控制器中的比例系数,δkpg为高频分岔下状态下kp的变化量,δkpd为低频分岔下kp的变化量。自适应分岔控制包括以下五部分:1.设定chriref,faoriref和sfairef;2.δkpg、δkpd、kp赋初值;3.利用快速傅里叶(fastfouriertransformation,fft)算法提取并网变换器特征谐波电流的幅值与基波幅值;4.计算chri与faori;5.判断分岔类型,自动调整kp值。本发明一种三电平并网变换器的自适应电流分岔控制方法,具体包括如下步骤:步骤1,建立二极管箝位三电平并网变换器系统的离散模型;步骤1的具体过程为:步骤1.1建立主电路的离散模型,如下公式(1)所示:x(n+1)=a11·x(n)+a12·gp+b1·d(1);其中,x(n)为n时刻的电流状态变量,x(n+1)为n+1时刻的电流状态变量,x=[isd,isq]t;其中l为网侧滤波电感,usd与usq为dq坐标系下电网电压;r为网侧滤波电感l的内阻,ω为角频率;t12...j=t1+t2+…+tj,j=1,2,…,7ura、urb和urb为三相调制波,uc为调制波幅值,uh为载波幅值;其中ts为开关周期;gp(n)为n时刻新增状态变量,gp(n+1)为n+1时刻新增状态变量。gp(n+1)=a22gp(n)步骤1.2,建立电流闭环解耦控制的离散模型,如下公式(2)所示:y(n+1)=a31·x(n)+a32·gp(n)+y(n)+b3·d+gts·u(2);其中,y(n)为n时刻积分输出状态变量,y(n+1)为n+1时刻积分输出状态变量;y=[uiconduiconq]ta31=fa-1(a11-i),b3=fa-1(b1-i·ts),其中i为单位矩阵;u=[isd*isq*]t;其中,ki为比例积分控制器积分系数,isd*为d轴电流参考值,isq*为q轴电流参考值;新的状态变量为:χ=[xgpy]t=[isdisqcos(ωnts)sin(ωnts)uiconduiconq]t(3);由式(6)可得加入pi解耦控制后的离散模型:其中,χ(n)为n时刻系统状态变量,χ(n+1)为n+1时刻系统状态变量;步骤1.3,建立spwm脉宽调制的离散模型,如下公式(5)~(7)所示:其中:上述公式(4)~(7)为spwm调制算法下二极管箝位三电平并网变换器的离散时间模型。步骤2,根据步骤1所得的离散模型推导出jacobian矩阵;步骤2的具体过程为:步骤2.1,将加入pi解耦控制后系统的离散模型(4)表示为如下公式(8):χ=f(χ,da,db,dc)(8);结合spwm调制占空比计算公式与控制输出建立如下辅助方程:步骤2.2,根据步骤2.1中的式(9)求偏微分方程:求解式(10)得到:则jacobian矩阵:其中,χd,dad,dbd,dcd:分别为χ,da,db,dc在平衡点的取值。步骤3,根据步骤2所得的jacobian矩阵在matalab中画取特征值分布图,根据特征分布图确定系统的高频与低频kp分岔边界即kpmin和kpmax;步骤3的具体过程为:绘制jacobian矩阵特征值分布图的流程图如图3所示。具体的做法是:将所确定离散迭代模型编写到matlab中,首先,初始化状态变量,并设定kp初值与终值kp.limit;其次,由spwm调制算法占空比计算公式与控制输出建立辅助方程,求偏微分方程得到jacobian矩阵;最后将平衡点χd,dad,dbd,dcd带入jacobian矩阵中求取特征值,并画出复平面中特征根根轨迹,特征根从单位圆左侧穿出点kp值为高频分岔的边界值kpmax;特征根从单位圆右侧穿出点kp值为低频分岔的边界值kpmin,稳定域范围为:kpmin<kp<kpmax。步骤4,根据步骤3所得的特征分布图(图2)进行自适应分岔控制。