检测同频道干扰n制信号伴随数字电视信号的方法及装置的制作方法

文档序号:7533696阅读:297来源:国知局
专利名称:检测同频道干扰n制信号伴随数字电视信号的方法及装置的制作方法
技术领域
本发明涉及到在广播电视频带内由无线电波发射的数字电视,更具体地涉及到在数字电视接收机中检测数字电视信号何时伴随有较大幅度的同频道干扰NTSC(N制)信号的方法。
1995年9月16日由先进电视分委员会(ATSC)公布的数字电视标准说明了用来在6MHz带宽电视频道中传输数字电视(DTV)信号的残留边带(VSB)信号的性质,所述电视频道比如是当前在美国用于空中广播的国家电视分委员会(NTSC)的模拟电视信号的那些频道。只要NTSC模拟电视信号继续广播,在DTV信号的接收机中就有必要能够确定何时NTSC模拟电视信号对正在接收的DTV信号产生较大的同频道干扰。那么DTV接收机可以被设计为响应于对正出现这种同频道干扰的确定而改变其工作模式,以便能减轻这种同频道干扰产生的不希望的效果,这通常是由梳状滤波来完成的。当这样的干扰不是很大时,为抑制NTSC同频道干扰而用于DTV接收机中的梳状滤波最好是不连续的,因为这能避免由通过梳状滤波器的多路径而产生的附加的Johnson噪声的出现。一般地,如果来自NTSC模拟电视信号的同频道干扰具有足够的能量而导致数据限制(data-slicing)操作中的频繁误差,就认为从NTSC模拟电视信号来的同频道干扰是较大或显著的,所述的数据限制用于同步到基带时DTV信号的符号解码过程中。1997年3月21日申请的名称为“使用来自辅助模拟TV接收机的视频信号来检测数字电视接收机中的NTSC干扰”的序列号为08/821944的专利申请中详细描述了这样一种DTV接收机,它被设计为按照出现显著同频道干扰的确定来改变其工作模式,这样可减轻这种同频道干扰引起的不希望的效果。该申请中认为在数字电视接收机中对NTSC同频道干扰的检测在任何这种NTSC干扰同步到基带之后更容易完成,而不是将DTV信号同步到基带之后。
1992年6月16日授权给Katsu Ito名称为“用于减少来自较低相邻频道的干扰的带移相器的电视同步接收机”的美国专利No.5122879描述了这样一种模拟电视接收机,它同步地检测所接收的同相和正交相位的NTSC信号。Ito接收机将射频(RF)放大器的响应直接同步转换到基带,这样一个邻近的低频道可以作为图像出现。正交相位同步检测响应在500-750KHz之上的所有视频频率处被移动相位90度,并且与同相同步检测响应线性地结合,以在接收的NTSC信号的同步的检测期间抑制变换成基带的图像频率成分。在美国专利5122879中,Ito没有揭露这样的事实,即这个过程也取消在750kHz之上的视频成分。伴随而来的亮度高频的损失只有在小视屏电视接收机中可接受,比如用于手表的那些。
当前的DTV接收机设计采用多个频率转换,用第一转换而转换成为电视广播指定的频道之上的超高频(UHF)频段中的一个中频,并且用第二转换而转换成为电视广播指定的频道之下的甚高频(VHF)频段中的一个中频。这样图像抑制不成问题。进而,VSB DTV信号的载波离频道边沿只有仅仅310KHz,因此与NTSC信号相比,只有十分少的双边带内容。
发明人指出这种类型的将同相的同步视频检测响应与逆Hilbert(希尔伯特)变换的正交相位同步视频检测响应线性地结合的NTSC接收机对DTV接收仍然是有价值的,可用作为一个辅助的接收机,用来检测一个数字电视信号是否伴随有较大幅度的同频道干扰的NTSC信号。通过安排逆Hilbert变换正交相位同步视频检测响应到750kHz之下足够小的频率,这样的辅助接收机对同频道DTV信号的赝生现象(artifacts)变得基本上不灵敏。对DTV赝生现象的抑制简化了测量同频道干扰NTSC信号的幅值。
