氢氧燃料电池发电与超临界CO2发电机组的组合系统的制作方法

文档序号:27315429发布日期:2021-11-09 23:46阅读:131来源:国知局
氢氧燃料电池发电与超临界CO2发电机组的组合系统的制作方法
氢氧燃料电池发电与超临界co2发电机组的组合系统
技术领域
1.本发明涉及一种能源综合利用系统,特别涉及一种氢氧燃料电池发电与超临界co2发电机组的组合系统。


背景技术:

2.可再生能源微电网是将一定区域内的风电、太阳能光伏发电、地热和工业余热发电机组,通过微电网形式连接在一起,实现区域内的可再生能源发电和用电负荷的供需平衡;电解水制氢制氧储能是将微电网中多余的电能通过电解水的制氢制氧的方式进行储能,同时利用氢氧燃料电池,将储存的能量用于发电,实现电网负荷的波峰和波谷的调节,以保证电能的稳定供应。
3.超临界co2循环系统(supercritical carbon dioxide cycle)是一种利用超临界co2作为工质的发电系统,该系统采用超临界压力状态的co2作为循环工质,在换热器中吸收热量,然后转换成高温工质,从而带动发电机进行发电,完成做功的超临界co2,通过冷却器和循环泵,重新再回到换热器中吸收热量,之后再进入涡轮机膨胀做功,如此循环,完成发电任务;超临界co2循环系统中的换热器,一般选择地热换热器,当地热换热器所提供的换热温度达到摄氏100度以上时,才适合超临界co2循环系统完成发电任务,当地热水温度较低时,需要对一次换热后的超临界co2进行二次换热,使超临界co2达到发电要求。
4.伴随着产业结构的不断优化和工业园区的大力发展,出现了能源消耗的区域性聚集,以及工业余热的集中排放现象;由于可再生能源供给侧,如风能、太阳能发电,存在电能生产的间歇性和周期性的特点,工业园区用能需求,也存在间歇性和周期性的特点,如何协调及匹配这种能源供需双方的间歇性和周期性,进一步提高工业园区内可再生能源的利用效率,将现有发电资源有效地组合在一起,是现场亟需解决的一个难题。


技术实现要素:

