依据歧异编码及方法而设计的可键入装置的制作方法

文档序号:7504944阅读:395来源:国知局
专利名称:依据歧异编码及方法而设计的可键入装置的制作方法
这项发明与可键入装置,及这种装置于计算器和电子通讯的应用有关。且特别与根据易触键式歧异编码和最佳歧异编码而设计的可键入装置有关。
自从100年前打字机的发明之后,键盘工程已成为研发相当活跃的领域,因而产生许多具竞争力的设计。随着个人计算器及电子通讯的成长,设计师为适应不同种类的限制及把握这项新科技所带来的机会,使得键盘设计的数量大幅增加。然而,这些先有技术键盘设计的多样化并不是因为有不同种类的限制及机会,相反地,这是键盘设计者对于他们所要解决的问题内的既有限制没有完整的了解而产生的结果。同时,也反映出对优化这些限制之整体、有效方法的缺乏。因此,现阶段这项技术的情况则有过多的不完全解决方案存在。但是这些缺点完全可由这项发明的键盘设计方法克服。为了要展现这项发明,优化方法将应用于多样装置具体化的设计,每样装置具体化都是一连串设计限制下的最佳基本解决办法。
目前这项发明与可键入装置有关。触键式打字就像弹奏乐器一样,是一项相当难学的手部技巧。一旦学成,便很难再去修正已形成的移动模式。这对键盘设计有相当大的限制。众所周知的Qwerty键盘(及其相近的变体如法国境内常用的Azerty键盘)正因为其打字的移动模式根深蒂固且须超量学习,所以占有极大的优势。因此,Qwerty键盘大范围的基础使得学习更先进的键盘,例如Dvorak键盘,困难重重。虽然Dvorak键盘也有其使用者,但是数量并不多。而Qwerty键盘因为其键钮数量多,使得其并不适用于掌上型或小型的打字装置。掌上型或小型打字装置的出现为键盘设计者带来一线契机。因为既有的重复性移动模式倾向会固定下来,所以在这契机当中出现的新设计若占有优势地位,则在将来也能继续保持其优势地位,即使在此领域中仍不断有新的设计出现。这一点为键盘设计者加诸了极大的责任负担,为了避免使未来的键盘使用者使用次佳的设计。
于此项先有技术当中,靠着编辑一连串的符号,有两个主要方法可以减少键入方式的数量1)协调法,键入方式的组合编辑每个符号,2)歧异编码,每个键入方式编辑符号的组合。协调法并不实用,因为学习操作协调法很困难,也很少有人愿意投资需要的时间在这上面。因此,只有歧异编码,或歧异编码与协调法的组合,才能给予这项问题真正的解决办法。
这项发明的宗旨在于为打字装置内的最佳歧异编码之设计提供方法。
这项发明更进一步的宗旨在于为打字装置内的易触键式歧异编码之设计提供方法。
这项发明更进一步的宗旨在于为普通型及小型键盘的触键打字提供适当的键盘。
这项发明更进一步的宗旨在于,让字母数字元元元的信息能够从普通电话或双向传呼器传送到另外同类型的装置,而不需要透过人力的介入,服务因此更为便宜。
这项发明更进一步的宗旨在于提供触键式个人数字助理。
这项发明更进一步的宗旨在于为汽车的驾驶者提供可键入之键盘,且不会也不必使驾驶分心。
这项发明更进一步的宗旨在于提供对制造商而言,价格便宜的可键入通讯装置,且能与一般电话通讯系统结合。
这项发明某些优先具体化的宗旨在于借着在新键盘上保留部分传统键盘具有的设计,来帮助以传统键盘训练的打字者转移其打字技巧,以适应新键盘。
这项发明更进一步的宗旨在于提供整体的方法以制造查找错误率最低的歧异编码。
这项发明更进一步的宗旨在于提供整体的方法以制造查询率最低的歧异编码。
这项发明更进一步的宗旨在于提供可减低打字伤害的装置。
这项发明更进一步的宗旨在于提供可二次折迭式掌上型计算器装置。
这项发明更进一步的宗旨在于提供适合装置在掌上型计算器的单手使用按键板。
这项发明更进一步的宗旨在于提供适合装置在掌上型计算器或桌上型按键板的单手及双手使用按键板。
这项发明更进一步的宗旨在于提供易学的协调键盘。
这项发明更进一步的宗旨在于提供具增效作用的协调及歧异混合键盘。
这项发明更进一步的宗旨在于为有编入歧异编码的可键入装置提供一个以触键式键入为导向的查询机构。
这项发明更进一步的宗旨在于为有编入歧异编码的可键入装置提供一个以触键式为导向的歧异消除模式。
这项发明更进一步的宗旨在于提供一个能完全与标准电话系统结合的协调/歧异编码混合键盘。
这项发明更进一步的宗旨在于为模式提供人体工学的指定符号。这项发明更进一步的宗旨在于为具有触控屏幕之可键入装置提供一个透明触键接口。
这项发明更进一步的宗旨在于提供一组自然语言间的最佳化。
这项发明更进一步的宗旨在于提供一个使用单手握持且扫描时间缩短的可键入装置。
这项发明其它的宗旨将于下列段落详细描述。
图样的简短描述现将就图样仔细描述讨论这项发明的优先具体化,下列即为图样的简短描述。
图一显示根据这项发明所制造的一个可键入装置最佳化考量的概观。
图二显示根据易触键式歧异编码制造之装置的建构流程图。
图三显示歧异编码的建构流程图,符合至少一项人体工学标准,且在这些人体工学标准方面最佳化。
图四使用随选最佳化方法显示图三方法特定具体化的流程图。
图五显示就一些已选择键钮上的随选歧异编码,查找错误可能性的分布。
图六显示就一些已选择键钮上的随选歧异编码,查询可能性的分布。
图七显示导引式随机前进最佳化的流程图。
图八显示易触键式歧异编码的建构流程图。
图九绘制出查找错误率对随选键钮数目,及最佳化歧异编码。
图十绘制出查询率对随选键钮数目,及最佳化歧异编码。
图十一显示在一范围键钮数目内,最佳化歧异编码的查找错误率对查询率。
图十二显示与键钮数目易触键度的层级有关的一个图表,此键钮数目是为达到此层级,在几个不同最佳化方法下。
图十三显示合成编码符号方法的流程图。
为了帮助读者了解这项发明之装置具体化的统一性,图十四的表格为这些具体化的摘要及其特征。这些具体化必须清楚且明确无误地指出这项发明广泛的范围及不同的层面。
图十五显示一个智能卡的具体化,内有16个键钮用于字母符号的编码。
图十六显示一个智能卡的具体化,内有9个键钮用于字母符号的编码。
图十七显示镶嵌于方向盘上的键盘。
图十八显示电话内的10个键钮具有最佳化编码。
图十九显示缩减歧异按字母顺序之有序歧异编码应用于手提电话。
图二十显示似Qwerty键盘,其查找错误率和查询率已最佳化,并涉及Qwerty键盘每排字母的排列。
图二十一显示另一个似Qwerty排列之键盘。
图二十二显示一个具有标准数字键钮板排列的歧异键盘。
图二十三显示一个具有人体工学触键式导向的歧异消除机构。
图二十四显示方法流程图。此方法以触键式导向方式回答询问。
图二十五显示一单手键盘的设计。此设计保存了单手及双手键盘间的打字技巧。
图二十六显示一双手键盘的设计。此设计保存了单手及双手键盘间的打字技巧。在此情况下,在这两种键盘中因打字状态上的最大相似度而选用双手键盘。
图二十七显示一双手键盘的设计。此设计保存了单手及双手键盘间的打字技巧。在此情况下,双手键盘在双手间能够平均分配。
图二十八显示与鼠标结合的键盘。
图二十九显示一可二次折迭式信息装置于未折迭状态时的正面。
图三十显示一可二次折迭式信息装置于未折迭状态时的反面。
图三十一显示一可二次折迭式信息装置于折迭一次的状态,展现其附加功能。
图三十二显示一可二次折迭式信息装置于折迭二次的状态,展现另一项功能。
图三十三显示一可二次折迭式信息装置于分离状态,可双手打字。
图三十四显示一典型具备触控屏幕的个人数字助理。
图三十五显示一典型具备潜在透明键盘的个人数字助理。
图三十六A,B及C显示一16个键式键盘的三种模式。
图三十七显示一标准电话排列。
图三十八显示一编制于电话内的协调/歧异编码混合键盘。
图三十九显示与一标准歧异编码的查找及查询率比较之下,一特定结构的所有协调/歧异编码之混合的查找错误率及查询率的分布。
图四十显示多级易触键式歧异编码的建构流程图。
图四十一显示多易触键式歧异编码特定具体化的建构流程图。
图四十二显示适合装置于图四十一的多级歧异编码的可键入装置。
图四十三显示图四十二装置的操作,展示多级歧异编码的第一级。
图四十四显示多级歧异编码的第二级编码。
图四十五显示图四十二装置的操作,展示多级歧异编码第二级编码的部分。
图四十六显示当图四十二装置使用多级歧异编码键入「think」的操作状态顺序。
图四十七,如同图四十六,显示当图四十二装置使用多级歧异编码键入「think」的操作状态顺序。但在此情况下,为减少扫描时间的视觉快取记忆之操作也会显示出来。
发明的详细描述定义及基本概念这一部份为字符及观念的定义,这些字符及观念于接下来的详细说明内皆会出现。
语言为一组符号,个人可以建立此符号的顺序,并决定顺序的可能性。符号组、符号序列及这些顺序的可能性在此即为语言。为了清楚讨论及不限制这项发明的范围,我们所指的语言为书面自然语言,例如英文,虽然具体上来说,我们可能把符号指为「字母」或「标点」,但是就这项技术的一般技巧而言,这里所讨论的符号也可能为任何不相关联的书写单位,包括标准符号,例如中文的表意字,或歌手「王子」改名后所创造的符号。
键盘/键入方式键盘为通讯及/或计算器装置的一个零件。键盘将操作员的肢体动作转化为符号序列。键盘至少由一种键入方式组成,这种方式负责操作的肢体动作子集的转化,以激活键盘的符号序列子集。
操作键盘的肢体动作通常为手指及/或大拇指或掌上型尖笔的移动。这个定义也扩展致其它身体动作,例如头部、舌头、或眼睛的移动。这些移动可能用来从键盘上发出符号选择的信号。具有此键盘定义的装置即为可键入装置。
我们了解「可键入装置」不仅是具有键盘的装置,此可键入键盘内也嵌有整个通讯系统。而此系统的极限靠基本歧异编码架构来定义。若一可键入装置内的键入符号直接出现在显示屏上,且此显示屏为可键入装置的零件,则此系统的极限便相当清楚地由此装置的大小定义。在更平常的情况下,一可键入装置内包含一电话筒,此电话筒传送信息至中央计算器,中央计算器开始负责编码或处理从话筒传来的原本信息。此可键入装置当然包括此中央计算器,且其操作方式由根据这项发明的内容而建立的软件所设定。
至少每个键盘内的键入方式需要极多样的肢体表现。一键入方式最主要的特征在于其允许一操作员从一组符号中选择一子集,让键盘予以编码。有了这层了解,并为了要增加这份说明书的可阅读性,「键钮」会经常与「键入方式」互换。
打字 为按顺序选择至少一种键入方式的流程,此流程是为了要从一组由键盘编码的符号中选择符号子集顺序。知名的辨识字迹软件让打字的键入方式能将一连串画图的动作翻译成一组符号的一连串子集。
触键打字 符号序列由键盘产生的流程,绝大多数或只使用动觉回馈而非视觉或听觉回馈。
极度相关符号及符号序列众所周知,不同的字母其在字符中出现的频率也不同。举例来说,上一个句子里,字母「e」出现了11次,而字母「z」一次也没有出现。这种情形也发生在两个字母字组、三个字母字组等等。相当清楚地,所有字符的出现频率都不一样。三个字符的字组「the」在英文里即为常见,而三个字符的字组「zap」则相当不常见。这些统计学上的不规则变化可用在歧异编码的设计。的确,至少从Qwerty键盘的发明之后,统计学上的不规则变化已经常被使用于键盘设计。
我们也特别关切某些符号及符号序列,其在文字内容的典型样本中的分布与其它的符号或符号序列有极大的关联性。这种符号被称为极度相关符号。举例来说,符号「.」在英文及其它语言当中被用来表示句子的结束,此符号可能是极度相关符号,因为在典型文字内容内句子长度的分布并不是随机性的。在希伯来文当中,符号「.」也与特定的字母符号有相关性,虽然希伯来文使用不同的符号在字尾的字母,句子的结束与字符的结尾也有相关性。
参考数据用来测量符号间相关性的符号序列,其参考数据由一参考语料库分析加以一般性地预估。语料库是相当大量文字内容的集合,这些经过选择的文字内容代表语言的某些部分。语言学家都相当清楚,要建立能够代表一个语言整体特征的语料库有很多基本上的问题,有时会阻挡与某特定文字内容种类或某特定作者种类的特征。这些问题已超过这项发明的范围。此处我们从头至尾采取从英国国家语料库搜集的参考数据。英国国家语料库为现存分析英文最大的语料库。选择语料库是搜集结果的必要步骤,让各种方法及具体化可以比较。此项选择的建立不能用来限制这项发明的范围。尤其英语文字内容与料库的选择是一个武断的选择。同样的分析也可以用于任何其它书面自然语言。
