LED驱动电路、LED照明装置以及电子设备的制作方法

文档序号:15743871发布日期:2018-10-23 22:44阅读:220来源:国知局
LED驱动电路、LED照明装置以及电子设备的制作方法

本申请涉及LED(发光二极管)照明技术领域,具体涉及一种电子干扰低的LED驱动电路、LED照明装置以及电子设备。



背景技术:

随着自动化设备越来越走入人们的日常工作和生活,开门机的应用也越来越普及。

现有的开门机应用示意图如图1所示,遥控器发出的遥控信号,遥控信号接收模块接收遥控信号,控制模块根据接收的遥控信号对门和照明装置进行开关动作。现有开门机的照明装置一般采用白炽灯,因白炽灯对应用场合无干扰,所以遥控器在离开门机很远的距离发射出的遥控信号,该遥控信号接收模块都能准确无误的接收并对门和照明装置进行控制。LED照明装置具有环保、节能、寿命长等优点而被视为21世纪照明光源,现已开始取代传统光源(比如白炽灯)在各种照明装置上大量应用。在开门机应用场合,只需将传统的白炽灯替换为LED灯即可。但是替换以后用遥控器对开门机进行遥控控制时,遥控距离会大大缩短。LED照明装置作为新的环保光源与传统光源不同地是LED不能接交流电直接驱动,需要通过AC-DC恒流驱动电源来驱动。而该LED照明装置驱动电源的高频信号会产生电磁干扰,该电磁干扰信号影响到遥控器发出的遥控信号。这正是LED照明装置无法很好使用在开门机应用场合的原因。

请参考图2,现有LED照明装置包括灯壳20以及设置在灯壳内的驱动电路10和由驱动电路提供电源的LED模块30。该驱动电路10包括整流电路11、滤波电路12以及DC转换电路13。现有DC转换电路13的具体电路图请参考图3。

输入电压从整流电路11的ACN,ACL两端输入,再经过整流桥BR1进行整流;整流后的电压经过滤波电路12进行滤波处理得到比较干净的脉动直流;最后通过DC转换电路13得到所需要的电压。

LED照明装置的驱动电路工作在高频模式下,产生主要电磁干扰。现有的LED照明装置电路大多采用芯片作为驱动电路的主控电路的方案,如图3DC转换电路13使用的BP2831A芯片,因芯片方案具有其本身自有的工作模式,产生的干扰需要增加滤波电路才能满足产品认证干扰要求,即使满足认证干扰要求的产品干扰仍然不小,在开门机场合无法支持遥控器远程控制。为了进一步降低干扰需要增加大量的干扰滤波元器件,导致成本和产品体积增加,无法满足产品应用的需求。正是由于此,现有的LED照明装置无法使用在开门机等对干扰要求非常低的场合。

因此,现有技术的LED照明装置还有待于改进。



技术实现要素:

本申请要解决的技术问题是提供一种可抑制电流突变,将电磁干扰(EMI)降到最低的LED驱动电路以及使用该LED驱动电路的LED照明装置和电子设备。该LED驱动电路工作在准谐振工作模式中,对外电磁干扰非常低。

为解决上述技术问题,本申请提供以下技术方案。

第一方面,本申请实施例提供了一种LED驱动电路,包括整流电路、滤波电路以及DC转换模块,该整流电路将交流电转换成直流电,该滤波电路对转换的直流电进行滤波处理得到脉动直流,该DC转换模块基于该脉动直流为LED发光器件提供额定电压,该整流电路包括突变抑制电阻;

该DC转换模块包括开关电路、储能电路、恒流控制电路以及谐振反馈电路,该脉动直流为储能电路供电,该储能电路连接该恒流控制电路,该恒流控制电路的输出连接该LED发光器件,该开关电路连接谐振反馈电路,该谐振反馈电路耦合该储能电路;