按照本发明一个方面,提供这样一种方法,用于在一个数字电视接收机中检测数字电视信号何时伴随有较大幅度的同频道干扰的NTSC信号。该方法包括如下步骤。任何同频道干扰的NTSC信号的视频部分被同步(synchrodyned)到基带,以产生包括数字电视信号的第一人赝生现象的同相解调结果,并且产生包括数字电视信号的第二赝生现象的正交相位解调结果。同相与正交相位解调结果其后在几千赫之上的频率处被分别移动90度相位,然后线性地组合,以产生一种线性组合的结果,它基本上没有数字电视信号的第一和第二赝生现象。然后,检测所述线性组合的结果的幅度是否超过一规定值,以产生何时数字电视信号伴随有较大幅度的同频道干扰的NTSC信号的指示。
按照本发明另一个方面,提供一种数字电视接收机,包括用于检测较大振幅的模拟电视信号占据电视广播频道的时间的电路,该电路更具体地被描述如下。所述接收机具有输入电路,用于从电视广播频道中选择描述任何占据电视广播频道的模拟电视信号的视频信号部分的残留边带调幅信号,把所选择的残留边带调幅信号转化成为一个中频信号,并且放大该中频信号以提供一个放大的中频信号。除残留的边带之外,原来被输入电路接收的残留边带调幅信号还包括视频载波和全边带。对于视频载波信号,和对于与视频载波信号成正交相位的载波,视频同步转换电路同步地检测所放大的中频信号,用以产生同相的同步检测响应和产生正交相位的同步检测响应。称作逆Hilbert变换电路相关的移相电路在本说明书中将在一规定频率之上的正交相位同步检测响应的所有频率成分移动相位约90度,以产生移相电路响应。线性组合电路将同相的同步检测响应和移相电路响应线性地组合,以恢复对原始接收的残留边带调幅信号的全边带和残留边带中被描述的一部分视频信号的线性组合电路响应。这种线性组合电路响应基本上没有对占据了当前被接收的电视广播频道的数字电视信号的响应。一阈值检测器包括在接收机中,用于确定第一线性组合电路响应何时超过一规定的阈值,以产生较大幅度的同频道模拟电视信号的指示。


图1和2都是电视接收机的一个示意图,这种接收机能够接收NTSC模拟电视信号以及DTV信号,该接收机使用本发明的方法,来检测DTV信号之中的同频道干扰的NTSC模拟电视信号的出现。
图3是能构成图1或2的电视接收机的两者中任何一个变型的示意图。
图4,5,6和7是显示该方法的步骤的流程图,该方法在各方面采用本发明,用于在一个数字电视接收机中检测何时数字电视信号伴随有大幅值的同频道干扰NTSC信号。
图1显示电视接收机的各部分,这种接收机能够接收NTSC模拟电视信号以及DTV信号。由天线1接收的空中传输的电视广播信号由可调谐的射频放大器2放大,并且被提供到第一检波器3。RF放大器2与第一检波器3具有作为调谐器的可变调谐和整体功能,以选择来自频带中的不同位置处的频道之一中的一个数字电视信号。第一检波器3包括第一本机振荡器,它提供第一本机振荡,它可在超高频(UHF)电视广播频段上进行调谐;以及第一混频器,用于把第一本机振荡与由可调谐的RF放大器2选择的电视信号相混合,以向上变换所选择的电视信号,从而在位于UHF电视广播频带中分配的频道的频率之上产生6MHz宽的UHF中频频带。
第一检波器3提供高-IF(中频)频带信号到用于NTSC音频接收的UHF频带中频放大器6。UHF IF放大器6的响应被加到用于NTSC音频接收的第二检波器9。第二检波器9包括第二本机振荡器,它提供在超高频UHF电视广播频带之上的规定频率的第二本机振荡;以及第二混频器,用于将第二本机振荡与UHF IF放大器6的响应混合,以产生位于VHF TV广播频带中所分配的频道之下的频率处的甚高频(VHF)中频信号。这个甚高频IF信号被提供到甚高频中频放大器12。