编码及译码在美国,电话按键板的键钮通常都同时标有字母及数字元元元,数字2的键钮同时也标有a、b和c;数字3的键钮同时也标有d、e和f,按英文字母顺序继续下去。
因此,按233的键钮顺序同时也按出字母顺序add、bee及bed,全部都是英文字,当然也产生其它无意义的字母顺序如cff。若顺序出现在有意义的顺序参考列表中,此顺序便被认为有其意义。因此这些字母顺序,不管有意义与否,都与同样的数字顺序有关。我们把按233的键钮顺序称为是编码,而add、bee、bed、eff等等的顺序为编码233的译码。为解决困惑,「译码」指的是「有意义的译码」。以此为例,依据字母顺序,用于译码的符号组为译码符号,或只是符号,若无任何困惑。而用于译码的符号组,以此为例,即数字,便被认为是译码符号。
歧异编码歧异编码在此项技术中已为人熟知。在美国的标准电话按键板上,总共有12个键钮,其中10个键钮编码一个数字,且其中几个键钮编码3或4个字母,依据英文字母顺序排列。这些赋值产生一歧异编码,我们称其为标准歧异编码。这编码为abc def ghi jkl mno pqrstuv wxyz。
既然每个键钮都编有几个字母,必须使用歧异消除的方法来决定哪一个字母式操作员想要使用的。在一般应用上,例如语音信息系统,想要使用的字母的决定是由比较键入的顺序与储存的回复列表而来。若储存的回复列表内的几个回复都与键入顺序相符合,则操作员必须自行选择。这些选择内的顺序的显示也许凭个人决定,或端看哪一个回复是正确的回复之频率,而这些回复以频率的译码顺序呈现。
标准键盘被广泛运用的标准键盘主要有三种Qwerty键盘及其相近的变体,12键式电话按键板,及17键式数字按键板与其相近的变体。这项发明所具有的独特优势在于提供标准电话、数字按键板及本说明没有涵盖的特殊设计按键板有用的方法。
易触键度非易可键入装置即其内键钮的符号指定已为固定;只有熟悉此装置的打字者能发展出肢体的本能反应,使用特定的移动模式来译码特定的符号。易触键度的装置有下列三项特征1)低触键度,2)以歧异编码为基础,3)在一般操作模式下,触键打字者可以使用可键入装置打出具有一定可接受程度准确性的文字内容,而不需要为了触键打字的工作以干扰歧异消除的过程而过度分心。
易触键度是一个程度问题;它是触键度的测量。触键度依照许多因素而定,有些属于打字者个人问题,有些属于可键入装置的使用,有些则属于可键入装置本身的结构。举例来说,某个可键入装置对某个触键打字者来说,其易触键度已足够应付有些打字工作,但是对其他人来说却并不足够。
易触键度、文字内容精确度及触键打字者注意力分散的两个关键定义内容依据许多因素而定,包括□歧异消除的方法,□机器使用的情况,例如当开车或坐在桌前的时候,□需打字的文字内容种类,此文字内容决定必须的精确程度,□参考数据,□打字者的技巧,
□个人喜好,及□歧异消除机构吸引使用者的方式(例如,当语音合成机构说出句子或问句时,此机构对使用者而言也许比或不比铃声或闪光来的令人分心,)。
虽然易触键度就像温度一样,是程度的问题,它也像温度一样,其定义都非常清楚。一旦这些不同的因素都以此领域内技术高超者都相当熟知的标准实验的协议确定以后,与使用者或使用指群有关的部分,一可键入装置的易触键度可以被数量化。更仔细地说,易触键度的两项部分能以歧异编码加以测量查找错误及查询。因此,易触键度的数值可以被指定,不需要直接参考任何使用者数量,只需要参考前述的歧异编码。
就像温度,易触键度有一个较低的界线。我们清楚地知道,就任何打字者而言,若一装置在每键入一个字符或每键入三个字符之后,使用者就必须介入以消除歧异,此装置不能说是易触键度装置。易触键度的较低界线能以注意力的持续性来呈现。若一打字者的注意力必须一直着重在歧异消除机构的操作上,以打出可接受程度的文字内容,那幺这个装置就非易触键度。
易触键度的实际较低界线与具有平均程度打字技巧的打字者有关,且与上述理论上较低界线来的高。为了要让易触键度的发明概念在数字及观念上都能精确及准确,易触键度的数值便以查找错误及查询的值来呈现。这项数值上的特性描述更明确地指出现有发明的方法和装置与过去的不同。
易触键度歧异编码是易触键度装置的基础。
反馈装置此装置允许使用者在不同点介入以译码由歧异编码产生的符号序列,其内部对使用者感官知觉的反馈是必要的。通常这种反馈是以符号的图号方式呈现,但是反馈也有很多种形式,例如听觉、触觉甚至是嗅觉等。
人体工学因素含有歧异编码的键盘设计和限制的消除相关。这可能包括查找错误率的降低,查询率的降低,键盘大小符合的键钮数目,与现有的键盘如Qwerty键盘、电话按键板、或数字按键板的结合度,分隔物结构的稳定性,结构精确度,模式移转键钮最小使用量,分隔物结构,单手及双手打字间的结合度,及保留如字母排列顺序的传统。其它限制包括歧异消除机构的人体工学,相关效小之符号的译码的人体工学,外观及感觉,和于利用歧异编码之通讯的传送与接收末端的计算器资源有效性。
查找错误可测量歧异消除机构所产生的错误,此歧异消除机构从一歧异顺序的一连串可能性译码当中有系统地选择可能性最大的(最有意义的)的译码以消除歧异。因此,一编码的查找错误率是总数除以所有不是歧异顺序最可能译码的可能译码,此可能译码为可能译码的参考可能性。在以字符为主的歧异消除的情况下,这些顺序以「空格键」开始与结束。也就是说,这些顺序即字符。查找错误是指最有可能的译码不是正确的时候的可能性。查找错误以比率的方式呈现。查找错误率是字符对查找错误的比。查找错误率是查找错误可能性的倒数。
查询可能性是总数除以所有非独特的(有意义的)译码,此译码为前述译码的参考可能性。这指出了一个字符可能会有超过一个以上有意义的译码的可能性。因此,使用者必须利用查询来决定用哪一个译码。查询可能性的倒数是查询率,单位为字符对查询的比。查询率提供于查询间键入的字符的平均数目。
实质性最佳化在考虑到其它加诸于编码的限制下,若一编码就性能方面来说,为最好的编码的其中之一,我们便称其为实质性最佳化。例如,20个键钮上的编码的查找错误率可能就比2个键钮上的编码来的低,但是考虑到2个键钮上编码的限制,这2个键钮上的编码可能是以查找错误率来说是最佳化的。,最佳化人体工学编码可以被定义为同时就每个人体工学限制的集合而言能达到最佳化的编码。
这些限制包括但不仅限于键钮数目、查找错误率及查询率。这三项限制,每两个一组的限制都相关。查找错误率倾向于和查询率一起提高,而查找错误率和查询率随着键钮数目降低而提高。当一已知标准为唯一最佳化标准,及有些其它标准也必须最佳化的时候,此已知标准的可能最佳值可能比可取得的可能最佳值来的好。因此,与已知设计相关的人体工学限制及其重要性必须被看作这项发明所提出的最佳化方法的最初步骤。
必须要强调的是,没有办法肯定地讨论歧异编码的最佳化,但必须要评估与需被编码的语言的参考数据组的相关性。的确,考虑到任何歧异编码,就已建立之数据而言,要建立资料组且其编码为最佳化是可能的。
考虑到参考数据组,一已知编码最佳化的预估可由随机编码构成的实验获得。稍后会再详细讨论随机编码。
歧异消除方法若要适当地定义歧异编码实质最佳化,必须就已选择的歧异消除方法而论。与一歧异消除相关的最佳化编码有可能不为另一个歧异消除方法编码最佳化。
在此项技术当中,至少有两项著名的歧异消除方法。这些为以字符为主及以字块为主的歧异消除法。在以字符为主的歧异消除法中,一个字符表及其可能性被用来在歧异编码中之已知编码的可替换译码间来作选择。例如,已知编码中有意义译码的所有字符将接受比较,而具有最高可能性的字会被选择。以字块为主的歧异消除法也相当类似,不同的地方在于列表中含有文字内容的片段及片段的可能性,这些文字内容片段规模有一定的程度。
以字为主及以字块为主的歧异消除法都是一般性架构的特别案例。一般性架构是以顺序为主的歧异消除法,此消除法内的顺序列表与可能性有关,而歧异消除是由这列表来实行。必须要注意的是,语言里,如英文,定义字的界线的「空白」符号是这项讨论的目的,跟其它的符号没有差别。个人可以定义顺序的列表及顺序能性,在此当中,前述的顺序包括「空白」符号,因此延伸超过字的界线。个人可以再进一步定义包括通配符的顺序,之后可定义含有任意次序列的顺序列表,而这些次序列不一定会与语言内的文字相应。在这样的情况下,语言任意复合表述可以被建立起来,也可以用在歧异消除法。
例如,在次序列之间的语法及语意关系可用来消除歧异编码序列可能性解释之间的冲突。为了使其更易于明白,在此应用上,除了特别指明的状况,我们将以著名的以字符为主歧异消除法为主。对此方法熟练的人将能够体会此项发明所倡导的方法的益处在于并不一定使用以字符为主歧异消除法,任何其它的歧异消除法都是可用的。
分隔一个整数n的分隔是当其总和相加等于n的一组整数。通常一个已知的整数会有数个分隔,例如,5这个整数可分隔为3∶2,也可分隔为2∶2∶1。对此方法熟练的人对用来产生一个整数所有的可能性分隔之互除法应是熟悉的。大部分传统编码使用的是尽可能平均分隔法。也就是说在一个分隔中,在可能范围内依所需编码的字母数而得之指定键钮数,每一键钮上的字母数是相同的。下文将会为此项选择是在某些人体工学性考量上的合理选择作更深入的解说,虽然这在其它方面可能是次重要的考量。
歧异编码有两种复数在此要为其专属权提出申请。此两种复数为1)易触键式歧异编码,及2)实质最佳歧异编码。歧异编码可能是实质最佳但非易触键式,或易触键式而非实质最佳,或既非实质最佳也非易触键式,或同时为实质最佳及易触键式。
此项发现始于指出如何在这两种复数中找出歧异编码,并找出编码在哪一种复数中。接下来要解释如何使用在此两种复数中的这些编码来制作打字装置,以及如何将这些编码使用在解决制作打字装置设计人所遇到的不同设计问题。
此项发明最佳模式是建立在设计标准的组合上,此组合并应依寻此项发明的指导原则来进行最佳化。现在将用几个实际相关且实用的特别情况来说明这一系列此项发明所倡导的方法及装置。
这些可由熟悉此方法之人依寻此项发明指导原则来建造的装置之种类范围远超过在此所选出的这几项应用方式。许多不同的属于设计限制上的极端或特殊状况在此应用中可以得到解决办法。在这些状况所包含的指导原则下,如何适当组合这些特点以便解决过度中或合成上的设计问题对熟悉此方法之人将是显而易见的。
其中一项应用是单独参照查找错误率来进行最佳化。此项应用是为一个内存小且计算器功能低的装置而设计的,智能卡就是一个例子。像这样的一种装置,计算器资源或许无法供应支持为用户在歧异消除过程中的一个复合查询程序之用。因此这个装置使用一种最简单的歧异消除程序,也就是对任何指定编码之最可能性译码作系统性选择。
另一项应用是单独参照查询率来进行最佳化。此项应用是为交通工具驾驶者而设计的,汽车就是一个例子。即使计算器资源足以供应支持复合查询程序之用,这样一种程序的使用应减到最低以达到尽量不使驾驶者自驾驶中分心之目的。
下一项应用是提供电话机按键板参照查找错误率以及查询率来进行最佳化,同时与一般电话机按键板的设计是可兼容的。
再另一项应用是参照惯常的标准来进行最佳化以保存英文字母顺序排列。在一般触键式电话机按键板上字母是按照顺序排列的。经由对分隔进行最佳化,要在传统电话机按键板保存英文字母顺序排列,并同时要减低查找错误率以及查询率是有可能的。
对分隔进行最佳化提供了更多在所示之实质最佳查询以及查找错误率按键板,并尽可能保存传统Qwerty按键板之排列的应用方式。
一项更进一步的应用说明了与传统设计尽可能一致的键盘设计是一个建立在歧异编码上并且和一个数字按键板一致的键盘。
在许多的应用上,一个符合人体工学能同时进行歧异及歧异消除操作用的键盘是有利的。目前为止,在能将所需编码符号相除的一些键钮数字中选择歧异编码会是较佳的。一个等于1/2的符号数键钮数字是最常被采用的。这个常用选择的理想结果会展示在下一项应用中。