该交流电经过整流电流时,该突变抑制电阻抑制浪涌电流,该谐振反馈电路谐振该储能电路的电能磁能变化并向开关电路输入反馈电流,当瞬时反馈电流变化率趋近于零时,该开关电路截止,当该储能电路的瞬时感应电压变化率趋近于零时,开关电路导通。

在实施例中,该突变抑制电阻设置在至少以下任一位置:该整流电路的的交流输入端和/或直流输出端。

该DC转换模块还包括启动电路,该开关电路连接该启动电路,该启动电路包括保证该开关电路微导通的启动电阻。

具体实施时,所述整流电路的交流输入端包括输入火线端和输入零线端,所述整流电路的直流输出端包括直流输出正极端和直流输出负极端,所述整流电路的输入火线端、输入零线端、直流输出正极端和直流输出负极端中的至少一个设置有用于抑制电流突变的突变抑制电阻,所述整流电路设置的至少一个突变抑制电阻总阻值在15-200欧姆。

优选的,该至少一个突变抑制电阻为保险丝电阻或者为保险丝电阻串联普通电阻。

第二方面,本申请实施例还提供了一种LED照明装置,包括LED发光器件以及如LED驱动电路权利要求的LED驱动电路。

第三方面,本申请实施例还提供了一种电子设备,包括:

至少一个控制器;以及,

与该至少一个控制器通信连接的交互单元、控制机构以及LED照明装置,其中,该控制器根据用户发送给交互单元的指令,操控该控制机构以及开启或者关闭该LED照明装置;

该LED照明装置包括如LED驱动电路权利要求所述的LED驱动电路。

该电子设备还包括与该至少一个控制器通信连接的存储器和通信组件。

本申请的有益效果在于,本申请实施例提供的LED驱动电路以及使用该LED驱动电路的LED照明装置和电子设备,该LED驱动电路工作在准谐振工作模式中,并且,在整流电路设置突变抑制电阻,对外电磁干扰非常低。该LED驱动电路通过设置谐振反馈电路,当谐振反馈电路的瞬时反馈电流变化率趋近于零时,该开关电路截止,当该储能电路的瞬时感应电压变化率趋近于零时,开关电路导通,使得高频工作的电路在转换瞬间的电流变化率d i/dt和电压变化率dv/dt最小,从而从根本上减少了电磁干扰源,极大降低了电路的电磁干扰,并使得使用该种新型LED驱动电路的相应的电子设备的无线通讯不受影响。

附图说明

一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。

图1是本申请实施例涉及的开门机工作模块图;

图2是现有的LED照明装置示意图;

图3是现有的LED照明装置的DC转换模块的电路图;

图4是本申请实施例提供的DC转换模块的等效电路图;

图5是本申请实施例提供的DC转换模块的电路图;

图6是本申请实施例提供的DC转换模块的DC转换电路的电路框图;

图7-14是本申请实施例提供的整流电路设置抑制浪涌电流的电阻的8种实施方式;以及

图15是本申请实施例提供的电子装置的硬件模块图。

具体实施方式

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。

本申请涉及LED照明装置以及使用该LED照明装置的电子设备,申请实施例以开门机作为电子设备的实施方式加以说明。请参考图1,本申请的开门机包括遥控器、遥控信号接收模块、控制模块、LED照明装置以及门。遥控器发出的遥控信号,遥控信号接收模块接收遥控信号,控制模块根据接收的遥控信号对门和LED照明装置进行开关动作。其中,该LED照明装置电磁干扰非常小,不影响遥控器与遥控信号接收模块之间的通信。

现有的带有LED照明装置的电子设备,系统构造越来越庞杂,除了控制自身的控制机构,还需要可与系统通信并受系统的调度管理。本申请提供的LED照明装置该LED驱动电路工作在准谐振工作模式中,其电子干扰减至最低,不影响电子设备的遥控和无线通信。