甚高频IF放大器12的响应被加到内载波伴音检波器34,它提供4.5MHz内载波伴音中频信号到内载波中频放大器35,它放大并在大多数设计中对称地限制其放大的响应以加到FM(调频)检波器36。FM检波器36再现基带复合音频信号,它们被提供到DTV接收机的模拟电视接收机的其余部分。关于基带复合音频信号,这些余下的部分典型地包括立体声解码器电路。如果NTSC音频信号在IF放大器6和12中通过窄带滤波而被选择,IF放大器6和12仅仅通过变换成中频的FM音频载波,内载波伴音检波器34可由这样一个乘法器提供,这种乘法器将视频载波的IF放大器12响应乘以由窄带滤波器按照IF放大器10或者11的响应而为该乘法器选择的视频载波。如果NTSC音频信号在IF放大器6和12中通过滤波而被选择,IF放大器6和12通过变换成中频的NTSC视频和音频载波,用于执行“准平行”(“quasi-parallel”)伴音,内载波伴音检波器34可以是一个简单的整流器或者是平方律(square-law)装置。
第一检波器3还提供高-IF频带信号到用于NTSC视频接收和在ATSC接收中的UHF频带中频放大器37。在UHF IF放大器37中,声表面波(SAW)滤波器最好是拒绝NTSC音频信号,它确定ATSC DTV信号以及NTSC视频信号的整个IF响应。要不然,SAW滤波器在被变换成UHF的6MHz宽范围的电视广播频道的其余部分上有基本上平的振幅响应,并且在其通带中有基本上线性的相位响应。SAW滤波器通过用一个晶体管放大器位于UHF IF放大器37之前,该晶体管放大器设计用于从规定源阻抗来驱动SAW滤波器,这减少了多重反射。最好是保持这个规定源阻抗,该晶体管放大器增益最好是固定值并且足以克服SAW滤波器的插入损耗。UHF IF放大器37的响应被加到第二检波器38,它用于ATSC DTV接收和NTSC视频接收中。第二检波器38包括第二本机振荡器,它提供在超高频UHF电视广播频带之上的规定频率的第二本机振荡;以及第二混频器,用于将第二本机振荡与UHF IF放大器37的响应相混合,以产生甚高频(VHF)中频信号,其频率位于甚高频电视广播频段中的所分配的频道之下。第二检波器9与38最好分享相同的第二个本机振荡器。
从第二检波器38来的甚高频IF信号被提供到甚高频中频放大器41,它包括控制增益晶体管放大级,它们提供高达60dB或者更大的放大。VHFIF放大器41被提供有反向自动增益控制,它是响应其输出信号电平而产生的,反向AGC对于提供增益线性方面是很好的。RF放大器2被提供有延迟的反向自动增益控制,它响应于IF放大器47的输出信号电平。
从甚高频IF放大器47输出的输出信号被加到ATSC符号码检测器13,它从该信号中检测基带符号码。符号码检测器13是这样一个装置,它利用同相的同步检波器来检测数据载波的残留边带调幅,并且利用正交相位同步检波器来产生自动频率和相位控制(AFPC)信号给受控振荡器,该振荡器提供同步信号到同步检波器。同相的同步检波器在模拟体制中工作,它的输出信号由模拟-数字转换器14以10比特左右分辨率数字化。或者,符号码检测器13和随后的ADC 14能由如下电路代替第三检波器,它用以转换IF放大器47的VHF频带响应到恰好在基带之上的最终中频频带,模拟-数字转换器,用于使第三检波器响应数字化;以及数字同步电路,用于同步数字化的第三检波器响应到基带。这样的替代电路在1995年12月26日授权的,C.B.Patel等人的,名称为“如同包括在HDTV接收机中,带有带通相位跟踪器的数字VSB检波器”的美国专利5,479,449有描述,并在1995年8月20日授权的名称为“如同用在HDTV接收机中,使用Rader滤波器的带有带通相位跟踪器的数字VSB检波器”的美国专利5548617中有描述,这里作为例子。当DTV信号正被接收时,从对导频信号的同步检测中导致的一个直接信号伴随在基带再现时的符号码上,并且该直接信号由导频载波检波器15检测,以产生DTV使能信号,它调节DTV接收机的显示部分显示DTV图像,而非NTSC电视图像。在图1中显示的导频载波检波器15是这样的类型,即响应于数字输入信号,或者它可以是这样的类型,即响应从符号码检测器13直接提供的模拟输入信号。
