能自动跟踪手术刀的智能无影灯控制系统及方法与流程

文档序号:21457529发布日期:2020-07-10 17:53阅读:362来源:国知局
能自动跟踪手术刀的智能无影灯控制系统及方法与流程

本发明涉及一种无影灯控制系统及方法,更具体的说,尤其涉及一种能自动跟踪手术刀的智能无影灯控制系统及方法。



背景技术:

无影灯已经成为医院必备医疗器械之一,对于医生来说,在手术室或者icu室看到无影灯已经是很常见的一个现象了,无影灯起着非常重要的作用,可以为医生做手术时提供充足的光源。在实际做手术的过程中,医生手里的手术刀位置可能会发生变化,因此,光线聚焦的位置也要随之发生变化,才能解决光线不足的问题,这就需要医生手动拉动无影灯来改变光线聚焦的位置,但是以拉动的方式来调节无影灯位置还是很不方便的,大大影响了做手术的进程。

陀螺仪模块,是一种可以测量角度变化信息的元器件,应用比较广泛,但在无影灯的应用上面比较少见;智能相机的视觉定位功能,可以快速的抓取目标的坐标位置,常用在工业生产领域,在无影灯上的应用也很少见。无影灯的自动转向问题亟待解决,有必要提供一种能自动跟踪手术刀的智能无影灯控制系统,使无影灯使用起来更加方便。



技术实现要素:

本发明为了克服上述技术问题的缺点,提供了一种能自动跟踪手术刀的智能无影灯控制系统及方法。

本发明的能自动跟踪手术刀的智能无影灯控制系统,包括无影灯、步进电机、第一舵机、手术刀和控制箱,无影灯通过灯架可升降地设置于房顶上,无影灯的下方放置有病床,步进电机、第一舵机均设置于灯架上,分别驱使无影灯在平行于病床的平面内绕相互垂直的x轴方向和y轴方向上转动;其特征在于:所述房顶上固定有对病床区域进行图像采集的智能相机,无影灯上固定有对其姿态进行检测的第一陀螺仪模块,第一舵机的壳体上固定有第二舵机,第二舵机的输出轴上固定有始终与房顶垂直的超声波模块;

所述手术刀中设置有第一单片机模块及与其相连接的第一无线模块、第二陀螺仪模块、陀螺仪按键和相机按键;所述控制箱由第二单片机模块及与其相连接的第二无线模块组成,第二单片机模块的通信端口与智能相机、第一陀螺仪模块和超声波模块相连接,第二单片机模块的输出端口与步进电机和第一舵机的控制端相连接。

本发明的能自动跟踪手术刀的智能无影灯控制系统,所述第一单片机模块和第二单片机模块均由32位单片机系统组成,第一无线模块和第二无线模块均由型号为nfr2401的芯片构成,第一陀螺仪模块和第二陀螺仪模块均由型号为mpu6050的芯片构成;所述第二单片机模块经rs485通讯总线与第一陀螺仪模块和超声波模块相通信,经rs232通讯总线与智能相机相通信。

本发明的能自动跟踪手术刀的智能无影灯控制系统的控制方法,其特征在于:包括陀螺仪控制模式和智能相机控制模式;

陀螺仪控制模式具体通过以下步骤来实现:

a).高度调整,对病床上的病人做手术前,首先手动将无影灯拉至合适的高度;

b).发起照射调整指令,医生在手持手术刀手术过程中,如果感觉无影灯的照射角度需要调整,则按下手术刀上的陀螺仪按键,向控制箱发送按照陀螺仪姿态的无影灯照射角度调整指令,姿态调整指令经第一无线模块发送至控制箱;

c).手术刀姿态求取,根据获取的第二陀螺仪的数据,计算出第二陀螺仪的航向角yaw、俯仰角pitch、横滚角roll;

d).步进电机调整,pitch的值对应步进电机的转动方向,当pitch>0时,驱使步进电机正转,当pitch<0时,驱使步进电机反转;通过不断获取第二陀螺仪的实时俯仰角pitch,当pitch=0时,步进电机调整结束;

e).舵机调整,根据公式(1)求取第一舵机的自动重装载值arr与横滚角roll的关系:

公式(1)中,等号左侧arr为第一舵机当前的自动重装载值,等号右侧的arr为重装载前的装载值;控制箱将自动重装载值下发至第一舵机,驱使第一舵机转动,完成对无影灯照射方向的调整;

智能相机控制模式具体通过以下步骤来实现:

1).像素坐标距离与实际距离的转换,首先,将智能相机放到距离病床恰好1m的高度,按下拍照按钮,拍摄含有手术刀的图像,将手术刀在图像中的位置坐标标记为a(x1,y1);然后在水平面内移动手术刀的位置,再次拍摄含有手术刀的图像,此时手术刀在图像中的位置坐标为b(x2,y2);测得手术刀在x方向和y方向上的实际物理位移为x3,y3;

则通过公式(3)求出智能相机距离病床1m时,x轴像素距离转换为实际距离的比例尺kx为:

则通过公式(4)求出智能相机距离病床1m时,y轴像素距离转换为实际距离的比例尺ky为:

则通过公式(5)求出智能相机距离病床hm时,x轴像素距离转换为实际距离的比例尺kxh为:

则通过公式(6)求出智能相机距离病床hm时,y轴像素距离转换为实际距离的比例尺ky为:

2).计算实际距离与舵机装载值的对应关系,将无影灯移动到距离病床1m的高度,通过第一舵机的驱使,使无影灯的照射光斑中心点由病床尾部移动至病床头部过程中,测出第一舵机的自动重装载值变化范围为arr1~arr2,床头的实际长度为x4;

则通过公式(7)求出智能相机距离病床hm时,第一舵机自动重装载值的范围为:

h×arr1~h×arr2(7)

则通过公式(8)求出智能相机距离病床hm时,实际移动距离与自动装载值arr的比例关系:

公式(8)中,x为无影灯光斑在病床长度方向的移动距离,即x轴方向上的实际移动距离;

3).计算实际距离与步进电机脉冲个数的关系,将无影灯移动到距离病床1m的高度,给步进电机一个脉冲,测出一个脉冲下无影灯光斑中心在病床上横向方向的移动距离,即沿y轴方向的实际移动的距离,记为y4;

则通过公式(9)求出智能相机距离病床hm时,步进电机在一个脉冲下移动的实际距离为:

h×y4(9)

则通过公式(10)求出照射光斑沿病床横向方向上的实际移动距离y与步进电机脉冲个数n的关系:

4).照射光斑的调整,首先通过超声波模块计算出当前无影灯距离病床的距离,设为h′;然后医生将手术刀移动至目标位置,第二单片机模块利用智能相机采集一张图片,通过对比当前图片与上一次所采集的图片,计算出手术刀在图片上所移动的像素距离,设x方向和y方向上的像素变化值分别为δx、δy,则通过公式(11)和公式(12)分别计算出无影灯照射光斑中心实际理应移动的距离:

然后,则通过公式(13)和公式(14)分别计算出第一舵机自动重装载值arr′和步进电机脉冲个数n′:

将第一舵机的自动重装载值置为arr′,将n′个脉冲个数输入给步进电机,以驱使无影灯的照射光斑对手术刀跟踪。

本发明的能自动跟踪手术刀的智能无影灯控制系统的控制方法,步骤c)中手术刀姿态求取具体通过以下步骤来实现:

第二陀螺仪模块初始化后,陀螺仪会自动采集一组8位的数据,数据放到一个名字叫buff的数组中,buff的第零位,也就是buff[0]为0xaa,是固定不变的,是一个开始采集的标志;然后buff的第八位,也就是buff[7]为0x55,也是固定不变的,是采集结束的标志;经过数据融合算法,可解算出实际的角度;

则通过公式(15)求取陀螺仪航向角yaw:

则通过公式(16)求取陀螺仪俯仰角pitch:

则通过公式(17)求取陀螺仪横滚角roll:

其中,<<8表示左移8位运算,“|”表示并运算。

本发明的能自动跟踪手术刀的智能无影灯控制系统的控制方法,步骤4)中,无影灯距离病床的距离h′的获取方法为:在步进电机驱使无影灯运动过程中,第二舵机通过执行与步进电机转动角度相同但转动方向相反的动作,保证超声波模块始终与房顶垂直;

已知声速在空气中的传播速度为340m/s,打开定时器同时使能超声波,计算从发出到返回所用的时间为t,通过公式(18)测得超声波距离屋顶的距离:

记无影灯距离病床的高度为h′,超声波测得距离屋顶的距离为s,屋顶距离病床的高度固定不变,记为h2,通过公式(19)可以求得h′:

h′=h2-s(19)。

本发明的有益效果是:本发明的能自动跟踪手术刀的智能无影灯控制系统及方法,通过设置步进电机、第一舵机、第二舵机、超声波模块和第一陀螺仪,在房顶上设置智能相机,在手术刀中设置第二陀螺仪、陀螺仪按键和相机按键;使得在按下陀螺仪按键执行手术刀姿态控制模式时,通过陀螺仪获取手术刀的俯仰角和横滚角数据,来计算步进电机所需的脉冲个数以及第一舵机的重装载值,通过驱使无影灯在水平面内的转动角度,来实现其照射光斑对手术刀位置的跟随。在智能相机控制模式下,通过对比当前图像与前一图像中手术刀的位置变化量,来计算出手术刀的实际位移,进而求出步进电机的脉冲个数和第一舵机的重装载值,进而实现无影灯对手术刀的跟随,解决了传统无影灯的转向需要医护人员手动拉动所带来的不便,确保了手术刀位置处的照明,保证了手术的安全、顺利进行。

附图说明

图1为本发明的能自动跟踪手术刀的智能无影灯控制系统的结构示意图;

图2为本发明中步进电机和舵机驱使无影灯运动的结构原理图;

图3为本发明中手术刀的原理图;

图4为本发明中控制箱与智能相机、步进电机、舵机、陀螺仪和超声波模块的连接示意图。

图中:1无影灯,2控制箱,3手术刀,4病床,5房顶,6智能相机,7步进电机,8第一舵机,9第一陀螺仪模块,10超声波模块,11第二舵机,12第一无线模块,13第二陀螺仪模块,14第一单片机模块,15陀螺仪按键,16相机按键,17第二无线模块,18第二单片机模块。

具体实施方式

下面结合附图与实施例对本发明作进一步说明。

如图1所示,给出了本发明的能自动跟踪手术刀的智能无影灯控制系统的结构示意图,其由无影灯1、手术刀3、控制箱2、智能相机6、步进电机7、第一舵机8、第一陀螺仪模块9以及超声波模块10组成,无影灯1的下方放置有病床4,无影灯1经灯架固定于房顶5上,手动推动灯架可驱使无影灯1上下升降,以便将无影灯1调整到合适的高度。所示的步进电机7和第一舵机8用于驱使无影灯1在平面内运动,定义病床4的长度方向为x轴方向,宽度方向为y轴方向,则步进电机7驱使无影灯1绕x轴方向转动,第一舵机8驱使无影灯1绕y轴方向转动。第一陀螺仪模块9固定于无影灯1上,用于对无影灯1的姿态进行检测;智能相机6固定于房顶5上,用于对下方病床区域进行拍照。

如图1所示,给出了本发明中步进电机和舵机驱使无影灯运动的结构原理图,所示的无影灯1固定于第一舵机8的输出轴上,步进电机7的输出轴与第一舵机8的壳体固定,可见,第一舵机8驱使无影灯1绕y轴转动,不仅电机驱使无影灯绕x轴转动。所示的第二舵机11固定于第一舵机8的上,超声波模块10固定于第二舵机11的输出轴上,超声波模块10的检测方向始终垂直于房顶5。第二舵机11用于抵消步进电机7的转动所带来的超声波模块10的改变,步进电机7的转动角度与步进电机7的转动角度大小相等但方向相反,以保证超声波模块10始终与房顶5垂直。由于病床4距离房顶5的高度不变,通过测量超声波模块10距离房顶5的距离,即可计算出超声波模块10距离病床4的距离,其与无影灯1距离病床4的距离相等。

