利用预校正的线性发送机的制作方法

文档序号:7533139阅读:278来源:国知局
专利名称:利用预校正的线性发送机的制作方法
技术领域
本发明涉及一种线性发送机,尤其涉及一种利用预校正的线性寻呼发送机。
已知一般的广播发送机的功率放大级当在接近峰值容量操作时工作在非线性状态下。对这一问题的一个简单的解决办法是“补偿”功率放大器,使其只在饱和状态以下的线性区工作。然而,功率放大器的补偿易于减小其功率转换效率。此外,对于给定的发送机输出功率,所用的功率放大器必须大于(因而更贵)可以在峰值容量下操作的功率放大器。
此外,虽然补偿使得功率放大器的输出更接近线性,但是补偿并不能减轻功率放大器的相位失真。对于只根据振幅调制的调制方案(例如AM),相位失真没有什么关系。然而,对于依赖于幅值和相位的其它类型的调制方案,相位失真则有一定的重要性。
为了提供高速的数据速率,一些常规的系统使用例如正交振幅调制(QAM)。如本领域中所知,QAM依赖于能够改变被发送的信号的相位和幅值的发送机。遗憾的是,非线性工作的功率放大级在卓有成效地执行QAM方面一般具有很大的困难。
利用QAM方案的非线性放大级的一个结果是,一般产生不希望的互调产物(IMP)。互调产物表现为处于所需的发送机信道内外的杂散发射。这些发射有两个原因是不能接受的。第一,政务部门例如联邦通信委员会(FCC)要求指定信道外部的杂散发射为低于主中心信道的一个预定值(通常用峰值输出以下的分贝值表示)。第二,因为具有互调产物,在传输信号中的能量损失使得接收单元例如寻呼电话接收机或蜂窝电话接收不到。因而,在发送机的功率放大级中的非线性使得不能有效地利用功率,并且不能满足FCC对于相邻信道发射的要求。这一问题在现有技术中指出了,参见在1981年12月22日公开的Davis等人的US 4291277专利。
一般常规的预校正器方法使用模拟正交调制器和解调器,其中具有单独的同相和正交信号模数(A-D)和数模(D-A)转换器。这种模拟系统需要幅值相等的并具有90°相对相位差的模拟载波信号。然而,除其它缺点之外,这些模拟载波信号随时间和温度而发生漂移或改变。载波信号之间的的幅值或相位差的任何不平衡可以在输出信号的频谱中引起不希望的边带和载波再生,以及其它高阶产物。这些误差一般使预校正方法的操作变差。类似地,由正交调制或解调处理或任何交错级引入的同相和正交基带中的相对延迟或幅值不平衡也使预校正方法的操作变差。因而,基带信号一般在延迟和定标方面存在一定程度的失配,因而使系统性能变差。
此外,一些常规的预校正方法要求发送机发送专用数据序列,以便正确地训练训练器。在这些系统中,专用数据序列被周期地发送,以便更新训练器和预校正器。因而,当发送这些专用数据序列时,便不能发送正常数据或话音传输,从而减少了发送机的通过量。此外,这些数据序列可以使发送机违反FCC的规定。
此外,一般具有在加电时预校正的常规的发送机可以发送带外杂散信号,同时开始训练系统。一般地说,这些发送机在加电时发送可以产生这些杂散信号的专用训练序列。因而,这些发送机在加电之后不立即发送正常数据或话音信号,而必须等待完成“初始化”。
此外,一般常规的寻呼发送机一旦被构成之后,便不容易被改造。寻呼格式和预校正方法经常被改进和更新,因而,要求这些发送机容易利用这些新的格式和方法被重构。一般常规的寻呼发送机不能以商业上可接受的价格进行这种重构。
本发明旨在提供一种可重构的发送机,该发送机可以利用各种调制方案线性地操作,其中包括改变传输信号的幅值和相位的调制方案。本发明还旨在克服模拟调制的缺点和现有技术的其它缺点。
本发明旨在提供一种使用预校正和自适应监测从而连续地更新发送机的预校正的线性发送机。这种发送机包括调制器,预校正器,数字正交调制器,数模转换器,模拟上变频器,和功率放大器。此外,该发送机具有反馈环,其中包括耦合器,模拟下变频器,模数转换器,数字正交解调器和训练器。
在操作时,调制器接收要被发送的数字数据,并把其转换成同相和正交分量信号。然后,把同相和正交分量信号提供给预校正器,其用不同的复数增益(a+jb)乘所述分量信号,使得当它们按顺序通过功率放大器时,这些信号将尽量接近所需的调制信号而没有失真。来自预校正器的信号被数字正交调制器接收,其输出单一的实数数字信号。该实数数字信号被数模转换器转换成实数模拟信号。实数模拟信号被模拟上变频器上变频为所需的传输频率,并然后把上变频的信号提供给功率放大器进行发送。
在反馈环中,耦合器把功率放大器的输出信号的一部分(即接收信号)提供给模拟下变频器,其把接收的信号的频率降低到一个容易处理的范围。然后,被下变频的信号被提供给模数转换器转换成数字信号。来自模数转换器的数字信号被数字正交解调器接收,其向训练器输出解调信号的同相和正交分量信号。训练器也接收来自调制器的同相和正交分量信号。训练器利用由调制器提供的同相和正交分量信号分析解调信号的同相和正交分量信号,并计算和更新预校正器,改变复数增益,使得发送机输出信号(被数字正交解调器解调的信号)被基本保持和要被发送的(被数字调制器调制的)数字数据相等。
按照本发明的另一个实施例,调制器的控制器接口,数字正交调制器和数字正交解调器包括可重新编程的装置,其可以通过控制器被重构。因而,这些元件可被选择地重构,从而修改调制格式和其它功能。调制器,预校正器,训练器,和数字下变频器以软件控制的数字信号处理(DSP)装置实现,该装置可被重构,从而修改其功能。在另一种改进中,控制器被连接,从而接收从远方传递给控制器的配置信息,使得发送机可以从远方位置被重构。