步骤4的具体过程为:步骤4.1,设定三电平并网变换器稳态情况下并网电流的chri与faori,并将所述电流设为chriref与faoriref;步骤4.2,根据系统闭环控制器参数设置δkpg、δkpd和kp初值;步骤4.3,根据式(13)计算此时并网电流的特征谐波频率,利用fft算法提取出其特征谐波电流的幅值与基波幅值:其中,fs:开关频率,f0:基波频率,fi:第i个特征谐波频率,i=1,2,3,4;综合特征谐波电流幅值为:其中,imfi:t时刻第i个特征谐波频率的电流幅值,i=1,2,3,4。步骤4.4,根据式(14)计算综合谐波电流含有率,根据式(15)计算基波电流偏移率:综合谐波电流含有率为:基波电流偏移率为:步骤4.5,将步骤4.4所得的chri与设定值chriref比较,当chri≥chriref时,则发生高频分岔,以δkpg为变化量减小kp值;若未发生高频分岔则将步骤4.4所得faori与设定值faoriref相比较,当faori≥faoriref,则发生低频分岔,以δkpd为变化量增加kp值;反之,未发生低频分岔时,kp不变。实施例本发明实施例中二极管箝位三电平并网变换器系统参数如表1所示:表1系统参数将表1中的参数带入步骤1的式(4)~(7)中得到具体的离散迭代模型,求取χ,da,db,dc在平衡点的取值为:χd=[isdisq]t=[6.020881636551080.059048026324338]t将平衡点χd,dad,dbd,dcd带入步骤2式(11)得到jacobian矩阵。本发明基于步骤3中图3的流程图在matlab中绘制其jacobian矩阵特征根根轨迹如图4所示。当特征根从单位圆左侧穿出时,系统发生高频分岔;当特征根从单位圆右侧穿出时,系统发生低频hopf分岔。由图4得到kpmin=0.06,kpmax=43,kp的稳定域范围为0.06~43。本发明基于步骤4.1离线计算得到chriref=18%,faoriref=20%,设置初值δkpd=0.1,δkpg=1。由步骤4.3计算得到分岔特征频率f1=2600hz,f2=2650hz,f3=2575hz,f4=2675hz。工况一:系统kp初值设为40。当t=0.4s时,二极管箝位三电平并网变换器的网侧电感l由4mh突减25%为3mh,系统发生分岔,未加入自适应电流分岔控制时并网电流isd,isq仿真波形如图5所示,0.4s后电流出现了振荡;加入自适应电流分岔控制后并网电流isd,isq仿真波形如图6(a)所示,0.4s后自适应电流分岔控制启动,根据步骤4.4计算得到综合谐波电流含有率chri与基波电流幅值偏移率faori,其波形如图6(b)(c),由步骤4.5判断系统为高频分岔,kp参数调节过程如图6(d),短暂的调节后电流恢复到稳态,高频电流分岔和振荡被抑制。图6(a)为并网电流isd,isq波形,图6(b)为综合谐波电流含有率chri波形,图6(c)为基波电流幅值偏移率faori波形,图6(d)为控制器参数kp波形。工况二:系统kp初值设为0.1。当t=1s时,二极管箝位三电平并网变换器的网侧电感l由4mh突减25%为3mh,系统发生分岔现象,未加入自适应电流分岔控制并网电流isd,isq仿真波形如图7所示,1s后电流出现了振荡。加入自适应电流分岔控制后并网电流isd,isq仿真波形如图8(a)所示,1s后自适应电流分岔控制启动,根据步骤4.4计算得到综合谐波电流含有率chri与基波电流幅值偏移率faori,其波形如图8(b)(c),由步骤4.5判断系统为低频分岔,kp参数调节过程如图8(d),短暂调节后电流恢复到稳态,低频电流分岔和振荡被抑制。图8(a)为并网电流isd,isq波形,图8(b)为综合谐波电流含有率chri波形,图8(c)为基波电流幅值偏移率faori波形,图8(d)为控制器参数kp波形。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1