另一项应用是键盘如何为交叉平台兼容度进行最佳化。在这一项应用中有两个键盘,一个单手键盘及一个双手键盘,是为能在高速转变情况下操作而设计的,如此用来操作其中一个键盘的触键式打字动作毫无困难的移转成用来操作其它键盘的触键式打字动作。这个键盘在其它目的及优势之外还具有降低打字伤害可能性的附加优势,这将会在细部说明中有所解释。
集合上述所有的应用说明了不同键盘的使用代表了不同程度的最佳化,而一位指定使用者既然有可能会需要在几个不同的情况下用到键盘,这同时也代表了必须使此程序与不同的解决办法在一个单一装置上共存。针对这个问题有一个出人意表的解决办法,这是因为有了这个借助歧异编码才可达到的小型打字装置尺寸的缘故,也就是此项应用中所指的双折式个人数字助理。
到目前为止所讨论的这几项应用是和硬件及软件规格有关联的。然而,使用一个完全或主要以软件为基础的解决办法来达到此发明的许多目标是有可能的。这里将详细说明一个软件处理的例子以便解释使用合适的软件如何能结合应用现有硬件的特性来达到此发明的某些目标。
最后一组应用史无前例谐和地将用来制造低键钮式键盘的两个可替换的方式结合起来协调法及歧异编码法。
首先,这说明了经由符合人体工学建立的协调模型并与查询率以及查找错误率之最佳化程序相结合,将可使一个n键钮上的歧异编码功能与实质上较n键钮大之m键钮上的歧异编码功能类似。当此方法应用于一般歧异编码上时,一般歧异编码上这8个字母键钮则得到实质最佳编码之属性而不需在13个键钮上来协调。在此所有关于如何延伸歧异编码的创造批注讨论中,虽是以英文为参考但也适用于其它语言。具体而言,这里虽是根据此项应用来进行讨论,但批注对于所有的应用是一般适用的。
其次,这说明了将一个拆开占领法与前述应用中的例证方法结合,键入装置数目可以进一步减低,在这个范例中使用了4个键入装置来操作一个16码的歧异编码装置。选择4这个数字所以一个应用此码之掌上型装置可经由握住这个装置之手的食指及拇指来操作。
易可键入装置之操作概要。
图2说明一个依歧异编码为根据的易可键入装置之操作概要。这样的装置具有键入功能,而操作此装置(步骤140)会产生编码符号序列(步骤141)。易触键式歧异编码在步骤142中是用来将这些编码符号序列与译码符号序列定位的。这些编码符号序列则可选择性的输出到一个此装置使用者可作直接观测的显示器上,或以电子型态作为进一步处理、传送或储存之用(步骤142)。
这里要特别指出图2概要中的歧异编码装置除了易触键度之外还符合其它人体工学标准。
实质最佳编码之建立最佳化一个参考一组人体工学标准之歧异编码的研究方法步骤会依图3来解释。整体来说,这些步骤如下□步骤2000选择一组统计上相关连的译码符号植入一个歧异编码,这包括了下列次步骤2007选择一组参考数据,2008依照步骤2007所选择之数据分析符号之统计相关性步骤2001选择一个歧异消除法。
□步骤2002选择编码符号数字。
□步骤2003依照应为实质最佳之编码来选择人体工学标准。
□步骤2004比较步骤2003中所选择之人体工学标准的重要性。
□步骤2005选择最佳化方法。
□步骤2006应用步骤2005所选择之最佳化方法,并由此产出实质最佳歧异编码。
由此可见,步骤2000到步骤2003能以任何顺序来应用,而这些步骤之一的应用将能够影响在其它步骤中的选择。现在将对这些步骤应用的细节作说明。
步骤2000选择一组统计上相关连的译码符号植入一个歧异编码。这个步骤还包括了次步骤2007,选择一组参考数据,以及次步骤2008,依照步骤2007所选择之数据分析符号之统计相关性。这些步骤的目的是要找出能够歧异植入的那些符号。所有的歧异消除程序都是透过利用符号之间的相关性来对哪一个译码符号序列应和一个编码符号序列相连作预测。假使一个译码符号随机分布在所需编码的文字中,那幺则无法植入于一个歧异编码中,这是因为不可能对一个随机分布符号作出预测。一般而言,对于任何自然语言,用来编码此语言的符号(例如,在英文中是字母,在中文则是表意文字)会是统计上充分相关的以利于这些符号之有效歧异编码的设计。也有其它符号,如标点符号,可能是统计上充分相关的,在这些符号之间以及和用来写这个语言所需的字母或表意文字之间。步骤2007以及2008的微末细节将因所要代表之语言而定。分析用在自然语言文字中的符号之统计相关性的方法对语言学家来说是相当熟悉的。
步骤2001,选择一个歧异消除法。如前文已提过的,目前至少有两种著名的歧异消除程序,以字块为主歧异消除程序以及以字符为主歧异消除程序。这两种方法都使用符号之间的统计相关性来对哪一个译码符号序列应和一个编码符号序列相连作预测。以字块为主以及以字符为主的方法都可透过使用关于语言的较高级信息,例如其语法及语意,来扩大。这些步骤的目的是要建立一个依所选择之歧异消除程序为准的歧异编码,进而使译码序列之最选择与每一个编码序列相连。所选择之歧异消除程序细节可以影响依寻此法所设计之歧异编码的细节性质。这个方法将会选择以字符为主歧异消除程序作为歧异消除程序来说明,虽然也会讨论到其它的歧异消除程序。
步骤2002,选择编码符号数字。编码符号数的选择对于以歧异编码为基础之打字装置的设计是极重要的。这个选择是在考量许多因素下所作的,包括打字装置的尺寸以及可接受的歧异度。这些因素以及其互相作用若以实际例子做参考则可得到最好的解释,这样的例子会在下文中使用到。
步骤2003,依照应为实质最佳之编码来选择人体工学标准。这项发明的一个重点在于发现以及定义几项决定打字装置质量的人体工学标准歧异编码。这些标准包括了易触键度,查找错误率,查询率,结构精确度,实体精确度,对传统之保存,分隔结构,交叉平台兼容度,设计规则度,以及扫描速度。依个别应用而定,一个以上的标准可能会是适用于打字装置的设计。
步骤2004,比较步骤2003中所选择之人体工学标准的重要性。当一个以上的标准可能会是适用于打字装置的设计时,就必须依其重要性在这些标准上作一些取决。当此人体工学标准是受到单独考量时以及当同时需要依另一个人体工学标准进行最佳化时可达到已知的人体工学标准有同样的最佳值是极少发生的。
步骤2005,选择最佳化方法。以下将详细讨论两种最佳化方法,随机选择以及导引式随机前进。这两种之间随机选择通常是比较容易应用的,而导引式随机前进却是能够产生较佳编码的。这两种最佳化方法是许多可能适用于指定打字装置设计之方法中的代表。在某些情况下,例如以下所考量的第一个协调/歧异编码装置,所需检查的编码数小到足以对每一个作彻底的对照。
步骤2006,应用步骤2005所选择之最佳化方法,并由此产出实质最佳歧异编码。不考虑步骤2005所选出的最佳化方法,在应用产生实质最佳歧异编码的方法时必须用上某些技巧。尤其当一个最佳值在几项人体工学标准上是即刻需要时,最好是先单独考量各个人体工学标准,如此则能对最终可达到之编码质量作出一个预测。这个预测对微调最佳化来说可视为无价的,这在下文中会有更详细论,一旦完整介绍过这两种最佳化方法之后。
随机选择 要找出一个有优良属性之编码的基本方法就是随机选择编码,测试编码的属性,选择拥有最优良属性的编码。彻底列算,也就是测试在候选码组中的所有编码,通常不会是一个可行的选择由于所要测试的编码数对于任意一段合理的计算时间来说是过大的。
随机选择提供了一个标竿,而得以依照此标竿对其他编码选择方法的功能进行测量。假设一组人体工学标准以及此标准的比较是已知的。我们能够透过随机选择产生另外的歧异编码来对一个第一歧异编码的实质最佳度参考此标准以及其比较来进行预测。假如在一个小量的随机测试中参考已知的人体工学标准找出一个与第一编码有相等或更优良的数值之编码是可能的时候,则此第一编码即非实质最佳的。
反过来说,假如可说明一个实质较大量的随机测试在产生与第一编码有更优良或相等的数值之编码的时候是必须的,或是一个更优良的编码存在时,则此第一编码即非实质最佳的。
参考图4我们详细指出一个排除候选歧异编码为实质最佳之假设的方法。整体来说,这些步骤如下□步骤3000决定一组定义一个包含候选码之合适编码组的相关限制。
□步骤3001在此候选码可能是实质最佳的情况下来决定一组人体工学标准。
□步骤3002由步骤3001所决定的码组中随机选择一个编码的子集。
□步骤3003依照步骤3001所决定的人体工学标准来评估步骤3002所选出的个别编码。
□步骤3004依照步骤3001所决定的人体工学标准以及步骤3003所得到的数值比较候选码的数值。若是在步骤3003中所得到的任何数值比候选码的数值更佳时,则可排除这个认为候选码为实质最佳的假设。这些步骤的细节如下步骤3000,决定一组定义一个包含候选码之合适编码组的相关限制。在一个候选码实质最佳性需要评估之情况下此码组必需接受合适的定义。一些可能性的相关限制为编码符号数,分隔结构以及认可一个特定的排列,例如字母的顺序排列。每一个限制会对此与候选码适当比较过的编码组设限。
步骤3001,在此候选码可能是实质最佳的情况下来决定一组人体工学标准。有些可能与候选码的分析有相关的标准为错误查找错误率,查询率,认可一个特定的排列,例如字母的顺序排列,认可一个惯用的设计以及结构精确度。
一旦实行步骤3000与3001后将对此码组编码性质之分布下定义,并对此分布之数值可作随机取样。以图5为例,此码组编码可分别被定义为1)尽可能相等之分隔与2)以7,9,11,及13为指定之符号编码数。以上及为步骤3000之定义。完成步骤3001即可确认查找错误率是唯一有关之人体工学标准。步骤3002与3003乃综合以上步骤来获得一数值分布,而此分布之图形可以用随机取样获得。以图5为例,照步骤3002从各分布中选择5000个编码,再照步骤3003测量每一个编码之查找错误。此数值是以查找错误百分比(查找错误率之倒数)对已知错误百分比之编码数量的比例来表现。随着键钮数目的增加,分布图形之尖峰则更加明显。如以查询可能性代替查找可能性来重复以上步骤,即可获得图6中的资料。
为了对步骤3004作图标,必须选择一个将受测试的候选编码。此编码为[1]提出之pn gt cr zk wj a e hi so ud xf ym vl qb等14键式编码。此编码之查找错误与参考数据之比对为每105字有一次查找错误。依照以上步骤进行,我们发现以尽可能相等之分隔的14键式编码在查找错误与候选编码相等或更好的情况下,可以在平均七次的随机测试中获得。如以查询可能性当有关之人体工学标准代替查找可能性来重复以上步骤,我们发现拥有比候选编码查询率(每4字一次查询)更好的编码会在随机测试中平均每四次出现三次。于是[1]已知的歧异编码不论是以查找错误率或查询率来说都是实质性最佳化。的确,以查询率来说,大部分的编码都比此已知编码更好。
通常来说,假如某编码尚未依人体工学标准而最佳化,很有可能此编码在妥当的语言资料衡量下并非实质性最佳化。
导引式随机前进导引式随机前进是一种反复性最佳化方法。这种方法在每一步骤都有从前一步骤之最佳编码为基础而产生的新编码,而这些新编码可能比前一步骤之最佳编码更好。随着步骤的反复,更好的编码得以产生。在此将对这套程序稍作解释,再进一步正式讨论。
在目前的情况下,关于多于一种人体工学标准的歧异编码最佳化,我们在缺乏这种知识的情况下,最佳寻找方向的继续对任何人来说都是有如瞎子摸象般隐蔽不清的。于是最保险的办法是从愈多愈好的方向采取愈小愈好的步骤前进,而决不在评估与比较所有步骤和方向之前盲目采取其它行动。小幅步骤的累积可能会让寻找者碰壁,这一类的查询应增有”重来”的步骤,可以将情况从无法妥协与受阻的局面带出。
正式来说,主要问题是在歧异编码的空间内采取最小步骤,再将这些最小步骤导引过以上的空间而达到理想的编码。依照此项发明的教义,在歧异编码的空间的实质性最小步骤相当于编码到编码中派定的单一配对排列。在最佳化方法中的每一个步骤,能测试愈多对配对排列愈好,如果能测试每一对配对排列为最理想。最后选择性质上改善最大的配对排列来作最佳化,而以此结束所有步骤。如果没有性质上改善最大的配对排列,则随机选择其中一个。
依图7作参考,以下为此项方法的步骤□4000自一系列候选码中选出一组作为起始码.