本发明的许多优点和上述特点从以下结合附图进行的说明中可更清楚地看出并更容易理解,其中

图1是按照本发明的发送机的一个实施例的简化方块图;图2是按照本发明的发送机的第二实施例的简化方块图;图3是按照本发明的调制器的一个实施例的方块图;图4是按照本发明的DSP模块的一个实施例的方块图;图5是按照本发明的数字内插器和数字正交调制器的一个实施例的方块图6是按照本发明的控制器的一个实施例的方块图;图7是一个流程图,分别说明按照本发明的一个实施例的控制器自动调整模拟下变频器和模拟上变频器的增益和衰减的操作;以及图8是一个流程图,用于说明按照本发明的一个实施例的预校正器自动保持通过发送机的信号的最大动态范围的操作。
图1是按照本发明的线性发送器101的一个实施例的原理图。在正向信号处理通路中,发送机101包括调制器103,预校正器107,数字正交调制器111,数模转换器112,模拟上变频器113,功率放大器115,和发送天线117。发送机的反馈环包括定向耦合器119(在功率放大器115和天线117之间),模拟下变频器123,模数转换器124,数字正交解调器125,和训练器131。训练器被连接,用于接收数字调制器103的输出信号并和预校正器107相互作用。在其它实施例中,可以和功率放大器115并联附加的功率放大器,以便增加发送机101的增益。
要被发送机101广播的数字数据被提供给调制器103,如线133所示。这些数据可以由任何源提供。在最佳实施例中,线性发送机101用作寻呼发送机,虽然它可用于任何射频(RF)的应用中。在最佳实施例中,输入给调制器103的数据由发送机控制器135提供(虚线所示),发送机控制器通过操作经来自寻呼终端的链路信道接收数据并对数据进行格式化以便传输。发送机控制器的结构细节以及整个的寻呼系统可以在Fawcett等人的US 5481258、Witsaman等人的US 5365569、以及Witsaman等人的5416808专利中找到,这些专利都转让给本发明的受让人,在此列为参考。
在最佳实施例中,数据是一系列数字符号,每个符号代表预定的位数。每个符号的位数取决于由发送机101发送的具体的调制方案。在一般常规寻呼数据系统中的调制格式包括例如2或4音频移频键控(FSK)调制和QAM。QAM格式包括例如应当具有3位符号的8电平QAM调制方案。类似地,16电平QAM方案应当具有每符号4位。可以理解,对于3位的符号,具有8个可能的符号。同样,对于4位的符号,具有16个可能的符号。在本讨论的大部分中,使用的例子将是4位的符号,其相应于16电平QAM方案。
调制器103通过操作使每个特定的符号和预定的同相和正交输出信号相关。这样,对于每个唯一的符号,通过调制器输出作为基带信号的同相和正交分量信号的不同的组合。在最佳实施例中,调制器103包括德克萨斯仪器公司的TMS320C44微处理机,它被编程用于执行关于符号的同相和正交调制(下面结合图3和图4进行说明)。
此外,在处理每个符号时,调制器103不“瞬时地”从一个符号转换到另一个符号。这种在同相和正交输出信号中的瞬时变化将在系统中引起高频谐波。而借助于数字滤波,实现在符号(因此同相和正交输出信号)之间的平滑的转换。可应用于FSK系统的这种技术的一个实施例在和转让给本发明的受让人的Marchetto等人的美国专利5418818中更详细地披露了,在此列为参考。
接着,由调制器103输出的同相和正交分量信号被输入到预校正器107。预校正器107通过操作修正从调制器103输出的同相和正交分量信号,从而补偿在功率放大器115中发生的任何失真。由预校正器107提供的补偿被训练器131使用任何合适的预校正方法进行控制。训练器131在下面进行详细说明。
然后,预校正器107的输出被提供给数字正交调制器111。数字正交调制器111把同相和正交分量信号转换成一个实数字信号。来自数字正交调制器111的实数字信号由D-A转换器112接收,把实数字信号转换为模拟信号,从而产生中频输出信号。例如,在一个代表性的实施例中,中频频率大约为5.6MHz。因为使用一个D-A转换器,所以由在那些对于同相和正交信号使用单独的D-A转换器的常规系统中产生的相对延迟和幅值差引起的失真在发送机101中被基本上消除了。
来自D-A转换器112的中频输出信号被提供给模拟上变频器113,上变频器把中频信号转换为具有寻呼系统的频带内的频率的广播频率信号。例如,在代表性的实施例中,广播频率大约为940MHz。模拟上变频器113可以是任何合适的常规的上变频器,例如接收本地振荡器信号的混频器。
功率放大器115接收来自模拟上变频器113的广播频率信号,对其进行放大,把放大的信号提供给发送天线发送。功率放大器115可以是任何合适的功率放大器,例如转让给本申请的受让人的共同申请的待审专利[申请案卷号为GLENPW-1-8884]中披露的功率放大器,在此列为参考。在代表性的实施例中,使用了4个这种功率放大器并联,不过在其它的结构中可以使用多于或少于4个的功率放大器。
为了有助于信号的精确预校正,反馈环监视由功率放大器115放大的信号。在最佳实施例中,耦合器119是其位置相当接近天线117的常规的定向耦合器,来自耦合器119的信号被提供给模拟下变频器123。
模拟下变频器123以和模拟上变频器113相反的方式工作。具体地说,模拟下变频器123把从功率放大器115输出的接收信号的频率降低为中频频率。在最佳实施例中,该中频频率基本上和在正向信号处理通路中使用的中频频率相同。在模拟下变频器123内,具有一系列的滤波,放大以及和本地振荡器信号混频的处理,用于产生中频信号。