图1显示了从ADC 14所提供到符号解码器20的数字化的基带符号码,该符号解码器20的类型在本发明人于1996年11月12日申请的,名称为“带有用于抑制NTSC同频道干扰的有自适应滤波电路的数字电视接收机”的美国专利申请第08/746,520号中详细说明了。符号解码器20包括数据限制器(slicer)21,对解码器70输入信号进行数据限制,以产生第一符号解码器响应;消除NTSC赝生现象梳状滤波器22,提供对符号解码器20输入信号的响应,该响应抑制任何NTSC同频道干扰信号;数据限制器23,对梳状滤波器21响应进行数据限制,以产生一种错误的符号解码器响应;匹配的梳状滤波器24,用于校正错误的符号解码器响应,并产生第二符号解码器响应;以及一多路复用器25,用以选择第一种和第二符号解码器响应之一作为最终符号解码器响应,该最终响应由符号解码器20提供到DTV接收机中典型的格构(trellis)解码器16。在没有接收较大的NTSC同频道干扰信号的指示的情况下,多路复用器25从数据限制器21中选择第一符号解码器响应,以提供符号解码器20输出信号到格构解码器16。在指示存在较大的NTSC同频道干扰信号接收的情况下,除去在符号解码器初始化间隔期间之外,多路复用器25选择来自匹配的梳状滤波器24的第二符号解码器响应,以提供符号解码器20输出信号到格构解码器16。
符号解码器20能通过修改多路复用器25以在数据段同步和字段同步码组出现在接收的DTV信号之中的时间提供从电视接收机内的存储器提取的理想的符号解码结果。这样的改进在1997年4月15日申请的名称为“带有用于抑制NTSC同频道干扰的有自适应滤波电路的数字电视接收机”的美国专利申请连续号08/839,691中详尽地被描述。
甚高频IF放大器47的输出信号被加到电路46,用于将NTSC视频载波调制同步到基带。同相同步检波器和正交相位同步检波器都用在电路46中,用于将NTSC视频载波调制同步到基带;假定在转换到恰好在基带之上的一最终中频频带之后,在数字体制中进行同步,那么最后的中频可被数字化。或者,将NTSC视频载波调制同步到基带可在模拟体制中完成,而且,利用各自的模拟-数字转换器,用于这个目的的同相同步检波器和正交相位同步的检波器的响应可被数字化。正交相位同步检波器的响应Q是NTSC信号的单一边带成分(即频率在750kHz之上的那些成分)的希尔伯特变换加上DTV信号的赝生现象,如同这些赝生现象出现在同相同步检波器的响应I时一样。由正交相位同步检波器的响应Q提供的该Hilbert变换被移相,以由逆Hilbert变换电路47在所有频率上提供90度的延迟(除应该有小响应的最低频率外)。
加法和减法认为是线性组合的替代形式。线性组合器47和48之中一个是加法器,而另一个是减法器。电路47的逆Hilbert变换的响应在线性组合器48中与同相的同步检波器的响应线性组合,以产生一个具有高频的复合视频信号,其频率被提升以校正加到模拟电视接收机电路中的其余部分的电平。关于基带复合视频信号,这些余下的部分典型地包括同步分离电路,彩色信号再生电路,和用于将4∶3长宽比的NTSC图像改变为适于显示DTV图像所用的16∶9屏幕上显示的电路。
电路47的逆Hilbert变换响应在线性组合器49中与同步电路(synchrodyne circuitry)16的同相基带响应线性组合,以产生在750kHz之上有点截止的亮度信号I,该亮度信号没有DTV赝生现象。线性组合器48与49分别是加法器和减法器,还是线性组合器48与49分别是减法器和加法器取决于所选择的正交相位同步的检波器操作是超前于同相同步检波器的操作还是滞后于它。