□4001自起始码中以微扰法求出一组新码,以符号键钮配对式的排列法则是较合适的,最好是所有可能性的配对式排列组合。
□4002测量此组新码的属性。
□4003检查是否已达到终止标准,此指限制进一步改良的标准。
□4004假使已达到终止标准,则输出此组最佳码。
□4005假使未达到终止标准,检查此系列由排列法自起始码中所求得的码组中是否包含一组比此最佳码更优的码。
□ 4006假使在此系列码组中有一组比此最佳码更优的码,选出这一组最佳码作为新最佳码。
□ 4007选出一组新起始码。假使步骤4005的答案为是,选出此系列码组中的最佳码作为新起始码,否则可由此系列码组中任意选出一组新起始码。完成后,回到步骤4001。
当只有一个标准可供最佳化时,自一系列候选码中选出最佳码的选择过程将是易如自此系列码组中选出在此标准上有最适值的一组码。然而,当有不只一个标准同时可供最佳化时,这些标准的价值群则只有局部性次序,此时如何在这些价值群中做出最有利于最佳化过程的选择将非易事。
进行同步最佳化的一个方法是经由单独对每一个变量来执行最佳化。因此,当冲突发生而导致无法同步达到最佳状态时,这里是以一般性情况作假设,对每一个标准的重要性之取舍则有建立的必要。而这种相对性的取舍则是对设计产生约束的一部份。
易触键式编码之建立 为求有助于说明如何来制作及使用易触键式编码,我们将对易触键度设定三个严格的渐进式标准程度。
□程度A此一易触键度之程度可由一位非正式而尚可接受的打字员作代表,此类的打字员的特点为1)每一分钟可打20个字并且每15秒中会遇到干扰,也就是说平均每5个字打字员就会遇到一个疑问的查询率,2)可接受百分之二的查找错误,也就是说每50个字查找一次的查找错误率,或是每二又二分之一秒一次。
□程度B此一易触键度可由一位较正式也更可接受的打字员作代表,此类的打字员的特点为1)每一分钟可打20个字并且每30秒中会遇到干扰,也就是说平均每10个字打字员就会遇到一个疑问的查询率,2)可接受百分之一的查找错误,也就是说每100个字查找一次的查找错误率,或是每5分钟一次。
□程度C此一易触键度可由一位熟练的打字员作代表,此类的打字员的特点为1)每一分钟可打40个字并且每30秒中会遇到干扰,也就是说平均每20个字打字员就会遇到一个疑问的查询率,2)可接受百分之零点五的查找错误,也就是说每200个字查找一次的查找错误率,或是每5分钟一次。
在图8中,我们指出要建立易触键式编码的方法中包含了下列步骤□5000决定可接受的查找错误率及查询率之量化数值。
□5001选择一个歧异编码最佳化之方法。
□5002决定最小的所需键钮数,也就是使用所决定之键钮数及步骤。
□5001中选择的最佳化之方法可达到步骤5000中所决定的查找错误率及查询率。
□5003在已知的打字装置设计中决定所能允许之最大键钮数。
□5004决定这些设计标准是否能兼容。假如步骤5003中所决定的键钮数大于或等于步骤5002中所决定的键钮数,这些设计标准则能兼容,若反之则不能。
□5005假如这些设计标准能兼容,如同在步骤5004中所决定的,将所选择之最佳化程序应用在步骤5001以建立一个合适的易触键式打字歧异码。假如不能兼容则此程序是不成功的。
此方法之细节如下步骤5000,决定可接受的查找错误率及查询率之数量值。这可经由测试单独一个或是一群打字员来进行,或是直接经由事先选择所认可的查找错误率及查询率之数值,比如,依照前述之法选择其中一个易触键度之标准程度。
步骤5001,选择一个歧异编码最佳化之方法。参照上述建立最佳歧异编码之方法,共讨论过两种最佳化之方法随机搜寻及导引式随机前进。随机搜寻不似导引式随机前进有效,但也有可能是足够的,假若所能允许键钮数够大,而所认可的易触键度够低。另一个更弱的方法是在一个单一随机试验中选择一码,这在某些情况中可能就绰绰有余了。要想对此以更量化的细节来看,请参照图9,10及11中所讨论的实验结果。
在此实验中,歧异编码5000及一个尽可能平均的分配法由每一组2至20个键钮的歧异编码组中随机选出。同时,一个最佳化程序会以导引式随机前进法施行在每一个2至20的键钮上,这是在以下三项条件下进行的,1)只对查找错误率施行最佳化,2)只对查询率施行最佳化,3)以指定数值法同时对查找错误率及查询率施行最佳化。从为随机选择码所计算出的查找错误率及查询率的数值可以得出以下的统计资料最佳数值,最差数值,平均数值,以及中间数值。以上所有的统计资料都标示在显示查找错误率的图9中,以及在显示查询率的图10中,并且同时应用了最佳化程序的结果,在此程序中查找错误率及查询率分别为最佳化时单一的人体工学标准。同时最佳化查找错误率及查询率之最佳化程序的结果纪录于图11中。从以上这些资料中我们可以对采用哪一个最佳化程序作出决定。采用最符合人体工学的方法或许是最显而易见的选择,但有时一个标准较低的方法已绰绰有余,例如,任何单一随机选择码在指定标准够松的情况下就有能达到这些标准。这种情况将会在下文有更进一步的讨论。
步骤5002,决定最小的所需键钮数,也就是使用所决定之键钮数及步骤5001中选择的最佳化之方法可达到步骤5000中所决定的查找错误率及查询率。
参照上述之实验结果,以及所选的易触键式打字水平,我们可以建立一个表格用来显示这三个易触键式打字水平所需之最低键钮数,并参照前述三种最佳化之方法。图12中所展示的正是这样的一个表格。
步骤5003,在已知的打字装置设计中决定所能允许之最大键钮数。歧异编码将会最常在小型装置上使用,而键钮数则通常受限于键钮的尺寸以及整个打字装置的尺寸。在某些情况下,惯例可能会影响一个键钮数,比如在一个电话按键板上惯例使用12个键钮。
步骤5004,决定这些设计标准是否能兼容。假如步骤5003中所决定的键钮数大于或等于步骤5002中所决定的键钮数,这些设计标准则能兼容,若反之则不能。
在一个打字装置上所能允许之键钮数可能会受许多因素限制,并且这些因素决定了受限程度,这将会在详细叙述此装置之应用的下文中更清楚的看出。
步骤5005,假如这些设计标准能兼容,如同在步骤5004中所决定的,将所选择之最佳化程序应用在步骤5001以建立一个合适的容易式触键打字歧异码。假如不能兼容则此程序是失败的。
假如此程序是失败的则下列情况至少有一个会发生□选择一个更符合人体工学的最佳化方法。
□此装置之设计是经改良过后用于适应较多的键钮数。
□可接受一个较低的易触键式打字水平。
□此装置是废弃的。
位于第9到第16字母键钮上之智能卡 智能卡是相当于信用卡尺寸并包含有类似处理器和内存之计算器组件的装置。智能卡目前已经运用在如安全管理和银行业之应用软件上,但还有许多其它的可能性用途。这项应用说明了将一个智能卡安装在易触键式打字用键盘是可行的,并由此大大延伸了装置运用于应用软件的范围。举一个简单的例子来说,在安全管理和银行业之应用软件中智能卡的使用者在使用时必需记得一串用来作为使用此装置之密码数字。然而,若是使用一个触键式智能卡,则一个属于自然语言、易记颂但较长的密码字符串则可取代一个难记颂但较短的数字型密码。类似智能卡尺寸的装置在这项发明的指导下可以应用于包括由Franklin Corporation所制造并在REX商标下发售的个人数字助理。
在现今的科技下,智能卡的尺寸实质上限制由键盘键入在卡上的信息透过复杂而耗能量的通讯组件传送。因此这项智能卡的应用要推广的是使用一般触键式拨号器及一般触键式音频产生器来进行符合人体工学且迅速之信息传送的一种低成本装置。
多数的电话机上都有12个键钮,每一个都有各别所属的触键声,也就是按下每一个各别键会导致电话机发出一个特定的触键声。然而,世界通用的双音复频(DTMF)标准提供了16个触键声,安装在一般电话机上的双音复频音频产生器就具有发送这全部16个触键声的功能。通过利用这些附加的音频,这16个键钮都可以各别拥有一个专属的触键声,并且可用于字母数字符号序列的编码上。在不考虑其它因素的情况下,键钮数越多则这些键钮的编码歧异度越低。因此这项应用要推广的就是实际使用全部这16个触键声来为字母数字序列编码。如此一来,传送低歧异度之编码信息的装置即可采用随时可用且低成本的组件来生产。
这项应用还有下列更进一步的目的□ 为智能卡尺寸的装置提供一个触键式键盘。
□ 提供一个方法来仿真一组可由一个装置实际产生而且比此组编码符号更大的编码符号。
□ 提供一个在一个装置中以查找错误率作为主要人体工学标准的例子。
□ 提供一个适用于智能卡尺寸的装置之键盘与影像显示器的组合设计。
□ 提供一个能够以非常少量计算器内存来操作的歧异消除装置。
□ 提供一个在一个系统中有一个以上可操作的歧异消除装置,而每一个都可适用于本身的计算器性功能范围。在这个情况下,第一个歧异消除装置是用来在通讯的发送端对使用者提供反馈,而第二个歧异消除装置则用于通讯的接收端。
我们现在将详细讨论这项应用是如何才能达到这些目的。
易触键式键盘 智能卡装置为小尺寸的,因此只有少量实际大小的键钮能够安装于上。假如卡上某一部份是要保留给影像显示器的,那幺能够安装键钮的部份就更缩小了。在所需实际尺寸的键钮之易触键度以及对允许低歧异性编码之大量的需求键钮之间较佳的折衷办法是在9到16个键钮的范围内。图16及15中展示了键钮数在此范围内的两个可能的装置设计。键钮的排列与实用性以及它们和智能卡其它组件的关系将在下面有详细的讨论。
使用序列编码及无意义式译码合成编码符号 参照图13,让我们将一组译码符号分成两个子集1)一个为中心组,包含将与编码符号相连的符号因而产生一个与实际键入装置的一对一关系,2)一个为辅助组包含将与编码符号相连的符号因而产生一个与实际键入装置的多对一关系。(步骤100)如此一来,合成编码符号之方法将记一步包含下列步骤101 建立一个将中心组之子集与编码符号相关连的最初且具歧异可能性的编码,所指的编码符号与实际键入装置有一个可经由实际代表编码符号之打字装置产生的一对一关系。
102 找出短序列的编码符号,其中编码符号序列之无可能译码形成有意义式译码。
103 建立一个次要且具歧异可能性的编码当作译码符号的辅助组与步骤102中所找出的短序列编码符号之间的关系。
举例来说,让我们将16个编码符号与16个双音复频(DTMF)信号相连,如此所指定知音频将实际代表这些编码符号。这些音频将以(0,1,2,3,4,5,6,7,8,9,*,#,A,B,C,D)来标示。我们将使用字母[A-Z]最为中心组的符号,并将它们与具实际代表性的编码符号相连,经由下列之第一组歧异编码进行(0,aw),(1,bi),(2,cx),(3,d),(4,ej),(5,fo),(6,g),(7,hv),(8,ky),(9,1),(*.mu),(#,n),(A,pz),(B,qr),(C,s),(D,t),这里每一对的第一部份为编码符号,而每一对的第二部份为与编码符号相连的译码符号。辅助组的译码符号将会是一个包含“space”这个符号的单一码组。由此我们合成一个代表译码符号“space”的编码符号。候选序列为A8A,这是和下列译码序列(pkp pkz zkp zkz pyp pyz zypzyz)相对应的。在这些译码序列中没有一个形成在我们有意义序列参考单上所列的任何一个字符,因此编码序列A8A为适合于代表辅助组的一个部分,而我们则形成了(A8A,“space”)这一对组合来代表“space”这个符号。那幺,“space”这个符号可以与一个键入装置相连,而键入装置将会引起与A8A相连的音频序列在每一次所指定的键入装置激活后产生。在接收端,一个译码装置会将序列A8A转化为“space”这个符号。已知的键入装置无论是和一个单一而具实际代表性的编码装置或一个合成的编码装置相连对使用者来说都是完全透明的。一个任意大的辅助组的译码符号可以此作代表。由此可看出若有一组参考数据以及一个中心组编码符号的第一歧异编码则一位具一般技术的程序设计员将可易如反掌的创造出能够自动产生任何所要之合成式编码符号数值的软件。