然后,中频信号被从模拟中频信号转换为数字信号。这通过使用常规的A-D转换器124实现,例如模拟器件AD9206,它对中频信号采样,并输出代表采样的中频信号的数字信号。数字正交调制器125进行数字信号的正交调制,并输出同相分量信号和正交分量信号。
训练器131接收数字正交解调器125的输出信号。训练器131还接收来自调制器103的输出信号。一些预校正算法也要求训练器131接收来自预校正器107的输出信号。因而,实际上,训练器131接收要被发送的精确的调制信号(调制器103的输出信号)和被发送的信号(数字正交解调器125的输出信号),从而确保预校正器107正确地补偿由功率放大器115引起的失真。训练器131和预校正器107可以执行任何合适的预校正方法,例如在Cavers的美国专利5049832中所述的方法。一般地说,训练器向预校正器提供一个或几个“训练器”信号,该信号修正预校正器对于输入到预校正器的同相和正交信号的响应。
此外,训练器监视实际数据或正在被发送的话音信号以便执行预校正方法,而不用一些常规系统要求的专用序列(即不是正常数据或话音信号)。这样,不需要如同在常规系统中那样中断正常信号或话音的传输而发送专用序列以便更新预校正器。
图2是按照本发明的另一个实施例的发送机200的方块图。除去发送机200包括连接在调制器103和预校正器107之间的内插器205、连接在预校正器107和数字正交调制器111之间的数字内插器209、连接在训练器131和数字正交解调器125之间的数字抽取器229、和耦合器119相连的组合的检测器和低通滤波器221、以及和检测器与低通滤波器221相连的控制器238之外,发送机200基本上和发送机101(图1)相同。控制器238的输出信号按如下所述被提供给元件103-221和229-237。此外,发送机200包括和模拟上变频器113与模拟下变频器123相连的合成器235,以及和数字正交调制器111相连的锁相环(PLL)。恒温的(ovenized)参考振荡器233被连接在合成器235和PLL237之间。
发送机200基本上以和发送机101(图1)相同的方式操作。在本实施例中,调制器103的输出信号是以每秒80000个采样(80ksps)被采样的同相和正交分量信号。调制器103的最佳实施例在下面结合图3进行说明。
由调制器103输出的同相和正交分量信号被内插器205接收。内插器205借助于数字内插通过操作用以增加接收的信号的实际采样速率。在最佳实施例中,内插器205以大约800ksps的速率输出同相和正交分量信号,并由DSP模块实现(下面结合图4进行说明)。
接着,从内插器205输出的信号被输入给预校正器。如前所述,预校正器107预校正接收的同相和正交分量信号,补偿功率放大器115的失真。来自预校正器107的被预校正过的800ksps分量信号被数字内插器209接收。数字内插器209以类似于内插器205的方式工作。具体地说,数字内插器209把采样速率转换为较高的速率。特别是,同相和正交分量信号两者都首先在第一步被进行2倍的上变频。这样,在这一第一变换之后,这一分量信号的实际的采样速率大约为1.6Msps。该信号然后再被进行2倍的上变频,得到大约为3.2Msps的实际速率。接着,这两个3.2Msps的信号被通过另一个内插器,对其进行7倍的上变频而成为大约22.4Msps。这样,数字内插器209的输出信号是以22.4Msps采样的同相和正交分量信号。内插级包括基带信号的数字滤波。数字内插器209的实现在下面结合图5说明。
数字正交调制器111接收数字内插器209的输出信号,并按照前述使用数字正交调制方案对其进行调制。在本实施例中,数字正交调制器111使用和常规的结合从由PLL237提供的22.4MHz信号得到的5.6MHz载波信号的双平衡调制方案等效的数字方法。然后,实数字调制的输出信号由D-A转换器112转换为模拟信号。结果,D-A转换器112向模拟上变频器输出5.6Mhz的模拟中频信号。
模拟上变频器113接收由合成器235提供的两个本地振荡信号。在最佳实施例中,其中广播频率是940MHz,由合成器235提供的两个频率是36.9MHz的本地振荡信号和897.5MHz的本地振荡信号。模拟上变频器113接收这些本地振荡信号,按照常规的两级混频方法和5.6MHz的中频信号混合。在上变频器的第一级,中频信号和36.9MHz的本地振荡信号混合,得到的42.5MHz信号的上边带被放大并在和897.5MHz的本地振荡信号混频之前被进行带通滤波。得到的940MHz的上边带被进行带通滤波并被提供给功率放大器115。可以理解,为了改变发送机101的发送频率,可以改变合成器235的本地振荡频率。然后,940MHz的信号被功率放大器115放大并通过天线117广播,如前对于发送机101所述(图1)。
在最佳实施例中,合成器235是Phillips SA 7025合成器芯片。如上所述,合成器235控制可变的本地振荡信号,以便精确地确定信号分传输频率。合成器235使用参考振荡器233,其在最佳实施例中是10MHz的稳定的参考频率振荡器。在最佳实施例中,这一稳定的参考频率从寻呼基站的发送机控制器获得。