如图3所示,给出了本发明中手术刀的原理图,所示的手术刀3中设置有第一单片机模块14及与其相连接的第一无线模块12、第二陀螺仪模块13、陀螺仪按键15和相机按键16,第一单片机模块14具有信号采集、数据运算和控制输出的作用,第二陀螺仪模块13用于检测手术刀3的姿态,包括航向角、俯仰角和横滚角;第一单片机模块14经第一无线模块12与控制箱2相通信。手术人员通过按下陀螺仪按键15,来控制无影灯1的照射光斑对手术刀3的跟踪;通过按下相机按键16,通过智能相机6对病床区域的成像以及对图像中手术刀3的位置识别,来控制无影灯1对手术刀的跟踪。

如图4所示,给出了本发明中控制箱与智能相机、步进电机、舵机、陀螺仪和超声波模块的连接示意图,所示的控制箱2中设置有第二单片机模块18及与其相连接的第二无线模块17,第二单片机模块18具有信号采集、数据运算和控制输出的作用,第二单片机模块18经第二无线模块17实现与手术刀3的无线通信,以获取手术刀3的姿态数据,以及获知陀螺仪按键15和相机按键16的状态。所示的第二单片机模块18经rs485通讯总线与第一陀螺仪模块9和超声波模块10相通信,经rs232通讯总线与智能相机6相通信,且其输出端与步进电机7和第一舵机8均相连接,以实现高度信号、无影灯姿态信号和图像数据的获取,以及对第一舵机8和步进电机7的控制。

所示的第一单片机模块14和第二单片机模块18均可采用32位单片机系统,第一无线模块12和第二无线模块17均可采用型号为nfr2401的芯片,第一陀螺仪模块9和第二陀螺仪模块13均由型号为mpu6050的芯片构成。的能自动跟踪手术刀的智能无影灯控制系统的控制方法,其特征在于:包括陀螺仪控制模式和智能相机控制模式;

陀螺仪控制模式具体通过以下步骤来实现:

a).高度调整,对病床上的病人做手术前,首先手动将无影灯拉至合适的高度;

b).发起照射调整指令,医生在手持手术刀手术过程中,如果感觉无影灯的照射角度需要调整,则按下手术刀上的陀螺仪按键,向控制箱发送按照陀螺仪姿态的无影灯照射角度调整指令,姿态调整指令经第一无线模块发送至控制箱;

c).手术刀姿态求取,根据获取的第二陀螺仪的数据,计算出第二陀螺仪的航向角yaw、俯仰角pitch、横滚角roll;

该步骤中,手术刀姿态求取具体通过以下步骤来实现:

第二陀螺仪模块初始化后,陀螺仪会自动采集一组8位的数据,数据放到一个名字叫buff的数组中,buff的第零位,也就是buff[0]为0xaa,是固定不变的,是一个开始采集的标志;然后buff的第八位,也就是buff[7]为0x55,也是固定不变的,是采集结束的标志;经过数据融合算法,可解算出实际的角度;

则通过公式(15)求取陀螺仪航向角yaw:

则通过公式(16)求取陀螺仪俯仰角pitch:

则通过公式(17)求取陀螺仪横滚角roll:

其中,<<8表示左移8位运算,“|”表示并运算。

d).步进电机调整,pitch的值对应步进电机的转动方向,当pitch>0时,驱使步进电机正转,当pitch<0时,驱使步进电机反转;通过不断获取第二陀螺仪的实时俯仰角pitch,当pitch=0时,步进电机调整结束;

e).舵机调整,根据公式(1)求取第一舵机的自动重装载值arr与横滚角roll的关系:

公式(1)中,等号左侧arr为第一舵机当前的自动重装载值,等号右侧的arr为重装载前的装载值;控制箱将自动重装载值下发至第一舵机,驱使第一舵机转动,完成对无影灯照射方向的调整;