5.本发明提供了一种氢氧燃料电池发电与超临界co2发电机组的组合系统,解决了现有工业园区中存在的可再生能源的供给与园区的间歇性用能不匹配容易造成能源浪费的技术问题。
6.本发明是通过以下技术方案解决以上技术问题的:
7.本发明的总体构思是:将工业园区的风电、太阳能光伏发电、地热和工业余热发电机组,通过微电网形式连接在一起,在用电峰谷时,将微电网中的多余的电,通过电解池分解成氢气和氧气,再通过压缩机进行压缩存储,被存储的氢气通过高温燃料电池,进行发电,在上述过程中,将对氢气和氧气冷却时换出的热量,及对高温燃料电池的发热所换出的热量,换给超临界co2循环系统,对系统中被地热换热器一次加热后的超临界co2介质进行二次和三次加热,被加热三次的超临界co2去推动超临界co2发电机组去发电,从而达到使园区能源被综合充分利用的效果。
8.一种氢氧燃料电池发电与超临界co2发电机组的组合系统,包括超临界co2发电机
组、超临界co2压缩机、地热与超临界co2换热器、水电解池、高温燃料电池、氢气压缩机、氧气压缩机、储氢气罐、储氧气罐和高温燃料电池,在水电解池的氢气输出口上,连接有氢气输出管路,在氢气输出管路的另一端,连接有氢气与超临界co2换热器,氢气与超临界co2换热器的换热后氢气输出端口,通过管路与氢气压缩机的输入端口连接在一起,氢气压缩机的输出端口,通过管路与储氢气罐的输入端口连接在一起,储氢气罐的输出端口,通过管路与高温燃料电池的氢气输入端口连接在一起,在水电解池的氧气输出口上,连接有氧气输出管路,在氧气输出管路的另一端,连接有氧气与超临界co2换热器,氧气与超临界co2换热器的换热后氧气输出端口,通过管路与氧气压缩机的输入端口连接在一起,氧气压缩机的输出端口,通过管路与储氧气罐的输入端口连接在一起,在高温燃料电池的氧气输入口上,连接有空气压缩机,在高温燃料电池的输出正电极与高温燃料电池的输出负电极之间,连接有直流电流逆变器,在直流电流逆变器的输出端上,连接有对外供电交流电网,在高温燃料电池内,设置有超临界co2吸热管路,在超临界co2发电机组的超临界co2做功后的输出口上,连接有超临界co2压缩机,在超临界co2压缩机的输出端上,连接有地热与超临界co2换热器,在地热与超临界co2换热器的超临界co2的第一次吸热后输出端口上,分别连接有二次吸热前第一分支管和二次吸热前第二分支管,二次吸热前第一分支管的另一端与氢气与超临界co2换热器的超临界co2输入端口连接在一起,在氢气与超临界co2换热器的超临界co2输出端口上,连接有二次吸热后第一分支管,二次吸热后第一分支管的另一端,与超临界co2吸热管路的输入端口连接在一起,二次吸热前第二分支管的另一端,与氧气与超临界co2换热器的超临界co2输入端口连接在一起,在氧气与超临界co2换热器的超临界co2输出端口上,连接有二次吸热后第二分支管,二次吸热后第二分支管的另一端与超临界co2吸热管路的输入端口连接在一起,在超临界co2吸热管路的输出端口上,连接有三次吸热后超临界co2输出管路,三次吸热后超临界co2输出管路的另一端,与超临界co2发电机组的超临界co2输入端口连接在一起。
9.在氢气输出管路上,串联有氢气气水分离器,在氧气输出管路上,串联有氧气气水分离器;超临界co2吸热管路是由超临界co2集液箱、超临界co2输出箱和超临界co2换热管束组成的,在超临界co2集液箱与超临界co2输出箱之间连通有超临界co2换热管束。
10.在水电解池上连接有直流整流器,在直流整流器的交流电输入端上,连接有微电网,在微电网上分别并联有工业余热发电机组、地热发电机组、光伏发电机组和风力发电机组;在储氧气罐的输出口上连接有工业用氧气输出管路,在储氢气罐的输出口上连接有工业用氢气输出管路。
11.一种氢氧燃料电池发电与超临界co2发电机组的组合系统,在超临界co2发电机组的超临界co2输出端口与超临界co2压缩机的输入端口之间的管路上串连有超临界co2与水换热器,超临界co2与水换热器的换热水端上连接有园区内采暖用户的循环水路,在园区内采暖用户的循环水路上设置有换热站循环水泵。
12.本发明的有益效果是实现可再生能源的高效利用和微电网的稳定运行,通过微电网将多种形式的可再生能源整合到一个能源系统中,通过电解水制氢制氧储能,实现可再生能源的最大化利用和微电网的负荷平稳运行,还可以对外集中供热、提供工业用氢气、氧气等形式的能源供应,解决了可再生能源间歇性发电和周期性工业用能之间不匹配造成的能源浪费问题,提高工业园区内可再生能源的综合利用效率。
附图说明
13.图1是本发明的结构示意图;
14.图2是本发明的高温燃料电池18的结构示意图;
15.图3是本发明的高温燃料电池18中的超临界co2吸热管路24的结构示意图。
具体实施方式
16.下面结合附图对本发明进行详细说明:
17.一种氢氧燃料电池发电与超临界co2发电机组的组合系统,包括超临界co2发电机组25、超临界co2压缩机27、地热与超临界co2换热器28、水电解池7、高温燃料电池18、氢气压缩机15、氧气压缩机12、储氢气罐16、储氧气罐13和高温燃料电池18,在水电解池7的氢气输出口上,连接有氢气输出管路31,在氢气输出管路31的另一端,连接有氢气与超临界co2换热器11,氢气与超临界co2换热器11的换热后氢气输出端口,通过管路与氢气压缩机15的输入端口连接在一起,氢气压缩机15的输出端口,通过管路与储氢气罐16的输入端口连接在一起,储氢气罐16的输出端口,通过管路与高温燃料电池18的氢气输入端口连接在一起,在水电解池7的氧气输出口上,连接有氧气输出管路32,在氧气输出管路32的另一端,连接有氧气与超临界co2换热器10,氧气与超临界co2换热器10的换热后氧气输出端口,通过管路与氧气压缩机12的输入端口连接在一起,氧气压缩机12的输出端口,通过管路与储氧气罐13的输入端口连接在一起,在高温燃料电池18的氧气输入口上,连接有空气压缩机19,在高温燃料电池18的输出正电极20与高温燃料电池18的输出负电极21之间,连接有直流电流逆变器22,在直流电流逆变器22的输出端上,连接有对外供电交流电网23,在高温燃料电池18内,设置有超临界co2吸热管路24,在超临界co2发电机组的超临界co2做功后的输出口上,连接有超临界co2压缩机27,在超临界co2压缩机27的输出端上,连接有地热与超临界co2换热器28,在地热与超临界co2换热器28的超临界co2的第一次吸热后输出端口上,分别连接有二次吸热前第一分支管33和二次吸热前第二分支管34,二次吸热前第一分支管33的另一端与氢气与超临界co2换热器11的超临界co2输入端口连接在一起,在氢气与超临界co2换热器11的超临界co2输出端口上,连接有二次吸热后第一分支管35,二次吸热后第一分支管35的另一端,与超临界co2吸热管路24的输入端口连接在一起,二次吸热前第二分支管34的另一端,与氧气与超临界co2换热器10的超临界co2输入端口连接在一起,在氧气与超临界co2换热器10的超临界co2输出端口上,连接有二次吸热后第二分支管36,二次吸热后第二分支管36的另一端与超临界co2吸热管路24的输入端口连接在一起,在超临界co2吸热管路24的输出端口上,连接有三次吸热后超临界co2输出管路37,三次吸热后超临界co2输出管路37的另一端,与超临界co2发电机组25的超临界co2输入端口连接在一起。
18.在氢气输出管路31上,串联有氢气气水分离器9,在氧气输出管路32上,串联有氧气气水分离器8;超临界co2吸热管路24是由超临界co2集液箱38、超临界co2输出箱39和超临界co2换热管束40组成的,在超临界co2集液箱38与超临界co2输出箱39之间连通有超临界co2换热管束40。
19.在水电解池7上连接有直流整流器6,在直流整流器6的交流电输入端上,连接有微电网1,在微电网1上分别并联有工业余热发电机组2、地热发电机组3、光伏发电机组4和风力发电机组5;在储氧气罐13的输出口上连接有工业用氧气输出管路14,在储氢气罐16的输
出口上连接有工业用氢气输出管路17。
20.在超临界co2发电机组25的超临界co2输出端口与超临界co2压缩机27的输入端口之间的管路上串连有超临界co2与水换热器26,超临界co2与水换热器26的换热水端上连接有园区内采暖用户的循环水路30,在园区内采暖用户的循环水路30上设置有换热站循环水泵29。
21.本发明主要基于超临界co2循环发电系统,利用园区既有的各种能源运作中所产生的余热,对超临界co2进行第二次和第三次的加热,从而大大提高了超临界co2发电机组25的发电能力,将园区中常规被排掉的余热充分利用于超临界co2循环发电系统中,实现了能源的综合利用;由于接入到园区的微电网1中的各种新能源均存在间歇不稳定的特性,本发明将这些新能源发电中过剩的电能,用于对水的电解,将电解后的氢气和氧气压缩后储存起来,实现了过剩电能的转换储存,在水电解过程中,产生的氢气和氧气的温度较高,压缩储存这些气体时,需要对这些气体进行冷却,本发明通过氢气与超临界co2换热器11和氧气与超临界co2换热器10,即达到了对这些气体压缩前的冷却,又将气体的热能转换成对超临界co2介质的二次加热,从而提高其做功发电的能力;在工业园区,还配备有高温燃料电池18,微电网中多余的电能被转换成高压的氢气后,可将部分氢气用于对高温燃料电池18的供气,使高温燃料电池18发电后,向外电网供电,在高温燃料电池18的发电过程中,在电池的内部会产生大量高温的热量,为了保证高温燃料电池18的正常发电,需要对这些热量进行冷却处理,本发明通过在高温燃料电池18中,设置超临界co2吸热管路24,将这些热量换热到超临界co2介质中,实现对超临界co2介质的第三次升温加热,即提高了超临界co2介质的做功能力,又解决了高温燃料电池18的降温问题;当超临界co2介质通过超临界co2发电机组25做功后,还具有一定的热量,将这部分热量换热到园区的生活用水系统,使热能充分被利用。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1