图1显示来自线性组合器49的带宽限制亮度信号,它还被具有约1MHz的截止频率的低通滤波器50滤波,然后由平方器31进行平方,以产生在DTV接收期间的NTSC同频道干扰信号的能量的指示。平方器31可以由一个数字乘法器构成,它接收作为乘数和被乘数的信号,但是它用只读存储器实现更实际。平方器31的输出信号在DTV接收期间是NTSC同频道干扰信号的能量指示。
一数字阈值检测器32确定这种指示是否很强足以超过阈值,在该阈值之下,NTSC同频道干扰信号被认为不足以在数据限制器21的工作中引起不可校正的误差。阈值检测器32响应被提供到多路复用器控制电路33。多路复用器控制电路33控制复用器25在第一和第二符号解码器响应之间的选择,它确定作为符号解码器20输出信号的最终符号解码器响应。在符号解码器初始化间隔期间,多路复用器控制电路33控制多路复用器25选择第一符号解码器响应作为符号解码器20的输出信号。在其它时间,只要阈值检测器32的响应表示NTSC同频道干扰信号被认为不足以在数据限制器21的工作中引起不可校正的误差,多路复用器控制电路33就控制多路复用器25选择第一符号解码器响应作为符号解码器20输出信号,否则控制多路复用器25选择第二符号解码器响应作为符号解码器20的输出信号。
图2显示图1的装置的变形,用来向数字阈值检测器32提供线性组合器49的响应,而无须平方器31进行平方。线性组合器49的响应基本上是扩展到至750kHz的基带亮度,那么总是具有相同的极性,因此,可以省略平方器31,而且数字阈值检测器32能用一个具有规定的阈的数字阈值检测器032代替,这种阈是数字阈值检测器32的规定阈的平方根。即,数字阈值检测器32的规定阈是数字阈值检测器032的规定阈的平方。
在图1与图2的电视接收机中,包含低通滤波器50减轻了对逆Hilbert变换电路47的需要,由于精确的90度延迟不必在上述低通滤波器50的截止频率之上的频率处提供,以便在频谱的该部分中抑制DTV赝生现象。其中,逆Hilbert变换电路47在直到4.2MHz左右提供合理精确的90°滞后,这就可用直接连接来替代滤波器50。就对线性组合器48中逆Hilbert变换滤波器47响应与同步转换电路46的同相基带响应I进行组合以提升复合视频信号的高频而论,逆Hilbert变换电路47不必在直到4.2MHz的频率处提供精确的90度滞后,这是由于视频峰值电路能用来弥补复合视频信号的高频滚降(roll-off),这种滚降引起不正确的滞后,如果滞后中的误差不太严重的话。
图3显示一个对图1和2的电视接收机的两者间的任何一个的变型。在图3的变型中,取代用逆Hilbert变换电路47移动用在两线性组合器48和49中的同步电路46的正交相位基带响应Q,逆Hilbert变换电路51移动只用在线性组合器48中的同步电路46的正交相位基带响应Q;并且另一个逆Hilbert变换电路52移动只用在线性组合器49中的同步电路46的正交相位基带响应Q。逆Hilbert变换电路51从0.5MHz到4.2MHz提供合理的精确的90度滞后,以优化复合视频信号的频谱响应,但是不必在0.5MHz之下很远的频率处提供90度的滞后。这避免许多在0.5MHz之下很远的频率处以高的数字取样速率为提供90度滞后所需要的抽头有限脉冲响应(FIR)滤波器,在高达4.2MHz的频率处提供90度的滞后也需要高数字取样速率。由于使用了低通滤波器50,仅仅到1.0MHz左右之内逆Hilbert变换电路52需要提供合理的精确的90度滞后,但是电路52在0.5MHz之下很远频率提供90度滞后,最好低到为NTSC扫描行速率的分数。以低于在逆Hilbert变换电路51中所用的数字取样速率四倍的抽取的数字取样速率,可以满足这些需要,这样大大减少了为逆Hilbert变换电路52中的FIR滤波提供不同的延迟取样对暂时存储器的需要。确实,低通滤波器50可被设计成具有在0.5MHz以下的更低的截止频率,这样用于逆Hilbert变换电路52的抽取数字取样速率可比用于逆Hilbert变换电路51的数字取样速率低八倍。或者低通滤波器50的截止频率能进一步减半一次或多次,使用于逆Hilbert变换电路52的抽取数字取样速率可从用于逆Hilbert变换电路51的数字取样速率中进一步抽取。