LED照明装置一般采用开关电源并在高频模式下工作,电容充放电、开关管的电压、电流在高频工作时的快速切换均构成电磁干扰源。该开关电源产生电磁干扰的根本原因在于其工作过程中产生很高的电流变化率(单位时间内电流的变化,d i/dt)和电压变化率(单位时间内电压的变化,dv/dt),相应产生的浪涌电流和尖峰电压形成了干扰源。本申请的技术方案在电流变化率和电压变化率几乎趋近于零时,开关电路才截止和导通,几乎趋近于零的d i/dt或dv/dt变化率使得本申请的驱动电路最大限度降低干扰源,电磁干扰有很大降低,并且能保证使用该LED照明装置的电子设备的无线通讯不受影响。

请参考图4所示等效电路图以及图5所示具体电路图。本申请的LED照明装置包括LED发光器件104以及LED驱动电路。该LED驱动电路工作在准谐振工作模式中,对外电磁干扰非常低,包括整流电路101、滤波电路102以及DC转换模块103。

该DC转换模块103包括启动电路1、谐振反馈电路2、监测电路3、储能电路4以及恒流控制电路。该储能电路4包括开关电路,本申请实施例中,该开关电路为工作在饱和导通下的开关管Q1。该开关电路连接谐振反馈电路2,该谐振反馈电路2耦合该储能电路4,该储能电路4连接该恒流控制电路,该恒流控制电路的输出连接该LED发光器件104。

其中,该开关电路连接该启动电路1,该启动电路1包括保证该开关电路微导通的启动电阻。

该整流电路101将交流电转换成直流电,该滤波电路102对转换的直流输入进行滤波处理得到脉动直流,该DC转换模块103基于该脉动直流为该LED发光器件104提供额定工作电压。

该谐振反馈电路2谐振该储能电路4的电能磁能变化并向开关电路输入反馈电流,当瞬时反馈电流变化率d i/dt趋近于零时,该开关电路截止,当该储能电路的瞬时感应电压变化率dv/dt趋近于零时,开关电路导通;其中,该开关电路导通时由该脉动直流为恒流控制电路提供电能,该开关电路截止时由该储能电路为恒流控制电路提供能量。

请参考图6,所示为本申请实施例的DC转换模块的电路框图。其中,启动电路1为取值较大的电阻,起到承上启下的作用,保证开关管Q1微导通。该启动电路1由最少一个启动电阻R2组成。

该谐振反馈电路2包括变压器T1的一个绕组,最少一个振荡电容C3,最少一个驱动电阻R4。

该检测电路3用于输出功率控制,包括最少一个检测电阻R1。

该储能电路4包括最少一个电容C4,变压器T1的一个绕组,开关管Q1,最少一个二极管D1。

该谐振反馈电路2使得DC转换模块103工作在准谐振工作模式中,对外干扰非常低。

工作原理如下(以BUCK电路举例说明):

输入电压经过整流电路101将输入的交流电压转换成脉动的直流电压,再经过整流电路102的兀型滤波电路对整流后的脉动电压进行滤波处理。该DC转换模块103将脉动电压转换成我们需要的电压。

开关管Q1工作在On-Off快速循环转换的状态,dv/dt和d i/dt都在急剧变化中相互转换,在变压器T1感生电压瞬时变为零电压时,开关管再次导通时,即dv/dt中的dv为零,也就是dv/dt为零,所产生的电磁干扰最小。当该谐振反馈电路2的反馈电流为零,该开关管Q1截止时,即d i/dt中的d i为零,也就是d i/dt为零,该瞬间在开关管上产生的电磁干扰也最小。在高频转换过程中,每次开关管Q1的切换都在d i/dt为零或者dv/dt为零时发生,因此整个驱动过程的电磁干扰都很小。