模拟上变频器113还包括常规的可由控制器238控制的可变的衰减器。其可以是任何合适的可变衰减器,例如PIN二极管衰减器。同样,模拟下变频器123还包括常规的可变增益放大器,例如模拟器件中的AD603型放大器。该放大器的增益由控制器238控制。下面结合图6对控制器238进一步进行说明。结果,控制器238可以维持基本上恒定的功率放大器输出功率,如下面结合图7所示的流程图所述。
在平均功率监视通路中,组合的检测器和低通滤波器221测量平均信号强度,并向控制器238提供代表平均信号强度的信号。检测器221可以是任何合适的平均功率检测器,例如常规的校准过的二极管检测器。控制器238还接收来自调制器103的输入信号和来自数字抽取器229的输入信号。通过分析从这些源接收的信号,控制器238可以确定是否有任何系统元件误动作。例如,如果检测器221的输出信号表明平均信号强度下降,并且调制器103的输出信号保持相对地恒定,那么则表示在上变频链(103-119)中发生错误。检测器221和控制器238也可用于监视并校准功率放大器115的增益。
再参看反馈通路,如上所述,来自耦合器119的940MHz的接收信号被提供给模拟下变频器123,被转换为中频5.6MHz,并被数字正交解调器125接收。数字正交解调器125按照前述发送机101(图1)的情况下工作,产生22.4Msps的同相和正交分量信号。在最佳实施例中,数字正交解调器使用被设计用于进行数字正交解调的Xilinx4003现场可编程门阵列(FPGA)实现。
数字抽取器229接收数字正交解调器125的输出信号,并按照28的系数进行抽取,从而产生800ksps的复基带信号。在最佳实施例中,下变频通过两个被编程按照28抽取并被基带信号滤波的Harris HSP43220抽取滤波器芯片完成。
800ksps的复基带信号被训练器131接收。如前所述,训练器分析接收信号和来自调制器103的信号,控制预校正器107正确地补偿由功率放大器115引起的失真。预校正器107的输出信号按照所使用的具体的预校正方案的需要可以被训练器131接收。
本发明的另一个重要特点在于被图2的每个元件进行的处理由同步时钟信号控制。通过在元件123-131和205-209的解调方案中利用和在元件103-113以及229中的解调方案相同的时钟,可以监视关于每个数字采样的发送的信号质量。调制和解调被相互锁相,只需调整包括功率放大器115的模拟和数字级的延迟。
图3是按照本发明的调制器103的一个实施例的方块图。调制器103包括利用可再编程的逻辑器件实现的可配置的接口301,用于接收来自基站控制器135(图2)的数字信号。在最佳实施例中,可再编程的逻辑器件是Xilinx XC4003现场可编程的门阵列(FPGA),也可以使用其它合适的可再编程的逻辑器件。结果,可配置的接口301可被配置利用各种发送机控制器操作。可配置的接口301和DSP模块305相连(下面结合图4说明),模块305接收来自接口301的实数字信号,并把其转换为滤波的复数字信号。DSP模块305被编程用于由可配置的接口301接收的数字信号产生同相和正交分量信号。可以使用在硬件实现方面基本上和DSP模块305相同的附加的DSP模块,以便实现更复杂的调制算法或增加调制器的速度。
此外,数字调制器103可被编程用于延迟来自发送机控制器135(图2)的输入信号,以便被用于除去发送机200(图2)之外还使用一个或几个发送机的发送机系统中,用于发送数据信号。这编程的延迟被如此调整,使得发送机200以和发送相同数据信号的其它发送机基本上同时发送数据信号。这种延迟方法在前述的Marchetto的专利中被详细说明了。
此外,数字调制器103可被编程用于使当调制格式改变时而产生的数字调制器本身内的处理延迟均等。例如,对于FSK调制和AM单边带(SSB)话音调制在数字调制器内的处理延迟是不同的。因而,例如当第一组或第一包数据信号使用相对慢的调制处理格式调制,然后使用相对快的调制处理格式调制第二组数据信号时,数字调制器103可能经历“快的”数据超越“慢的”数据的故障。这种延迟方法也在Marchetto的专利中描述了。
图4是按照本发明的DSP模块400的一个实施例的方块图,其在硬件实现方面基本上和DSP模块305(图3)相同。DSP模块400包括微处理机401。在最佳实施例中,微处理机401包括从Texas Instruments得到的DSP微处理机TMS320C44,不过也可使用任何其它合适的微处理机。微处理机401和静态随机存取存储器(SRAM)403以及非易失存储器405相连。在本实施例中,非易失存储器405使用可编程的快速电擦写只读存储器(EPROM)实现。结果,DSP模块400可被配置或编程用于各种功能,例如,用于构成调制器、内插器、训练器或预校正器的部分。此外,DSP模块400可被再编程,从而通过控制器238改变其功能,控制器238可被编程用于代替在非易失存储器405中存储的配置程序。
此外,当训练器131和预校正器107利用DSP模块实现时,DSP模块可被编程用于保持在通过发送机200(图2)中的D-A和A-D转换器的数字信号中的最大动态范围。使动态范围最大有助于使通过发送机的信号的信噪比最大。不过,如果超过该动态范围,发送机性能则严重变差。在D-A转换器中,超过动态范围将引起所谓的输出模拟信号的“环绕”。因而,例如当D-A转换器接收超过动态范围的最大幅值的信号时,由D-A转换器检测的数字信号将“环绕”而成为最大值附近的值,从而使模拟输出信号具有非常小的幅值。类似地,超过动态范围的最小值信号将产生接近最大幅值的模拟输出信号。在A-D转换器中,超过动态范围将引起高幅值信号的限幅。预校正器可以被编程用于保持最大动态范围,如下面结合图8更详细说明的。