提供一个能够以非常小量计算器内存来进行操作的歧异消除装置。这一代智能卡有限的处理功能以及内存容量在歧异性编码设计中实质增加了低歧异性,也就是说卡上只有极少的计算器功能是专供歧异消除装置支用。
对任何歧异性编码来说,大多数的歧异消除效益,在计算器软硬件的部分以及在使用者的部分,都是发生在到底歧异性编码应采用哪一个其它译码的选择上。由于智能卡有限的计算器功能,对于其它译码的疑问将完全不需考量。在无需考量查询的情况下,每一个编码只需储存对其最具可能性之译码,这是因为当接收到个别的编码序列时只有最具可能性之译码能够经由歧异消除装置来输出。依此简述,我们可以得到一个特别小型的数据库,比如,一个简易尾词树的型态。既然无需考量查询则可经由使用一个简单又省电的显示器来提供足够的视觉反馈,一个和经由口袋电算机或数字手表显示相关连的单线行动标志显示就是一例。
这个只储存及输出最具可能性译码序列的歧异消除方法,我们将称它为易查找式歧异消除法。易查找式歧异消除法只有和实质上易触键度够的歧异性编码才能有效进行操作。如此我们得到一个有关易触键度够之编码的出人意表结论,也就是易触键度够编码能够有效操作极简化的歧异消除装置。
一个应用于此项发明的标准16键式功能完善的歧异性编码是由查找错误率为每4043字一次而查询率为每68字一次的编码所组成,也就是aw bi cx d ej fo g hv ky l mu n pz s t这个编码,如图15所展示的16字母键式智能卡标准设计51中所应用的编码。此图同时包含了一个为显示经由键盘以及一个拇指激活式且可用于许多附加符号与模式转换的辅助键入装置51键入之编码符号进行译码而设计的显示器50。这将在其它应用中有更详细的讨论。值得注意的是,显示器50若可依下列所述之情况放置则在键入装置51及52操作上是较佳的1)字母键入装置51以及拇指激活式辅助键入装置52都安置在一个可供单手(此图中以右手为例)进行操作的舒适位置,同时能够允许最大的键钮尺寸,2)并且在智能卡尺寸的限制下,允许显示器屏幕能够在拇指及食指之间的宽度上拥有舒适又完全的视角。如此独有且特定的安装方式解决了如何使易触键式键盘及一个最大可能的显示器在一张智能卡上有效共存的问题。
既然在此应用中发送端无法允许查询,这个编码是经由导引式随机前进最佳化方式使用查找错误率为进行最佳化唯一的标准来选出的。这里要注意的是,使用这个编码的查找错误率将会是在约每16页打好的文字中发生一次。因此这个编码适用于实质冗长信息的确切传送,尽管是在缺少查询装置的情况下。假使认为在接收端牺牲部分查找错误率之最佳度有助于在发送端减少查询处理的情况下,一个为查询与查找错误率标准而最佳化的另选编码则是aw bu cx d ev pz go hv im ky 1 NQ pr s t。这个编码的查找错误率为每2670字一次而查询率为每101字一次。选择一个依照查找错误率及查询率最佳化的编码将会在至少两个情况下是合适的,1)假使智能卡足以支持查询装置,和/或,2)一个查询式的歧异消除装置将运用在由智能卡激活之通讯接收端。举例来说,使用者以智能卡制作信息,再将信息经由电话线传送到另一具计算器,一段时间后再使用一个功能较强的歧异消除装置进行第二次歧异消除。的确,第二次歧异消除并不需要透过这位原信息制作者来进行,但可透过第二位使用者来进行,例如,这位原信息制作者的秘书。
无论如何,这第二种编码查找错误率仍然是极低的,举例来说,在这样的机率下一位非常熟练的打字员仍然会打错键,这发生的机率约为每100字1次。在任何合理的情况下,这二种16字母键式编码都需为易触键式,如此一来,使用第一种16字母键式编码一位打字员每分钟打20个字时只会需要每三分钟回答一次查询,而使用第二种16字母键式编码则为每五分钟一次。针对9字母键式歧异编码进行相同最佳化程序时,我们会发现akw bng cly dhx epv fim gr jot suz这组编码只对查找错误率进行了最佳化程序,这里的查找错误率及查询率分别为每116字一次及每4.4字一次。这组编码已用于在图16中所示之9字母键式智能卡标准设计。想要以导引式随机前进法来对查找错误率及查询率进行最佳化程序,我们可以同时建立一组查找错误率及查询率分别为每109字一次及每6.2字一次的编码,例如,am bnz cfi dhx evw gjr kosluy pqt这组编码。值得注意的是,既然在使用易查找式歧异消除时无法进行查询,则易触键度只能经由参照查找错误率来进行讨论。在此我们需要对有关查找错误率是否在制作可接受性文字时是否够低的问题作一个评估。尽管是9字母键式编码,查找错误率都可以和一位熟练的打字员按错键的机率相提并论,因此,在这个前提下这些编码可被视为易触键式编码。更进一步举例来说,既然智能卡最常被运用于传送短信息,制作电子邮件,传呼器间的通讯等等,文字正确度的水平可能会较抄写终稿文字的水平要低。由上述这些考量因素我们得到9个到16个键钮为此应用中较佳键钮数范围的定义。若多于16个键钮则不易在安装于智能卡上的同时保留实质键钮大小的优势。反过来说,若易查找式歧异消除装置与智能卡有限的计算器功能兼容,则少于9字母键式上的歧异编码可能为非易触键式。
给打字员的反馈一张具备易查找式歧异消除装置的智能卡可由一位纯熟的触键打字员透过电话线并以打字员在智能卡上所键入的符号作基础之语音合成的方式来操作,无需从卡上得到关于通讯进度的反馈,和/或自通讯接收端装置得到反馈。然而,在有充分的计算器资源来提供智能卡支持反馈的情况下,直接从智能卡提供反馈也是可行的。
这里指出了提供有效反馈所需的计算器资源比易查找式歧异消除装置反馈所需的计算器资源要少。尽管在智能卡上没有歧异消除数据库相关软件,而且只使用原形电子电路版,熟练的使用者都知道一个特定的字型在相对应的键钮被按下时可直接传送到这个显示器,而已知的字型则是最有可能与此键钮相连的字母。以aw bi cx d ej fo g hv ky l mun pz qr s t这组上述之编码为例,所完成的文字对于人来说通常是易读易懂的。以Gettysburg住址的第一行为例,使用1-字块(单一字母)资料可作以下读法oour score and sehen kears ago our oathers irought oorth onthis continent,a nea nation,conceihed in liiertk,and dedicatedto the proposition that all uen are created erual.
这样水平的一个正确度就已经足够提供打字员关于他或她在智能卡上进行键入之文字一个大略的准则。这个例子说明了歧异消除可以在内存极度小量的情况下达到;这里唯一需要的内存是用来储存将在这16个键钮启用时作对应式显示的这16个字型。这个处理方法是可以用所需之计算器资源来分级的。内存越多,如2-,3-,较高的字块机率将可被储存并作为著名的以字块为主歧异消除程序中之使用基础,因此可以对使用者显示正确度增高的文字修改。
虽然以字块为主歧异消除程序在此专业中是为大家所熟知的,目前为止却被证明为是不实用的。下面这个例子将会对此说明原因以字块为主歧异消除程序不足以有效的对太过歧异的编码进行歧异消除。这个例子中的以字块为主歧异消除程序联接了一个易触键度足够且歧异度也足够的编码,进而使有效歧异消除程序能以以字块为主方式进行。传统的方法一直以来都是舍以字块为主歧异消除程序而就以字符为主歧异消除程序的。然而,应用本发明的指导原则将可使以字块为主歧异消除程序成为可操作且可实际运用的。
这个例子更进一步说明了1)在运用本发明的指导原则时是不需要以字符为主歧异消除程序的,2)在运用本发明的指导原则时是不需要微处理器的,3)多于一个且有可能为不同的歧异消除装置可被使用于以歧异编码为基础之同样的通讯系统。以字符为主歧异消除程序,或者是另一个歧异消除方法,可被使用于由智能卡传送过来的通讯接收端,而智能卡在本机上是使用简易以字块为主歧异消除方法来提供反馈给智能卡的使用者。
用于以字块为主歧异消除方法的字块长度增加时,文字修改正确度也随着增加。然而,在达到某些字块长度时所需内存容量会逐渐靠近以字符为主歧异消除程序所需内存容量,而基于以字符为主歧异消除程序一般会产生比以字块为主歧异消除程序较佳结果的原因,通常都将选择使用以字符为主歧异消除程序,这是指在有足够内存来支持他的情况下。
进一步的应用如果在智能卡装有超出储存歧异消除数据库及软体所需之可供利用的内存,那幺此装置的可能性应用则可大大的增加。举例来说,只要多出几位的内存,一位使用者可经由一个合适的语音信息系统来查询电话簿里的信息,可在智能卡键盘上键入一个名字及其它同属性信息来查询一个电话号码,并且可将所查询到的电话号码储存于用户内存以便之后能够下载到另一个性能更好的装置上。
查询最小化-为交通工具所设计的打字装置此项应用所考虑到的是一个当查询是打字装置的设计中主要限制的情况。一般而言降低查询率是有利的,如此可减低打字过程中回答查询的需要。然而在某些应用中,降低查询率有着至高的重要性。
查询将显示在一个使用歧异编码的打字装置最实际的应用之影像显示器。当使用者急迫需要视觉的情况下,例如当使用者在驾驶车辆时,那幺基于安全上的考量,会迫使视觉对查询进行评估的影响应被降到最小。尽管查询是经由听觉装置来进行的,使驾驶者的分心因素最小化是异常重要的。另外,当驾驶车辆时,通常需要双手同时握住方向盘,最好是不要因需要操作一个打字装置而离开方向盘。这一目的可经由直接在方向盘上安装此打字装置的键入装置来达成。
参照图17,我们会发现任何键入装置可安装在方向盘200上。许多方向盘在内外表层附有夹皱来加强手指的抓力。对这样的方向盘,将键入装置201的第一多数与这些夹皱分别的多数相连时当然的。当驾驶者抓住方向盘时,每一手的手指将触碰到第一键入装置201中的四个。驾驶者触碰到方向盘的部位可能会不时的有所改变,例如当驾驶者在大角度转动方向盘的时候。驾驶者会在任一时刻触碰到哪8个键钮组可经由一个位置感应装置来确认,比如一个压力感应装置及检是简易电子电路板的组合,对熟练的使用者来说采用哪一个组合将是明显的。
键入装置202的第二多数可安装于方向盘在内层或外层,每一手的拇指将会触碰到指定之第二键入装置中的一个,同时驾驶者能够握住方向盘。驾驶者的拇指将会在任一时刻触碰到哪一个第二键入装置可经由一个合适的位置感应装置来确认。
以上述之安装于方向盘上的键盘来说,在8个键钮中选择一个编码是理所当然的,已知的键钮将会和双手手指所触碰到的第一键入装置相连,两个模式转换键钮将会和驾驶者的拇指所触碰到的第二键入装置相连。