请参阅图5,输入电压从交流电源的L端,N端两端输入,经过整流桥BR1整流后,再经过C1,L1,C2组成的兀型滤波器进行滤波,滤波后的脉动直流电压通过R2,R4,Q1,R1进行电路启动,启动电路1启动后开关管Q1处于微导通状态。变压器T1通过C4正极到C4负极,再通过变压器的7到8脚,最后经过Q1及R1形成的储能电路4。并在变压器上感应一个7正8负的电压.同时会在该谐振反馈电路2中的变压器T1的一侧绕组1,2脚感应一个1正2负的电压。此电压通过振荡电容C3向开关管Q1形成正反馈,正反馈能够进一步确保开关管Q1饱和导通。随着C3电容的电压慢慢升高,反馈电流慢慢减小,但电流方向不变,仍然能够保证开关管Q1正常导通,储存的能量继续增加。当C3电容电压充满时,此时该谐振反馈电路2馈入开关管Q1的反馈电流为零,反馈电流不能维持开关管Q1继续导通而使得Q1开关管截止,这就是零电流截止。开关管Q1截止同时,由于变压器T1上的电流突然变为零,根据“楞次定律”此时变压器T1上的感应电压会发生翻转,为7负8正,此时变压器储存的磁能转变为电能通过引脚8(正)经过D1、C4回到引脚7(负)向次级释放能量。同时变压器1,2脚的电压也会发生翻转,为1负2正,相位电压翻转而使开关管Q1进一步截止。

根据能量公式:W=(1/2)*L*i*i(w表示变压器T1储能总功,i表示电流的有效值,L表示电感),随着次级能量的释放减小,电流减小。当电流减小到零时,此时变压器上的感应电动势会进一步发生翻转,开关管Q1重新导通。这就是零电压导通。开关管Q1在零电流截止,在零电压导通,干扰都比较低。

LED照明装置驱动的对外干扰源集中体现在开关管、整流二极管、高频变压器等。

(1)开关管

开关管工作在On-Off快速循环转换的状态,dv/dt和d i/dt都在急剧变化中相互转换,因此,开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源,同时也是热噪声的产生源。

(2)高频变压器

高频变压器的干扰来源集中体现在漏感和分布电容所对应的d i/dt和dv/dt快速循环变换,因此高频变压器是电、磁场耦合的重要干扰源。

(3)整流二极管

开关电源中的整流主要包括输入级的低频整流和输出级的高频整流,而输出级的高频整流有时是由快恢复二极管来承担,有时又由可控的同步整流技术来承担。输入级的低频整流二极管由于发热而带来的干扰主要体现在低频段,而输出级的高频整流的干扰源集中体现在反向恢复特性上,反向恢复电流的断续变化会在引线/PCB布线电感以及杂散电感等电感上产生较高的dv/dt,从而导致极强的电磁干扰。

综上我们只要把d i/dt或dv/dt的变化率变慢些,对电磁干扰都会有很大降低。

本实施例中,将高频切换的开关管的切换点设置在d i/dt和dv/dt为零或者趋近于零的瞬间,极大降低了电磁干扰。

同时为了在整个电路上都能抑制浪涌电流,本申请实施例还通过设置电阻来抑制浪涌电流。

本申请实施例中,为了进一步降低干扰,可在整流电流101的交流输入端和直流输出端的至少任一位置,增加一个或多个电阻,总阻值在15-200欧姆,作为抑制电流突变的元件,有很好的降低干扰效果。

请一并参考图7至图14,所示为本申请的若干个在整流电路101添加电阻或者保险丝电阻的实施方式。

整流电路101增加电阻的几种形式如下:

图7所示:仅在交流电源输入火线L端设置RF1;

图8所示:在交流电源输入火线L端设置RF1,在电网交流电源输入零线N端设置R11;

图9所示:在交流电源输入火线L端设置RF1,在整流桥BR1直流输出正极端设置R12;

图10所示:在交流电源输入火线L端设置RF1,在整流桥BR1直流输出负极端设置R13;

图11所示:在交流电源输入火线L端设置RF1,在交流电源输入零线N端设置R11,在整流桥BR1直流输出正极端设置R12;

图12所示:在交流电源输入火线L端设置RF1,在整流桥BR1直流输出正极端设置R12,在整流桥BR1直流输出负极端设置R13;

图13所示:在交流电源输入火线L端设置RF1,在交流电源输入零线N端设置R11,在整流桥BR1直流输出负极端设置R13;