此外,DSP模块400可通过和控制器238(图2)进行远程通信传递重构信息而被远程重构。例如,控制器238包括可和外部通信装置连接的接口,例如和电话线连接的调制解调器。因而,控制器238可以接收通过电话线发送的重构信息,并向要被存储在非易失存储器405中的DSP模块发送该信息。当然,在其它的实施例中,控制器238可以通过其它远程通信方法接收远方的配置信息。因而,在最佳实施例中,使用基本上和DSP模块400相同的DSP模块实现训练器131和处理器107(图2),使得它们可以利用被更新的预校正算法被重新配置。此外,训练器131的本实施例可被这样编程,使得训练器131可进行从数字抽取器229接收的800ksps复基带信号的快速富氏变换,借以产生基带信号的频谱。
此外,实现训练器的DSP模块也可以被编程用于比较所述频谱和最大允许的带外信号值的掩模或包络。如果带外信号值超过最大允许值,则DSP模块可以使发送机处于禁止状态,并直接或通过向控制器238(图2)发送信号而使发送机复位,从而强迫发送机关闭并复位。在FSK的实施例中,训练器可被编程用于监视发送的信号的包络的幅值。FSK调制具有恒定的包络,并且因而每个采样信号的同相和正交幅值的平方和应当等于同一个值。训练器可被编程用于当包络不为恒定时向控制器238表示故障。
此外,当利用DSP模块400实现预校正器时,在省电状态时,在非易失存储器405中存储校正值。结果,预校正器可以在加电之后立即使用这些存储的值预校正要被发送的数据。这样,预校正器不需要如许多常规系统中那样要求利用专用训练序列进行专门的初始化处理。
此外,在调制器103(图2)中的DSP模块可被编程用于在启动和省电状态下逐渐增大同相和正交输出信号,通过使用含有放大倍数的平滑斜坡函数的查阅表(LUT)使功率放大器的输入信号逐渐增大,借以减少电源电压中的瞬变和功率放大器的杂散输出信号。在最佳实施例中,使用高斯定标。当一个以上的信号被同时发送时,可以把平滑斜坡分别施加于各个副载波。
图5是按照本发明的数字内插器209和数字正交调制器111的一个实施例的方块图。数字上变频器在FIF0501和505中接收来自预校正器107(图2)的复信号,然后把信号送到两对半频带滤波器503和507。在最佳实施例中,使用两对半频带内插滤波器,用于完成从800ksps到3.2Msps的上变频部分,这两对滤波器是Harris HSP43216半频带滤波器,其馈给一个7倍的内插器。该7倍的内插器由可再编程的逻辑器件509实现,在最佳实施例中,器件509是用于实现级联的积分器/梳状(CIC)滤波器的Xilinx 4010 FPGA。此外,可再编程的逻辑器件509还实现数字正交调制器111。D-A转换器112接收数字正交调制器111的输出信号,并输出相应于由数字正交调制器111输出的实数字信号的实模拟中频信号。D-A转换器可以是任何合适的D-A转换器,例如从Burr-Brown得到的DAC600型的D-A转换器。
此外,FPGA可以被编程用于监视在由预校正器和内插器提供的同相和正交信号中交错的校验位。在本实施例中,实现预校正器的DSP模块被编程用于使校验位和由预校正器输出的同相和正交数据交错。使用校验位检测在发送机中的数据流是否变得同步不正确(例如大的电磁场,电源波动,静态放电等可能引起同相和正交信号之间的不同步)。如果同相和正交信号不同步,则发送机的输出信号将严重失真。数字正交调制器的FPGA比较相应的同相和正交信号之间的校验位,如果它们不一致,则数字正交调制器使发送机或者直接地成为禁止状态并复位,或者通过向控制器238(图2)发送信号,然后控制器使发送机禁止并复位。
此外,当预校正器输出信号被不正确地同步时,FIFO501和505接近半充满的。因而在FIFO501和505中的任何溢出或下溢状态都表示严重的时钟故障。因而,如果一个或两个FIFO出现溢出或下溢状态,数字正交调制器则再次表示故障状态,从而使发送机禁止并复位。
图6是按照本发明的控制器238的一个实施例的方块图。控制器238包括和SRAM602以及非易失存储器603相连的微处理器601。在最佳实施例中,微处理器601是摩托罗拉MC68HC16微控制器,虽然任何合适的微控制器也可使用。微控制器601和总线605相连,总线605还连接发送机200的可重构的元件(图2),例如数字调制器103,内插器205,预处理器107和数字抽取器229。控制器238通过总线605向可重构元件提供重构信息。
微控制器601还包括维护端口607。该维护端口可以被设置为EIA-232或EIA-422接口。维护端口607可被用于接收来自外部源的信息,如MC68HC16的数据单所述,在此列为参考。这样,通过连接远程通信装置,例如调制解调器,和维护端口607,控制器238可以接收从远方向控制器传递的重构信息,该信息可用于重构发送机200(图2)的各个可重构的元件。此外,微处理器601可以通过总线605接收来自训练器131的FFT信息(如上结合图4所述),并把该FFT信息提供给维护端口607,用于发送的频谱的远方监视。
在本实施例中,微控制器601还包括端口609,用于连接VT100终端进行监视,测试和故障检修。此外,微控制器601包括输入和输出端口611和613,分别用于接收平均功率信号和调整模拟下变频器与模拟上变频器的增益与衰减,如上面结合图2所述。可编程的逻辑器件(PLD)615例如ATV2500B PLD也和微处理器601相连并向数字正交调制器和数字正交解调器中的FPGA提供控制信号。