歧异编码选择 将本项发明所宣扬的引导式随机前进法应用于实质最佳编码的选择上,并只以查询率为最佳化的准则,我们可建立如下列这组8位字母键钮上的编码aksz bcev dfi gmo hgt jnw luy prx。这里的查找错误率及查询率分别为每70.2字一次及每4.1字一次。一如此项说明,这些比率是根据我们的参考数据并使用简易是以字符为主歧异消除程序作为消除歧异的方法而计算出来的。若要将此编码视为易触键式则其查询率可能会是过高的。一位每分钟打20字的打字员或驾驶者会在大约每12秒钟因一个查询而从驾驶中分心,这如需与安全驾驶规定兼容可能是过度频繁了些。另一方面,一位熟练的打字员都有可能无法一面每分钟打20字一面驾车,如此则有可能将查询及打字速度之间的关系带入一个易触键可接受的范围。
有几项降低查询率的附加性策略已超出选择一个实质最佳编码的范围,而这些策略可用于组合中。包括□ 通过增加单指可激活的键钮数来增加键钮的总数。这将会是有利的,比如通过在方向盘上增加一列键钮,或是相等的将每一个键钮设为多重位置的,或是使用一个协调式方法,也就是在两个以上的键钮同步被按下时对编码符号的不同子集进行编码。
□ 当低可能性译码程序与最可能性译码程序之可能性相差过大时消除查询。控制低可能性译码程序与最可能性译码程序之间可能性到底应该多靠近的参数一定要能引发一个查询,而此参数值则可由使用只选出。这样的一个机构在任何查询率为相关人体工学标准的应用上会是有其价值的。
□ 使用一个结合协调式/歧异编码的方法,如下文的详细说明使用一个比简式以字符为主歧异消除功能更强的歧异消除方法。
与现有的电话机按键板兼容之按键板在此项应用中,键钮数的限制在按键板需要与通常具12个键钮之现有电话机装置兼容情况下是显著的。在此项应用中,我们需要保留两个键钮作为非字母符号之用,例如空格键,消除键,句点键,以及传送终止键等。因此,这26个字母必须是分布在最多10个键钮上的。在此项应用中并会需要有最低查找错误率以及最低查询率。我们发现使用最佳方法以及尽可能相等分隔的10个键钮时,可以找出如amq be cdu fiygqx hl jsv krz nw ot这组查找误率为138字一次,查询率为9.3字一次之编码,并可同时对查找错误率以及查询率进行最佳化。这在与查找错误率为29字一次而查询率为2.2字一次的标准歧异编码相比较之下,整体而言比起标准歧异编码有超过4倍的改善。在图18中,说明了以最佳化之查找错误率及查询率10键式编码在现有电话机按键板的标准设计中之应用。
我们也可以将这个10键式编码与分别在美国CITE tegic专利以及CITE epo申请书EPO专利中所提出的9键式编码作比较。这些编码中的第一组,afg bkn jlo mqr dhi sux ptv cyz,拥有之查找错误率为86.5字一次而查询率为3.9字一次,第二组,rpq adf nbz olx ewv img cykthj su,拥有之查找错误率为115字一次而查询率为5.2字一次。这些编码都明显地较在此为这项任务所设计的10键式编码为差。当美国CITEtegic专利以及CITE epo申请书EPO专利都不是为此一歧异编码之建立而生时,而这些数据在这些编码最佳化时(假如的确已最佳化)并不存在,则我们并不能够对于这些编码之实质最佳度作定论。
另一个有用的比较是和依照查找错误率以及查询率来进行最佳化之9键式编码来相比。例如,我们建立am bnz cfi dhx gjr kos luy pqt这组查找错误率为109字一次而查询率为6.2字一次编码。比较这些结果,我们发现经由此应用之指导原则而得到的改善有以下两个出处1)使用多于9键钮以便查找错误率及查询率能够获得改善,以及2)同时依寻查找错误率以及查询率进行最佳化。几如此应用所说明的方法将扩大应用于11键式编码以及12键式编码之上,我们会发现如avy bn cl dhx ewfip gjo kr mu qt sz这一组11键式编码的查找错误率以及查询率分别为215字一次和10.1字一次,而如aw bn cky dhgq ef go ip jr lz mxsv tu这一组12键式编码的查找错误率以及查询率分别为313字一次和13.2字一次。
如此说来,透过在为非字母符号编码时牺牲*键钮以及#键钮的使用,我们可以大幅度改善查找错误率,并且实质改善查询率,继而将标准电话机兼容键盘轻松地带入(程度B)易触键式范围。这些改善是否能够弥补对于无法在非字母符号编码时使用*键钮以及#键钮的损失只能依所建立之装置的既定功能而定。在这里要指出非字母符号能够以在前文中所说明的智能卡应用之编码序列来进行编码。假使能够使用*键钮以及#键钮对非字母符号进行编码,那么在部分遵循使用*键钮以及#键钮为传送终止符号的一个特别符合人体工学的设计如下。使#为空白符号=字符键入终止符号编码,##为=句子键入终止符号编码,而###为=传送终止符号编码。如此一个符号编码之复杂度与符号之出现机率成反比。依不同的应用状况而定,*符号序列能够被用来对其他非字母符号进行编码,例如消除键,@(这是在电子邮件的应用上),以及/或者作为模式转换符号来使用。
依寻英文字母顺序排列之电话按键板这一项应用对严重受限的键盘设计提供了一个解决办法,这里指的是一个键钮数固定,键钮位置固定,键钮上的符号排列固定的键盘而言。这个问题在键盘设计中浮现,如1)尽可能保存标准歧异编码终常用的字母排列顺序,2)与现有的标准电话机按键板兼容,3)相较于标准歧异编码则拥有改善的查找错误率以及查询率。这些制约使在选择一个将作为歧异编码之基础的键钮数时自由度受限。举例来说,我们可以选择一个字母占用电话机按键板上10个键钮的歧异编码,那么*键钮以及#键钮就可以在为非字母符号编码时使用。同时,在标准歧异编码使用尽可能相等分隔的情况下,我们可以选择一个替换分隔而仍然遵循已知的制约。
在字母排列之限制为已知的情况下,这26个单元之个别排列分隔成与一个独特歧异编码相关的10组。在计算器处理时间足够的情况下,则有可能对这些编码个别之查找错误率及查询率进行评估。一个不同而较有效率的程序会是将此发明所倡导之最佳化方法应用在这个最佳化受限的问题上。此发明提出,在建议使用某些较复杂之基本步骤的信息缺乏的情况下,需要对可能编码码组的一个最简化基本步骤下定义。在现前的情况下,歧异编码是一个10组字母之排列表,而所有字母都包含在一组之中,且字母会依英文字母顺序排列出现。一个例子为ab cd efgh ij kl mn opqr stuv wxyz。因此在组中会有9个空格作分隔之用。一个基本步骤就是将一个字母移过一个空格。举例来说,假如我们选择第二个空格,在一次基本移动中,我们可以得到经由将字母c向左移的abc d ef gh ij kl mn opqr stuv wxyz编码,或是经由将字母b向右移的a bcd ef gh ij kl mn opqr stuv wxyz编码。在这个特定编码为已知时,所有可由从这个特定编码之一次基本移动而达到的可能编码就能够轻而易举的产生。在此发现以及已知前文所说明之导引式随机前进的情况下,如何在目前的情况下应用此发明所倡导之最佳化方法对于一个熟练的使用者来说会是显而易见的。举例来说,应用此方法我们会找出ab c0d ef gh ijklm no pqr s tu vwjyz这组查找错误率为65字一次而查询率为5.8字一次编码。这个编码在图19中所示之电话机按键板上即为理想的排列。这个编码的错误率应与查找错误率为29字一次而查询率为2.2字一次的标准歧异编码相比较。比较之后可发现,查找错误率有超过2倍的改善,而查询率则有将近超过3倍的改善,并且是在不影响字母排列顺序,也不影响与现有电话装置之兼容度的情况下。值得一提的是,以上根据为一个电话装置而对11键式或12键式字母符号编码所作之选择的讨论也可适用于这个应用;使用分隔最佳化即可得出11个及12个键钮之实质最佳编码。
这个分隔最佳化方法显然不仅县于此项应用;举例来说,可将其应用于前文中论过的智能卡装置,进而得到一个在一排9-16个标有字母符号键钮之字母排列顺序的最佳编码。
类Qwerty式键盘这个方法用以在前一个应用中制造一个1)与标准键盘立即兼容以及2)立即依寻不同人体工学标准进行最佳化的键盘,可以用来制造一个1)类似标准Qwerty键盘以及2)依寻不同人体工学标准进行最佳化的键盘。如同在前一个应用中的情况我们将透过保留符号对键钮指派的排列尽可能的来维持标准键盘的设计,并同时对这些排列后之符号进行分隔最佳化,如此则能够也将查找错误率及查询率尽量降到最低。这样的应用需要有更进一步的限制,也就是字母会留在如已知Qwerty排列里的同一列键钮中。
这里存在一个类Qwerty式的键盘设计序列,也就是说有三列是专为字母键钮所用的,以及不同的栏数,可能是一个到10个栏。显然的,仅以一个栏,也就是三个键钮,查找错误率及查询率必将会是极高的,而也只有一个可能歧异编码是与Qwerty键盘符号之排列相对应的。这个编码即是qwertyuiop asdfghjkl zxcvbnm,其查找错误率为2.8字一次而查询率为1.1字一次,一个如此拙劣质量的编码是不大有可能被接受作为人和实际应用的。随着栏数的增多,我们将能够找出越来越优良的歧异编码。同时,随着栏数的增多,此装置所需安置按键码之尺寸,保留实质全尺寸键码,也随着增大。因此类Qwerty式键盘一定会是编码歧异度以及键盘尺寸之间的一个妥协结果。举例来说,假如我们希望制作一个类Qwerty式并且和口袋计算器同样大小的键盘,但使用全尺寸键码,则可采用7个栏,就如同在图20中所展示的。一个依查找错误率及查询率所得之实质最佳的易触键式编码会是qwe r t yu I o p asd f g hjk l zxc vb n m,其查找错误率为668字一次而查询率为35.5字一次,明显的,这对许多程度不同的打字员以及键盘应用来说会是属于易触键式的。在图20中,这个编码是以一理想排列状况来进行说明的。在此图中所示之附键盘打字装置是适于用在作笔记,写电子邮件等等。它将会是可随时供打字之用且任何熟悉标准Qwerty键盘的人将不必或只需最少学习的,另外,尽管它是以全尺寸键码所制作的仍可容易地放置于口袋之中。
这里要依查找错误率及查询率指出,依附传统的成本是相当高的,尽管只是大约地依附此项传统。假如我们现在能有字母对17个键钮的辅助指定,我们会发现如w r t bu gi ov p af s d ej ky 1 hz cx n mq的编码,其查找错误率为7483字一次,而查询率为290字一次。这相当于每30页打字文件一次查找错误以及每一页打字文件少于一次查询。这样一个的装置若非为易触键式会是令人难以想象的。
参考图21,我们会看出此编码能够在18个字母正好在或非常靠近其Qwerty位置的情况下来设计,这些字母将以粗体作标示。在这个排列中,想要使Qwerty式键盘打字以及此最佳化之类Qwerty式键盘打字之间打字动作相似度最靠近,手指应该要放在原始列也就是左手食指在(空格键)上而右手食指在(ej键)上。可以见得,经由同时把空格键设`e`键于原始列上,这个设计将在结构精确度上自Qwerty式设计向前迈了一大步,而且比起Qwerty式来说对最灵活手指上的依赖度也将相对地增高。透过键钮符号之合适的排列,任一歧异编码都能够最佳的与Qwerty式(或其它的传统式)键盘相配合。
这里要注意的是透过容许与严格的Qwerty式排列有些许不同,会造成在Qwerty式相似度实用性上一个极实质进展。当这些列彼此之间只有少许差距时,也就是如同在标准Qwerty式设计中一样的,那么操作此似qwerty键盘所需之许多或大部份的手指动作与操作标准qwerty键盘相同或相似。以上说明了保留传统顺序的人体工学标准与保留传统功能的人体工学标准之间的条件交换。