图4是由图1的电视接收机所执行的操作的方法的流程图。接收数字电视信号的初始的步骤S0由图1电视接收机的单元1,2,3,37,38,以及41执行,所述信号时常伴随有同频干扰的具有视频部分的模拟电视信号。同步电路46执行随后的步骤S1,它将任何同频道干扰模拟电视信号的视频部分同步到基带上,以产生包括DTV信号的第一赝生现象的同相解调结果,并且产生包括DTV信号的第二赝生现象的正交相位解调结果。逆Hilbert变换器电路47执行随后的步骤S2,在750kHz之下很远的一个规定的频率范围内的频率,将同相和正交相位解调结果各自相位差分地移相90°。线性组合器49随后执行步骤53,在同相和正交相位解调结果各自相位在规定频率范围内被差分移相90度之后,该步骤将它们线性地组合,以产生线性组合的结果,它们在该规定频率范围内基本上没有数字电视的第一和第二赝生现象。(低通滤波器50的截止决定该规定的频率范围的上界)。平方器31执行步骤S4,它对线性组合的结果进行平方;同时数字阈值检测器32然后执行最后的步骤S5,它检测所述线性组合结果的平方是否超过所述规定值的平方,用于确定数字电视信号是否伴随有较大幅度的同频道干扰模拟电视信号。
图5是由图1电视接收机执行的操作方法的流程图,与图4流程图不同的是由逆Hilbert变换器电路47执行的步骤S2更具体地显示为步骤S2′,它将正交相位解调结果在远低于750kHz的一个规定的频率范围内移相90度。
图6是由图2电视接收机执行的操作方法的流程图。在图6流程图中所描述的方法利用与图4流程图中所描述的相同的步骤S0,S1,S2和S3。当然,在图2电视接收机的工作中,由图1电视接收机中的平方器31执行的平方步骤S4被省略。由图1电视接收机中的数字阈值检测器32完成的步骤S5在图2的电视接收机的工作中由步骤S5′代替,它检测在规定频率范围内的线性组合结果是否超过规定的值,以产生何时DTV信号伴随有较大幅度的同频道干扰的模拟电视信号的指示。这个步骤S5在图2电视接收机中由数字阈值检测器032执行。
图7是由图6电视接收机执行的工作方法的流程图,与图4流程图不同的是由逆Hilbert变换器电路47执行的步骤S2更具体地显示为步骤S2′,它将正交相位解调结果在远低于750kHz的一个规定频率范围中移相90度。
权利要求
1.一种方法,包括步骤接收数字电视信号,该信号时常伴随有具有视频部分的同频道干扰模拟电视信号;将任何所述同频道干扰模拟电视信号的视频部分同步到基带,以产生包括所述数字电视信号的第一赝生现象的同相解调结果,并且产生包括所述数字电视信号的第二赝生现象的正交相位解调结果;在远处750千赫以下的规定频率范围中的频率处,将所述同相与正交相位解调结果的各自相位差分移相90°;在所述规定频率范围中的频率处移相90°之后,将所述同相与正交相位解调结果线性地组合,以产生一线性组合的结果,其在所述规定频率范围内基本上没有数字电视信号的第一和第二赝生现象;以及检测所述线性组合结果的幅度在所述规定频率范围内是否超过一规定的值,以产生何时所述数字电视信号伴随有较大幅度的同频道干扰模拟电视信号的指示。
2.按照权利要求1的方法,其中,在所述规定频率范围中的频率处将同相与正交相位解调结果各自相位差分移相90度的步骤进一步包括子步骤将所述正交相位解调结果进行逆希尔伯特变换。
3.按照权利要求1的方法,其中,所述检测所述线性组合的结果的幅度是否超过一规定的值的步骤进一步包括子步骤对所述线性组合结果进行平方;以及检测所述线性组合结果的平方结果是否超过所述规定值的平方。