此外,微处理器601可被编程用于在加电和复位时向数字正交调制器111和数字正交解调器125(图2)提供控制信号,从而强迫在数字正交调制器111和数字正交解调器125之间同步。
图7是说明在自动调整模拟上变频器113和模拟下变频器123(图2)的衰减和增益时控制器238的操作流程图。控制器238通过检查校准间隔定时器是否时间到定期地进行这一校准,如步701所示。在最佳实施例中,该间隔大约为10分钟。控制器重复检查校准定时器,直到定时间隔到,然后执行步703。
在步703,控制器238检查发送机200(图2)是否已开始适用于校准处理的发送。合适的发送是具有接近恒功率值的那些发送,例如FSK调制的信号。QAM信号可能也是合适的。虽然话音发送不是合适的,但正常的数字数据发送一般是合适的。如果合适的发送还没有开始,则控制器238重复步703直到一个合适的发送开始为止。
然后控制器238进行步705,在其中取100μs发送功率的平均值。在下一步707,控制器238比较测量的平均功率和存储的参考值。在最佳实施例中,存储的参考值是在制造时发送的测试单音的平均功率。如果测量的平均功率大于参考值,则在步709控制器238使模拟上变频器113增加其衰减而模拟下变频器123减少其增益,如上结合图2所述。相反,如果测量的平均功率小于参考值,则在步711控制器238使模拟上变频器113减少其衰减,而使模拟下变频器123增加其增益。不过,如果测量的平均功率接近等于参考值(即在允差范围内),则控制区8不修正模拟上变频器或下变频器的衰减或增益。然后控制区238返回步701等待下一个校准间隔经过。
图8是说明由DSP模块(图4)实现的预校正器107(图2)在自动保持通过发送机200(图2)的信号的最大动态范围时的操作的流程图。预校正器107被连接用于当溢出状态发生时(即超过动态范围时)接收来自数字正交调制器111和数字正交解调器125的中断信号。中断使预校正器进行步801,表示在A-D转换器或D-A转换器(图2)中检测到溢出。预校正器107然后执行步803,按比例缩小预校正器的输出信号,从而阻止后面的信号溢出。然后,在下一步805,预校正器107比较其输出信号的平均幅值和D-A或A-D转换器的允许范围。在下一步807判断平均幅值是否高于允许的范围。如果是,预校正器则在步809按比例缩小其输出信号。但是如果不是,则在步811预校正器按比例增大其输出信号。然后,预校正器107返回步805,重复上述循环,直到下一个中断。
上述的发送机的实施例用于说明本发明的原理,并不是打算把本发明限制于所述的实施例。例如,虽然结合寻呼发送机说明了本发明的最佳实施例,但本发明的线性发送机可以用于许多广播环境中。此外,本领域的技术人员根据本发明不用通过实验便可以根据不同的调制格式更新上述的实施例。例如也可以支持由AM SSB调制的话音信号,以及这种被调制信号的多个副载波。因而,虽然已经说明了本发明的最佳实施例,但是应该理解,根据本说明披露的内容,不脱离本发明的构思和范围可以作出各种改变。
权利要求
1一种用于以广播频率基本上线性地发送信号的发送机,所述发送机包括被联接用于接收数字数据的数字调制器,其中所述调制器能够根据所述数字数据提供同相信号和正交信号;和所述数字调制器相联的预校正器,其中所述预校正器能够根据由所述数字调制器提供的所述的同相信号提供预校正的同相信号并能够根据由所述数字调制器提供的所述正交信号提供预校正的正交信号;和所述预校正器相联的数字正交调制器,其中所述数字正交调制器能够根据由所述预校正器提供的所述预校正的同相信号和所述预校正的正交信号的组合提供数字预校正的信号;和所述数字正交调制器联接的数模转换器,所述数模转换器能够根据所述数字正交调制器提供的所述数字预校正信号提供模拟预校正信号;和所述数模转换器相联的功率放大器,所述功率放大器能够根据由所述数模转换器提供的模拟预校正信号提供放大的模拟信号;和所述功率放大器相联的天线,所述天线能够广播由所述功率放大器提供的所述放大的模拟信号;和所述功率放大器相联的耦合器,所述耦合器能够根据由所述功率放大器提供的所述放大的模拟信号提供接收信号;和所述耦合器相联的模数转换器,所述模数转换器能够根据由所述耦合器提供的所述接收信号提供数字接收信号;和所述模数转换器相联的数字正交解调器,所述数字正交解调器能够根据由所述模数转换器提供的所述数字接收信号提供反馈同相和反馈正交信号;和所述数字正交解调器、所述预校正器以及所述数字调制器相联的训练器,所述训练器能够向所述预校正器提供训练器信号,所述训练器信号取决于所述反馈同相信号、所述反馈正交信号、所述同相信号和所述正交信号,其中由所述预校正器提供的随后的预校正同相信号和随后的预校正正交信号取决于所述训练器信号和由所述数字调制器提供的随后的同相和正交信号。
2如权利要求1所述的发送机,还包括联接在所述数模转换器和所述功率放大器之间的模拟上变频器,所述模拟上变频器能够根据由所述数模转换器提供的所述模拟预校正信号向所述功率放大器提供广播频率信号;以及联接在所述耦合器和所述模数转换器之间的模拟下变频器,所述模拟下变频器能够根据由所述耦合器提供的所述接收信号向所述模数转换器提供模拟中频信号。
3如权利要求2所述的发送机,还包括联接在所述数字调制器和所述预校正器之间的内插器,所述内插器能够根据由所述数字调制器提供的所述同相信号提供内插的同相信号并根据由所述数字调制器提供的所述正交信号提供内插的正交信号。