由各种必须最佳化的标准与使用者不同需要看来,为了能提供使用者在最佳化之qwerty类键盘和其它以查找错误率和查询率为人体工学标准作最佳化的键盘之间的选择应是将此项装备应用实际化的原动力。如能在软件内改变按键卷标将促进以上选择的决定。为了能达到此目的,按键上需有能每次显示一个以上符号的功能。此显示功能可由发光二极管或是液晶显示屏等构成。
熟练的使用者会发现属于现代的键盘设计方法可以被应用在其它传统式键盘设计的保留及部分保留上,例如在法国境内使用的azerty键盘。
类数字按键式键盘这一类应用的宗旨是在保持现有硬件不变与最低花费的情况下,让大部分计算器使用者能享受到歧异键盘的优势。这些明显地包括单手打字以及与掌上型适用之歧异键盘兼容的优势。工作站及个人计算器用的标准101按键型键盘通常依qwerty配置下在键盘右端包括一组数字键钮。通常在这组数字键钮附近会有方向键或是能用来移动光标的功能。
图22代表了为普通数字键钮配置600最佳化之歧异编码与移动光标601功能综合之可行性。上述之数字键钮配置600在这个实例有17个大小不同的键钮。取决于其它的设计限制,以上这些键钮可以全数或是些许被用在标点或其它符号。而这些设计限制可能会影响派定于字母之键钮数的选择,字母的分布及其它不同模式的符号等等。这项应用的主要特征包括□派定歧异编码在数字按键板的多个键钮上□以拇指起动式辅助键入功能为次要之更换模式用法熟练的使用者会发现以上叙述的数字按键板之歧异编码派定可依赖软件达成;没有使用特殊功能硬件的必要。假使上述之派定键钮要包括歧异编码的性质,而键钮卷标必须有所改变。举一个实体的例子来说,在这种设定下使用歧异编码,必须按照已有的标准语料库及以查找错误和查询率为前提来选择字母派定于这17个键钮的歧异编码。图22表示的编码af bu cx d ej gi hz ky l mq n ov p r s t w的查找错误率为每7483字出现一次查找错误,而查询率为每290字出现一次查询。此编码已在前文讨论过。上述编码之排列尽量保持与英文字母顺序相同。此已知编码并未按照英文字母顺序作最佳化;但只有对查找错误率和查询率作最佳化。依照这项发明的教义,我们可同时对查找错误率,查询率,英文字母顺序及/或其它人体工学标准作最佳化。
图22可用来表示拇指起动式辅助键入功能为次要之更换模式用法。我们可依此图假设有4个键钮构成辅助键入功能向上602,向下603,向左604,向右605等方向键。这些功能通常建立在4个可压式键钮,但有时也会建立在按键板,摇杆,或是任何可以在使用者操作情况下产生多数及不同信号的装置。
在图22中值得注意的是,数个键钮上标有与歧异编码中不同的符号,在这一个例子来说这些不同的符号都是数码。压下这4个辅助键入功能中指定一个就能获得上述这些符号。辅助按键板上的键入功能可如下作模式派定□602(向上)移转键以得大写字母。
□603(向下)数字/标点模式。
□604(向左)键钮上标有向左符号。
□605(向右)键钮上标有向右符号。
值得一提的是1)根据这项发明的教义,我们可以使用其它型式的辅助按键板上符号及/或模式派定,以及2)更多符号及模式可以被派定于更复杂的辅助键入功能模块上。我们将依照另一项应用更加深入讨论符号的模式派定。此讨论将适用于这项及其它应用。
13字母按键型编码的宗旨及优点 这项发明的教义中多项有关应用都受益于歧异编码最佳化的惊人优点;这就是专用于极度相关符号的键钮数目是极度相关符号数目的一半。假如我们选择英文字母中的[a-z]为极度相关符号,则键钮的理想数目为13。英文中的13字母按键型编码包括下列惊人优点□易触键度,□符合人体工学,可触键打字,非歧异文字键入法,□符合人体工学,可触键打字,查询法,□与标准键盘配置之兼容性(qwerty键盘,数字按键板,电话按键板),□提供从单手到双手打字技术的保留,□提供鼠标/键盘的综合体,□提供降低打字伤害的装置。
从以下详细规格可看出更多宗旨及优点。
易触键度从图11与图12可以看出在以字符为主歧异编码消除法中,甚至熟练的打字员都认为在13个键钮上的歧异编码拥有很高的易触键度。使用前述之导引式随机前进,我们会发现编码aw bn ck ef go hvi p js ly mx qt rz的查找错误率为每515字出现一次查找错误,而查询率为每21字出现一次查询,此为c等级之易触键度。图25展示此编码之理想排列。如前所述,改变控制查询重要性和是否引起使用者注意的变量可更进一步降低查询率。在查询完全不被使用的范围内,易触键度则受控于查找错误率。就以上的编码来说,平均每两页键入的文字中会大约有一次查找错误。这个比率远比一个熟练打字员的错误率来的少。于是13键钮型编码适用于各种不同的触键打字工作及使用者。
符合人体工学,可触键打字之非歧异文字键入法若能以非歧异的信息键入方式使用任何歧异键盘及任何歧异编码消除法,例如歧异消除数据库的数值键入,将会非常方便。在歧异键盘的所有用途中,非歧异文字键入法以愈符合人体工学愈好,也就是说愈简单操作愈好。歧异键盘本为可触键打字用,而如能以可触键打字及非歧异的信息键入方式来操作此键盘会更加方便。
为达到使用少数键钮之非歧异文字键入法,一个常用的策略就是采用协调法。为达到使用最少数键钮的需要,协调法设计师不断地研究能在足够的键钮数目下简化协调法之形式。按基本综合性证明来讲,协调法的复杂性不能多于2,也就是不需要同时激活超过2个键入功能来达到非歧异式符号编码,而键钮数目不能少于受编码符号数目的一半。当下的发明则与上述技术成对比,且指出如果在非歧异式符号编码的简易功能存在的情况下,键钮数目不能少于受编码符号数目的一半。以较独特的例子来说,当下的发明指示至少需要13个键钮来代表字母[a-z],及至少一个模式转换键钮。当此模式转换键钮与其它键钮同时使用时将可独特地与非歧异式地对以上键钮有关之字母作编码。
在一个歧异键盘上,有些键钮只需按一次即可代表许多符号。如果要在非歧异模式下使用同一个键盘,则上述之单次键钮必须与至少一个其它键钮作组合,或许是使用本键,来单选每一个与此键钮有相关之符号。以人体工学而言,以上之键钮组合是愈简单愈好。以易触键度而言,用在所有符号的非歧异式键入上,相同的键钮组合将较理想。为达成以上两项标准,1)派定于每一个歧异键钮上的符号数目必须相同,而且2)每一个歧异键钮上的符号数目必须减少。综合来说,这些用于歧异编码的理想标准键钮数目应是歧异键钮上的符号总数的一半。举例来说,以上标准则意味着13为代表26个英文字母符号的理想键钮数目。
以上之发现可依图23及英文字母的13键钮型歧异表示作参考,而对符合人体工学及可触键打字的歧异键盘使用符合人体工学及可触键打字的非歧异文字键入模式作更深的探讨。在上述图中可看出,代表字母700的每一个歧异式代表字母700的子集都只对两个字母编码。此可触键打字的键盘亦包括一个模式键钮701及转换歧异与非歧异式键入法的功能。此转换歧异与非歧异式键入法的功能可使用软件控制,按照当时情况所需转换模式,或依此转换模式指定某一键钮,或特别形式的键入功能,例如使用双键钮的模式转换键钮701。在非歧异式键入模式下,如果属700的键钮是几乎同时和701键钮激活,则701键钮的激活会使与700键钮相关的两个符号之其中一个编码。
将700键钮的符号对形容成左符号和右符号,且左符号标在键钮左边及右符号标在键钮右边较为理想。在不失一般性的情况下,为达到非歧异式文字的键入,键钮左边的左符号与701键钮的激活相关。当700键钮组中任一键钮和701键钮同时激活时,则上述之左符号将受非歧异式选择。如果上述之700键钮组中同一键钮并非同时和701键钮激活,则右符号将受非歧异式选择。以上所叙述的非歧异式文字键入法亦适用于能合并其它模式的键盘。
适应可触键打字型查询法甚至以最佳化的歧异编码,无限制的计算器处理能力加上尚未发展出的人造智能消除歧异技术,在文字键入时仍会产生歧异的序列,而需要使用者的介入来达到消除歧异的最佳效果。
一位真正的触键式打字员可以不用看着键盘打字,而将目光投注在打出来的文字或是原文上。对触键式打字员来说,较理想的安排会是将所有对歧异序列查询的交互解释摆设成1)不影响打字员对屏幕的注意力,且2)可从键盘以简单与固定的方式回复所有的查询。为达成以上的目的,连串的候选字符可用一个保留键钮来存取及在屏幕上选择歧异字符。使用者可操作滚动条键钮来依字扫描候选字符,除滚动条键钮以外被押的情况下,在扫描栏中的字符是呈现被选择的状态。
依图23与图24作参考我们将对构成适应可触键打字型查询法基础之软件及此软件所控制的视觉显示作更详细的探讨。在第一步骤800检测到一个查询,也就是说此消除歧异的功能在与键入编码序列对应的数据库中发现到多于一组有意义的译码序列。进入查询模式后的功能会将使用者的注意力转移到显示出的查询译码上。此类功能有可能是像图23中框栏702一样的视觉功能。有可能的译码则按照它们的可能性顺序排列(步骤802)。之后(步骤804)最高可能性的译码就如上述一般显示在屏幕上的注意功能区。此软件则在预备状态,等待接收滚动条键钮或是其它键钮的键入(步骤806)。假如是其它键钮的键入,转移使用者注意力的功能则会被移除(步骤808),而此编码会被加入先前键入的文字(步骤810)再回到歧异文字键入法。反过来说,如果在步骤806是检测到滚动条键钮的键入,则会用812数据库为参考来测试是否能获得有意义的译码。假使是有的情况下,现有的译码将被下一个更有可能的取代(步骤814),然后退回到步骤806。如果没有更有可能的译码,此键入装置则进入上述之非歧异式文字键入模式(步骤816),则译码序列以非歧异的方式进入,转移使用者注意力的功能则会被移除(步骤808),而此编码会被加入先前键入的文字(步骤810)再回到歧异文字键入法(步骤818)。
虽然上述代表其它选择的方法是依适应可触键打字型查询法来说明,同样的方法也可以适用于其它情况。例如当”编码”代表有相关义的字符,则数据库就是一本同义字辞典,或是当”编码”代表一个字符翻译进入外国语言的各种不同含义,则编码的可能性是由自动翻译软件提供。
跨平台设计之保留以符合人体工学标准鼠标/键盘假设一位拥有内建单手打字键盘之掌上型装置,例如个人数字助理的使用者,通常一天下来,很有可能他或她也会用到计算器的双手用键盘。如果这位使用者想要有效地在这两种装置使用触键式打字,则用在单手与双手键盘的移动模式必须愈相似愈好。在使用两种键盘之间切换的时间愈短,保留打字技术的要求就愈重要。这项发明提供了单手与双手键盘间快速切换的装置且能达到跨平台间打字技术的保留。
这项发明是有关适用于列算表或网络用表格资料键入的单手键盘。这项发明与以下程序能有用地互动,例如电子游戏或是制图程序,1)需要快速的光标与键入的替换,和/或2)当符号的键入合适性取决于光标在屏幕上的位置。当使用标准计算器配备的qwerty键盘和鼠标时,使用者必须将手移离键盘去操作鼠标。在包含快速且连续地打字及鼠标操作的工作下,例如为计算器屏幕上的设计图作标示,或是填入如网页的表格,这一类的鼠标和键盘间的交互替换会非常缓慢和麻烦。在这项发明中,将单手键盘装载在一个能在平面上滑动的构造上,则可拥有鼠标和键盘的功能。虽然使用者会认为主要是打字的工作还是用双手键盘比较好,单手与双手键盘间混合使用时,两种键盘间更相似的键钮排列将会更加理想,提供在单手与双手键盘间打字技术天衣无缝地移转。