图14所示:在交流电源输入火线L端设置RF1,在交流电源输入零线N端设置R11,在整流桥BR1直流输出正极端设置R12,在整流桥BR1直流输出负极端设置R13。

其中,RF1:可以是保险丝串一个或多个电阻,也可以只是一个保险丝电阻或一个或多个电阻。R11:可以是一个或多个电阻。R12:可以是一个或多个电阻。R13:可以是一个或多个电阻。

当开关管导通时,电网输入的电压经过交流电源输入火线L端、RF1、BR1、R12、C1、L1、C2,变压器的第8脚到第7脚,到开关管、R1、R13、BR1、R11到电网交流电源输入零线N端。在开关管Q1导通瞬间,电路回路会形成很大的突变电流,而回路中主要抑制电流突变的元件为回路中的电阻和电感。故输入端的RF1、R11、R12和R13对电流突变有很好的抑制作用,从而有效的降低了产品对外干扰。

请参考图15,本申请还涉及一种电子设备600。该电子设备600实施例可以是开门机,也可以是任何使用该LED照明装置650的单片机控制系统。

该电子设备600包括至少一个控制器610、与该至少一个控制器610通信连接的人机交互单元630、控制机构以及LED照明装置650。

其中,该控制器610为电子设备600的中央处理器。该控制器610根据用户发送给人机交互单元630的指令,操控该控制机构运作的同时根据产品设计需要开启或者关闭该LED照明装置650。在一实施例中,该控制机构可以包括连接至控制器610的电机以及由电机驱动的电动机构。该电动机构可以包括用来开关门的齿轮组和齿条的组合。在另一实施例中,该控制机构也可以是连接控制器的气缸和机械臂。

该LED照明装置650的结构和设计和前述LED照明装置一样,包括储能电路、恒流控制电路以及谐振反馈电路,电路运行时电磁干扰低。

该储能电路包括开关电路,该开关电路连接谐振反馈电路,该谐振反馈电路耦合该储能电路,该储能电路连接该恒流控制电路,该恒流控制电路的输出连接LED发光器件。其中,该谐振反馈电路谐振该储能电路的电能磁能变化并向开关电路输入反馈电流,当瞬时反馈电流变化率趋近于零时,该开关电路截止,当该储能电路的瞬时感应电压变化率趋近于零时,开关电路导通;该开关电路导通时由该脉动直流为恒流控制电路提供电能,该开关电路截止时由该储能电路为恒流控制电路提供能量。

在其它实施例中,该电子设备可与其它相关设备组网通信建立系统,因此该电子设备还包括与该至少一个控制器610通信连接的存储器620和通信组件640。

同样的,为了抑制浪涌电流,该LED照明装置650的整流电路的一个位置或多个位置设置至少一个用于抑制电流突变的电阻。

该用于抑制电流突变的电阻具体实施方式至少为:一个保险丝电阻或者至少一个保险丝电阻串联一个或者多个普通电阻。

本申请实施例提供的LED驱动电路以及使用该LED驱动电路的LED照明装置和电子设备,通过设置谐振反馈电路,当谐振反馈电路的瞬时反馈电流变化率趋近于零时,该开关电路截止,当该储能电路4的瞬时感应电压变化率趋近于零时,开关电路导通,使得高频工作的电路在转换瞬间的电流变化率d i/dt和电压变化率dv/dt最小,从而从根本上减少了电磁干扰源,极大降低了电路的电磁干扰,并使得使用该种新型LED驱动电路的相应的电子设备的无线通讯不受影响;本申请提供的LED照明装置可以应用在开门机等需要低干扰的产品适配的应用场合;本申请技术方案在整流电路中增加电阻进一步抑制了电流突变,降低了电磁干扰,比如图8至图14所设置的电阻RF1,R11,R12,R13,通过任意选取1个位置或多个位置增加一个或多个电阻,总阻值在15-200欧姆,进一步抑制了电流突变,降低了电磁干扰。

最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1