4.一种方法,包括步骤接收数字电视信号,该信号时常伴随有具有视频部分的同频道干扰模拟电视信号;将任何所述同频道干扰模拟电视信号的视频部分同步到基带,以产生包括所述数字电视信号的第一赝生现象的同相解调结果,并且产生包括所述数字电视信号的第二赝生现象的正交相位解调结果;在远处于750千赫以下的规定频率范围中的频率处,将所述正交相位解调结果移动90度相位;将所得的已移相的正交相位解调结果与所述同相正交相位解调结果线性地组合,以产生一线性组合结果,其在所述规定频率范围内基本上没有数字电视信号的第一和第二赝生现象;以及检测在所述规定频率范围内超过一规定值的所述线性组合的结果的幅度,以产生一个所述数字电视信号伴随有较大幅度的同频道干扰模拟电视信号的指示。
5.按照权利要求4的方法,其中,所述检测在所述规定频率范围内超过一规定值的所述线性组合的结果的幅度,以产生数字电视信号伴随有较大幅度的同频道干扰模拟电视信号的指示的步骤进一步包括子步骤对所述线性组合结果进行平方;以及检测何时所述线性组合结果的所得的平方超过所述规定值的平方,以产生所述数字电视信号伴随有较大幅度的同频道干扰NTSC信号的指示。
6.一种数字电视接收机,包括用于检测较大振幅的模拟电视信号占据电视广播频道的时间的电路,该电路包括输入电路,用于从电视广播频道中选择描述任何占据所述电视广播频道的模拟电视信号的视频信号部分的一残留边带调幅信号,把所选择的残留边带调幅信号转化成为一个中频信号,并且放大所述中频信号以提供一个放大的中频信号,除残留边带之外,原来被该输入电路接收的所述残留边带调幅信号还包括视频载波和全边带;视频同步电路,用来对于所述视频载波信号和与视频载波信号相位正交的载波,同步地检测所述放大的中频信号,以产生同相的同步检测响应和产生正交相位的同步检测响应;第一移相电路,用于将一规定频率上的所述正交相位同步检测响应的所有频率成分移相90度,以产生第一移相电路响应;第一线性组合电路,将所述同相的同步检测响应和所述第一移相电路响应线性地组合,以恢复第一线性组合电路响应到在所述全边带和残留边带中所述的视频信号的一部分,该第一线性组合电路响应基本上没有任何对占据所述电视广播频道的数字电视信号的响应,以及阈值检测器,用于确定何时第一线性组合电路响应超过一规定的阈值,以产生同频道模拟电视信号具有较大幅度的指示。
7.按照权利要求6的数字电视接收机,进一步包括第二线性组合电路,用于将所述同相的同步检测响应和所述第一相位移动电路响应线性地组合,以恢复第二线性组合电路响应到所有所述视频信号。
8.按照权利要求6的数字电视接收机,进一步包括第二移相电路,用于将在500KHz之上的所述正交相位同步检测响应的所有频率成分移相90度,以产生第二移相电路响应;第二线性组合电路,用于将所述同相的同步检测响应和所述第一移相电路响应线性地组合,以恢复第二线性组合电路响应到所有所述视频信号。
全文摘要
一种在数字电视接收机中检测数字电视信号何时伴随有较大幅度同频道干扰的NTSC信号的方法。任何同频道干扰的NTSC信号的视频部分被同步到基带,以产生同相解调结果和正交相位解调结果。正交相位解调结果在规定频率范围内的频率处被移动90度相位,然后与同相解调结果线性组合以产生线性组合的结果,在所述规定频率范围内它基本上没有数字电视信号的第一和第二赝生现象。通过检测线性组合结果的幅度是否超过一规定值,产生数字电视信号伴随有较大幅度的同频道干扰的NTSC信号的指示。
文档编号H03D1/00GK1242668SQ98117408
公开日2000年1月26日 申请日期1998年7月18日 优先权日1998年7月18日
发明者艾伦·L·林伯格 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1