4如权利要求3所述的发送机,还包括联接在所述预校正器和所述数字正交调制器之间的数字内插器,所述数字内插器能够根据由所述预校正器提供的所述预校正同相信号提供上变频同相信号,并根据由所述预校正器提供的所述预校正正交信号提供上变频正交信号;以及联接在所述训练器和所述数字正交解调器之间的数字抽取器,所述数字抽取器能够根据由所述数字正交解调器提供的所述反馈同相信号提供下变频同相信号,并根据由所述数字正交解调器提供的所述反馈正交信号提供下变频正交信号。
5如权利要求4所述的发送机,还包括和所述数字调制器、所述预校正器、所述内插器、所述训练器和所述数字抽取器相联的控制器,其中所述数字调制器、所述预校正器、所述内插器、所述训练器和所述数字抽取器是可以重构的,所述控制器能够对所述数字调制器、所述预校正器、所述内插器、所述训练器和所述数字抽取器选择地提供重构信号,借以使所述数字调制器、所述预校正器、所述内插器、所述训练器和所述数字抽取器选择地被重构。
6如权利要求5所述的发送机,其中所述控制器能够调整由所述模拟下变频器提供的所述模拟中频信号的增益,并能够调整由所述模拟上变频器提供的所述广播频率信号的衰减。
7如权利要求5所述的发送机,其中所述控制器适用于接收从远方传递给所述线性发送机的重构信息。
8如权利要求7所述的发送机,其中所述数字调制器、所述数字正交调制器、和所述数字正交解调器的每个包括可编程的逻辑器件。
9如权利要求8所述的发送机,其中所述数字调制器、所述数字正交调制器、和所述数字正交解调器的每个包括现场可编程的门阵列。
10如权利要求9所述的发送机,其中所述发送机被用于寻呼系统。
11如权利要求10所述的发送机,其中所述数字调制器在所述发送机加电时能够平滑地按比例放大所述同相信号和所述正交信号,并在所述发送机省电时能够平滑地按比例减小所述同相信号和所述正交信号。
12如权利要求10所述的发送机,其中所述数字调制器当所述发送机正在同时发送多个副载波信号时,能够平滑地使各个副载波信号逐渐增加,并且所述发送机被加电,当所述发送机省电时能够平滑地使各个副载波信号逐渐减少。
13如权利要求1所述的发送机,还包括和所述数字调制器、所述预校正器、和所述训练器相联的控制器,其中所述数字调制器、所述预校正器、和所述训练器是可重构的,所述控制器能够向所述数字调制器、所述预校正器和所述训练器选择地提供重构信号,借以使所述数字调制器、所述预校正器和所述训练器选择地被重构。
14如权利要求13所述的发送机,其中所述控制器适用于接收从远方向所述线性发送机传递的重构信息。
15如权利要求3所述的发送机,还包括和所述数字调制器、所述内插器、所述预校正器和所述训练器相联的控制器,其中所述数字调制器、所述内插器、所述预校正器和所述训练器是可以重构的,所述控制器能够对所述数字调制器、所述内插器、所述预校正器和所述训练器选择地提供重构信号,借以使所述数字调制器、所述内插器、所述预校正器和所述训练器选择地被重构。
16如权利要求15所述的发送机,其中所述控制器能够调整由所述模拟下变频器提供的所述模拟中频信号的增益,并能够调整由所述模拟上变频器提供的所述广播频率信号的衰减。
17如权利要求1所述的发送机,其中所述训练器包括微处理机。
18如权利要求17所述的发送机,其中所述微处理机被编程用于进行所述反馈同相信号和所述反馈正交信号的快速富氏变换。
19如权利要求17所述的发送机,其中所述预校正器包括非易失存储器,所述预校正器在省电期间在所述非易失存储器中存储预校正值,并在跟随所述省电的加电期间使用所述存储的预校正值提供预校正同相和预校正正交信号。
20如权利要求9所述的发送机,其中所述预校正器包括微处理机,其可编程用于对所述预校正同相信号和预校正正交信号附加匹配校验位。
21如权利要求20所述的发送机,其中所述数字正交调制器的现场可编程的门阵列被设置用于监视在所述上变频同相信号和所述上变频正交信号中的校验位。
22如权利要求1所述的发送机,其中所述训练器信号不依赖于专用于训练训练器的数字数据。
23如权利要求1所述的发送机,其中所述数字数据不包括专用于训练训练器的数据。
24一种用于以广播频率基本上线性地发送信号的发送机,所述发送机包括被联接用于接收数字数据并把所述数字数据变换为同相信号和正交信号的调制器;用于增加所述同相信号和所述正交信号的采样速率的内插器;用于分别修正所述同相和所述正交信号而成为预校正的同相信号和预校正的正交信号的预校正器;数字正交调制器,用于使所述预校正的同相信号和预校正的正交信号组合而成为数字预校正信号;数模转换器,用于把数字预校正信号转换为模拟预校正信号;模拟上变频器,用于增加所述模拟预校正信号的频率到所述广播频率;功率放大器,用于放大来自所述模拟上变频器的模拟预校正信号;天线,用于广播来自所述功率放大器的所述模拟预校正信号;耦合器,用于接收由所述功率放大器放大的所述模拟预校正信号的部分;模拟下变频器,用于减少由所述耦合器接收的模拟预校正信号的频率;模数转换器,用于把来自模拟下变频器的模拟预校正信号转换为数字预校正信号;数字正交调制器,用于把来自所述模数转换器的数字预校正信号转换为反馈同相信号和反馈正交信号;训练器,用于比较所述反馈同相信号和所述反馈正交信号与所述同相信号和所述正交信号,其中所述训练器修正所述预校正器,使得所述功率放大器的输出和所述同相信号和所述正交信号一致。
25如权利要求24所述的发送机,其中所述发送机被用于寻呼系统中。