本发明的智能相机控制模式具体通过以下步骤来实现:

1).像素坐标距离与实际距离的转换,首先,将智能相机放到距离病床恰好1m的高度,按下拍照按钮,拍摄含有手术刀的图像,将手术刀在图像中的位置坐标标记为a(x1,y1);然后在水平面内移动手术刀的位置,再次拍摄含有手术刀的图像,此时手术刀在图像中的位置坐标为b(x2,y2);测得手术刀在x方向和y方向上的实际物理位移为x3,y3;

则通过公式(3)求出智能相机距离病床1m时,x轴像素距离转换为实际距离的比例尺kx为:

则通过公式(4)求出智能相机距离病床1m时,y轴像素距离转换为实际距离的比例尺ky为:

则通过公式(5)求出智能相机距离病床hm时,x轴像素距离转换为实际距离的比例尺kxh为:

则通过公式(6)求出智能相机距离病床hm时,y轴像素距离转换为实际距离的比例尺ky为:

2).计算实际距离与舵机装载值的对应关系,将无影灯移动到距离病床1m的高度,通过第一舵机的驱使,使无影灯的照射光斑中心点由病床尾部移动至病床头部过程中,测出第一舵机的自动重装载值变化范围为arr1~arr2,床头的实际长度为x4;

则通过公式(7)求出智能相机距离病床hm时,第一舵机自动重装载值的范围为:

h×arr1~h×arr2(7)

则通过公式(8)求出智能相机距离病床hm时,实际移动距离与自动装载值arr的比例关系:

公式(8)中,x为无影灯光斑在病床长度方向的移动距离,即x轴方向上的实际移动距离;

3).计算实际距离与步进电机脉冲个数的关系,将无影灯移动到距离病床1m的高度,给步进电机一个脉冲,测出一个脉冲下无影灯光斑中心在病床上横向方向的移动距离,即沿y轴方向的实际移动的距离,记为y4;

则通过公式(9)求出智能相机距离病床hm时,步进电机在一个脉冲下移动的实际距离为:

h×y4(9)

则通过公式(10)求出照射光斑沿病床横向方向上的实际移动距离y与步进电机脉冲个数n的关系:

4).照射光斑的调整,首先通过超声波模块计算出当前无影灯距离病床的距离,设为h′;然后医生将手术刀移动至目标位置,第二单片机模块利用智能相机采集一张图片,通过对比当前图片与上一次所采集的图片,计算出手术刀在图片上所移动的像素距离,设x方向和y方向上的像素变化值分别为δx、δy,则通过公式(11)和公式(12)分别计算出无影灯照射光斑中心实际理应移动的距离:

然后,则通过公式(13)和公式(14)分别计算出第一舵机自动重装载值arr′和步进电机脉冲个数n′:

将第一舵机的自动重装载值置为arr′,将n′个脉冲个数输入给步进电机,以驱使无影灯的照射光斑对手术刀跟踪。

该步骤中,无影灯距离病床的距离h′的获取方法为:在步进电机驱使无影灯运动过程中,第二舵机通过执行与步进电机转动角度相同但转动方向相反的动作,保证超声波模块始终与房顶垂直;

已知声速在空气中的传播速度为340m/s,打开定时器同时使能超声波,计算从发出到返回所用的时间为t,通过公式(18)测得超声波距离屋顶的距离:

记无影灯距离病床的高度为h′,超声波测得距离屋顶的距离为s,屋顶距离病床的高度固定不变,记为h2,通过公式(19)可以求得h′:

h′=h2-s(19)。

本发明的一种能自动跟踪手术刀的智能无影灯控制系统,通过手术刀就可以精准控制无影灯的转向,解决了传统无影灯的转向需要医护人员手动拉动所带来的不便。

对于本领域的普通技术人员而言,根据本发明的教导,在不脱离本发明的原理与精神的情况下,对实施方式所进行的改变、修改、替换和变型仍落入本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1