26如权利要求25所述的发送机,还包括数字内插器,用于根据由所述预校正器提供的预校正同相信号提供内插的同相信号,并根据由所述预校正器提供的所述预校正正交信号提供内插的正交信号;以及数字抽取器,用于根据由所述数字正交解调器提供的所述反馈同相信号提供抽取的同相信号,并根据由所述数字正交解调器提供的所述反馈正交信号提供抽取的正交信号。
27如权利要求26所述的发送机,还包括和所述数字调制器、所述预校正器、所述内插器、所述训练器和所述数字抽取器相联的控制器,其中所述数字调制器、所述预校正器、所述内插器、所述训练器和所述数字抽取器是可以重构的,所述控制器能够对所述数字调制器、所述预校正器、所述内插器、所述训练器和所述数字抽取器选择地提供重构信号,借以使所述数字调制器、所述预校正器、所述内插器、所述训练器和所述数字抽取器选择地被重构。
28如权利要求27所述的发送机,其中所述控制器和外部通信装置相联,从而使所述控制器能够接收从远方传递给所述线性发送机的重构信息。
29如权利要求28所述的发送机,其中所述数字调制器、所述数字正交调制器、和所述数字正交解调器的每个包括可编程的逻辑器件。
30如权利要求29所述的发送机,其中所述数字调制器、所述数字正交调制器、和所述数字正交解调器的每个包括现场可编程的门阵列。
31如权利要求30所述的发送机,还包括一个或几个和所述功率放大器并联的附加的功率放大器,所述一个或几个附加的功率放大器基本上和所述功率放大器相同。
32如权利要求27所述的发送机,其中所述控制器能够调整由所述模拟下变频器提供的所述模拟预校正信号的增益,并能够调整由所述模拟上变频器提供的所述模拟预校正信号的衰减。
33一种用于以广播频率基本上线性地发送信号的方法,所述方法包括接收要被广播的数字数据;把所述数字数据变换为同相信号和正交信号;把所述同相信号和所述正交信号分别预校正成为预校正的同相信号和预校正的正交信号;由数字正交调制调制所述预校正的同相信号和所述预校正的正交信号,从而提供数字正交调制信号;把所述数字正交调制信号转换为模拟预校正信号;放大所述模拟预校正信号的一部分,从而提供放大的模拟预校正信号;广播所述的放大的模拟预校正信号;接收所述放大的模拟预校正信号,从而提供接收信号;把所述接收信号转换为数字接收信号;由数字正交解调解调所述数字接收信号,从而提供反馈同相信号和反馈正交信号;根据所述反馈同相信号和所述反馈正交信号、所述同相信号和所述正交信号提供训练器信号;以及把随后的同相信号和随后的正交信号分别预校正而成为随后的预校正同相信号和随后的预校正正交信号,其中所述随后的预校正同相信号和所述随后的预校正正交信号和所述训练器信号有关。
34如权利要求33所述的方法,还包括在把所述数字数据变换成为所述同相信号和所述正交信号之后,内插所述同相信号和所述正交信号;把所述模拟预校正信号的频率增加到广播频率,从而在放大所述模拟预校正信号而提供所述放大的模拟预校正信号之前提供广播频率模拟预校正信号;以及减少所述接收信号的频率,从而在接收所述放大的模拟预校正信号而提供所述接收信号之后提供中频接收信号。
35如权利要求34所述的方法,还包括接收所述预校正同相信号和所述预校正正交信号并根据所述预校正同相信号提供内插的同相信号,根据所述预校正正交信号提供内插的正交信号;以及接收所述反馈同相信号和所述反馈正交信号,并根据所述反馈同相信号提供抽取的同相信号,根据所述反馈正交信号提供抽取的正交信号。
36如权利要求35所述的方法,还包括接收从远方传递的重构信息,并把所述同相和所述正交信号的所述预校正分别修正成为所述预校正同相信号和所述预校正的正交信号。
37如权利要求35所述的方法,还包括接收从远方传递的重构信息;响应所述重构信息用所述预校正的同相信号和所述预校正的正交信号的数字正交调制修正所述的调制,以及响应所述重构信息,利用所述数字中频接收信号的数字正交调制修正所述调制。
38如权利要求34所述的方法,还包括调整所述广播频率模拟预校正信号的衰减以及调整所述中频接收信号的增益。
全文摘要
一种使用预校正的线性发送机(101)包括调制器(103),预校正器(107),数字正交调制器(111),上变频器(113),功率放大器(115),和天线(117)。此外,发送机(101)具有反馈环,其中包括耦合器(119),模拟下变频器(123),数字正交解调器(125),和训练器,训练器用于比较来自数字正交解调器(125)的同相和正交信号与从调制器(103)的输出信号,并更新预校正器(107),使得数字正交调制器(125)输出基本上和调制器(103)的输出信号相同的输出信号。
文档编号H03F1/32GK1211355SQ97192280
公开日1999年3月17日 申请日期1997年1月8日 优先权日1996年2月14日
发明者查尔斯·B·考克斯, 戴维·K·邦兹, 杰伊·J-C·陈, 弗拉维欧·C·科斯特库, 约尔·R·迪尔克斯, 怀恩·D·杜耶罗, 托马斯·L·弗雷德里克, 鲍尔·A·古德, 德雷克·S·西尔伯恩, 理查德·J·辛克尔, 泰利·L·辛克尔, 戴维·E·琼斯, 瑟龙·L·琼斯, 帕特里夏·F·卡瓦纳格, 戴维·W·克罗格尔, 罗伯特·R·莱因德克尔, 弗拉基米尔·帕夫罗维奇, 克劳迪奥·G·雷, 雷·M·R·修罗产, 埃莫尔·塔普库, 马克·A·瓦尔克 申请人:格莱纳瑞电子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1