从图25,28与26我们可以看出,选择可以排列于单手键盘上的歧异编码而使手指与姆指的动作(图中为右手的情况)不论是在单手或双手键盘上都是相同的,而且另一手的打字动作也与专选的单手打字相似。
此项设计策略如下□选择拥有够低查找错误率和查询率的13键钮型编码。
□为上述之13个键钮选择排列的外观。理想的排列会是5个键钮在最上行,5个键钮在中间行(基数行),以及3个键钮在最下行。
□选择要使用哪一只手来激活单手键盘。
□将排列键钮时,需依照前一步左右手选择而定。而且——使用基准行的比重为最大值。
——最常用手指的比重为最大值。
——最上行的比重比最下行的比重高。
·然后,将所有左手激活的键钮与用右手激活的键钮配对来取得双手键盘的排列,而左右配对的键钮必须以从键盘正中由下向上画分的直线作对称平面。
·从派定于原来13个键钮的两个符号中选出一个,将选出的符号与上述步骤中配对的键钮其中一个相联。这个步骤可以用偏袒于单手键盘或相关的双手键盘的方式进行。
——偏袒于单手键盘将高使用度的键钮排在双手键盘上受选择的一边,再将低使用度的键钮排在键盘另一边。
——偏袒于双手键盘将高使用度或低使用度的键钮排在双手键盘上原来13个键钮的同一边,所以保持在——键盘两边使用度的可能性总数尽量相等。
自此项应用选择采用13键式编码并且偏向以右手为主地来说明其原则开始,即可建立如图25中的这个键盘设计。当此单手键盘作为双手键盘使用时,所造成的设计展示于图26之中。在此键盘上,右手可打出大约百分之84的字母,而左手则可打出大约百分之16的字母。在大部分的键钮动作都将是以几乎一模一样的方式来进行,不论是采用单手或是双手键盘,的情况下这个不对称的情形可说是相当理想的。
相反的,如果是以双手键盘来进行打字,并且只会偶尔使用单手键盘,则可说在操作此双手键盘时对两手依赖的比重是尽可能相等的。此目标可经由图27中所展示之一个双手键盘的替换性设计来达成。值得一提的是,不论是使用右手或是左手在这个单手键盘上进行打字,实质上在双手键盘上百分之50的打字动作与在单手键盘上的打字动作是相同的。
同时并值得提的是,以13键式歧异编码来说有213种不同的方式来对一个双手键盘相应的左手及右手键钮进行配对。这个数字是小到足够能对与双手之相应比重的每一组配对来进行评估,能供选择之适合的设定则将依所需要的比重是最对称式还是最非对称式或是某些中间数值而定。
现在将参照的是图28,一个单手键盘之详细图说,我们可以看到这些目标是如何经由在键盘上安置数个键钮300,一个拇指操作之键入装置301,一个鼠标302,一个掌上握把303以及一个显示器304来达成。这个键盘还可以更进一步安置一个通讯装置以助于计算器及键盘之间传输的符号选择程序。这可以是一个有线或无线之通讯装置,例如一个红外线通讯装置。这个键盘可在一个支持装置之上安全移动,例如在桌面上,如此这个键盘则可透过在由手掌心施压的装置上滑动来进行操作。在这个键盘上安置一个掌上握把对应用手掌心知压力进行有效移动此键盘来说会是极理想的。在只需轻微施压即可有效将键盘往任何方向移动之模式情况下,以所指的这个以掌心施力来操作键盘之装置会是极理想的装置。举例来说,这个样式可以是在键盘上掌心能够稳固安放的一个凹槽。透过此方式来移动键盘,操作键盘的手指即可用来有效操作键钮,尽管当键盘是正在移动中的时候也一样。由此可见此键盘能够应用在如玩电算机游戏的情况下,也就是当需要同时键入动作与符号序列的情况。
在此值得注意的是当此装置在进行鼠标之功能时,它和鼠标的外观是非常不同的。其模式要素是依是否在一个舒适位置上来进行触键打字之手部结构所决定的。因此这个装置必需比一个标准鼠标要大的多,而且移动此设备之装置也会是实质不同的。
要将键盘之动作305传送到计算器,所指的键盘已安装了一个移动感应装置,例如轨迹球,这对于熟练的使用者来说是众所皆知的。理想的情况式键盘305能够更进一步安装一个偏至设备,例如弹簧,来将键盘在手加诸于键盘压力减低之时自支持装置升高,因此更易于进行移动。相反的,当手的实质完全压力应用在键盘上之时,此键盘可在打字动作受到辅助时保存相对稳定地安装于支持设备上。
如此一来,此双手键盘可作长时间无需受鼠标移动影响的打字之用,而单手键盘则可作快速且鼠标移动变化的打字之用。
键盘之视觉代表性值得一提的是当使用一个支持多于一个歧异编码或多于一个模式的单一装置时,在任一指定时间下拥有一个与键钮及符号之现行关联的典型代表出现在显示器上对于使用者来说是相当实用的。这样的一个典型代表对任何打字装置都会是有利的,尤其是对可键入装置来说,因为这样的装置在使用中某些或全部的键钮会是视觉上所不可及的(特别是在操作指手指旁边的键钮)。因此,任何显示器与键钮结合之后对触键式打字员来说将会是功能有限的。最实用的视觉代表性是当键盘的实体设计实现在视觉显示器上的情况下。这样的一个装置304在图28中有显示,并且可与在本文中已说明过之许多应用相结合。
减少打字伤害 许多键盘使用者受打字伤害(重复受压症候群)而苦。量以数计的键盘都已经是为减低打字中所受到重复动作之压力而设计的。长久以来受到认可的减低打字伤害最有效方法就是打字员在打字过程中作规律的休息。然而这却不是实际可行的,因为打字员在完成他们的打字任务时通常时间都是紧迫的。刚才所说明的这个单手键盘为此提供了一个解决办法。虽然目前的这个单手键盘是以右手来进行操作的,同样的设计方法显然可用于左手操作式单手键盘。这些键盘个个都可对所有的相同符号进行编码。一个安装有右手操作式键盘以及左手操作式键盘的治疗式打字装置,例如前面所描述的一个左/右手操作式鼠标/键盘,则能够以左手或是右手来进行操作。有了这样的一对键盘,一位希望减低重复受压伤害的使用者可以利用其中一种键盘来进行一段时间的打字,例如15分钟,之后再转而在下一段时间利用另一种键盘,如此使用者让每一手能有一段休息时间而且将不会降低打字量。这个打字装置能够安装一个锁定装置以变对其中一个键盘进行锁定,进而实行替换性使用。值得一提的是在治疗完成后,使用者不需重新学习所需之技巧就能够回到双手式键盘模式。
可折叠式个人数字助理(PDA)我们可以见得在前面所描述过的一个智能卡应用之中,将歧异编码式打字装置的文字屏幕安置于单手双手手指所操作的键盘部位而拇指则可用来操作另外之键入装置的位置,也就是在拇指之上或是拇指到手指操作的键盘部位之间的位置,会是方便且符合人体工学的。目前这项应用是在一个较大的范围中来考量一个使用相同的概念而同时又结合一个折叠性概念设计一个两次折叠式信息设备的打字装置,这样的一个装置将可在展开时,折叠一次时,以及折叠两次时符合人体工学地进行不同的功能。
这个两次折叠式设计是一个歧异编码的惊人成果。值得注意的是,依此项发明所倡导之方法所建造的打字装置能够使键盘同时为(1)可有效对自然语言进行编码的,(2)采用实质全尺寸键钮的,以及(3)大小适合于放在口袋或是小型手提袋的。此项应用是基于使用实质上为相同使之初阶组件来建造一个掌上型计算器装置,也就是一个以歧异编码进行设计的键盘尺寸,而所指的组件在几个依使用者当时之需要会有所不同的情况下是可调整的。这些初阶组件在每一个不同的状态下可以是以折叠形式和/或可拆除形式与彼此相连系。如此一来,此计算器装置即可分别扮演笔记型计算器,个人数字助理PDA,电话机,游戏机等等的角色。
首先参考图29,我们详细指出一个两次折叠式计算器是由四个实质上相同的部分所组成的,而每一个是用来进行一件指定的功能并且是彼此以折叠形式和/或可拆除形式相连的。图29说明了在折叠模式中的此种装置。由此可见其中一个组成部分900的第一面是作为第一个视觉显示器之用,组成部分901的第一面是作为第一个键盘之用,组成部分902的第一面是作为第二个之用。虽然还有许多可能的其它选择,在理想状况下,第一以及第二键盘上之键盘设计会是一个13字母键钮式键盘。最后一个组成部分903的第一面是作为一对模式转换之拇指开关之用,以便于和这里的第一以及第二键盘相结合来进行操作。这里的第一键盘是设计以右手来进行操作的。一个可以使用左手来进行打字的类似模式是存在的,这对熟练的使用者来说会是显而易见的,并且这个类似模式可经由这四个组成部分的简单重新排列以及重新安装来达成。的确,一个双手键盘可透过重新排列这四个组成部分来达成,就如图33中所展示的一样。
图30中所展示的是一个展开的两次折叠式计算器之底部。组成部分904是一个电话机键钮版905以及相应之第二视觉显示器906。组成部分907是第三视觉显示器,而组成部分908是第三键盘。组成部分904,905,906,907分别是组成部分900,901,902,903的第二面。
将计算器按照图29及30所示之折线908来折叠,我们可以得到图31中所示之模式。在这个模式中第三键盘是作为打字之用,而第三视觉显示器是作为显示相对应之影像之用。这里的这个键盘设计为一个12键式键盘,但许多其它的选择也是可能的。这个模式也可在使用者由于时间空间的限制而无法或不愿将计算器完全展开的情形之下使用。也可以用来支持一个与完全展开的计算器不同的功能性,例如游戏用的功能。
最后,此机算机可按照图31中所示之折线909来折叠以形成图32中示之两次折叠模式。这是一个特别适用便携式计算器的模式;在此模式中装置是可以放在口袋的大小。另外,在这一个两次折叠模式中也包括了电话机的功能。对许多使用者来说,这将会是最常使用此装置之模式。这里要注意的是,我们所说明的这一个电话机所采用的是前一个应用中的歧异编码,然而许多其它的选择也是可能的。
再次声明若非归功于歧异编码,我们们就不可能设计出一个工能可在电话机,个人数字助理和笔记型计算器之间相转换的便携式通讯及计算器装置。
熟练的使用者将会发现假如每一个初阶组件,包括此键盘,都是由屏幕触控的,那么这些不同的模式以及此装置的使用将会更进一步的扩大。然而,标准键盘以及可压式键钮的触觉反馈却会随之而消失。在与此项发明之原则相符时,许多其它的选择也是可能的。
包含一个触控式屏幕之打字装置软件应用 此项发明能够同时应用软件以及硬件。尤其是,此项发明的方法可用于为包含一个屏幕触控式之装置设计打字装置,例如,由3Com公司制造在PALM PILOT商标之下发行的个人数字助理系列以及其它的商标产品。为利于说明之用,我们将专注在PALM PILOT系列产品,其中包括能够或已经实行其中一种应用程序之掌上型计算器,然而这里所苗是之方法是可应用在任何包含一个屏幕触控式之打字装置的。
参考图34,我们注意到PALM PILOT系列装置通常是由以下组件所构成的一个触控式屏幕1000,一个透过字迹辨识软件来键入字型的触觉感应区1001。这里所指的触觉感应区可以是此触控式屏幕的一个子区,或者可以是分开应用的。
此项应用之其中一个主要而惊人的特质是,在一个由触控式屏幕所构成的装置上使用触键式键盘时,我们为信息装置设计出一个崭新的使用者接口,由此键盘则不需要与应用程序在有限的屏幕空间上拔河。同样的一个触控式屏幕还可同时用在应用程序以及此键盘上。
一个重要的发现是,假如此键盘是低触键式的话,那么,对使用者来说则不需要实际显示出此键盘。无须视觉指示,使用者的手指即可“知道”键钮的位置。如此一来,此键盘则可用来在每一个应用程序都显示在此触控式屏幕之上的情况下来键入资料。更进一步来说,假如此键盘是易触键式的话,那么,则可用来打出高质量的文字,即使是在没有屏幕空间可为使用者提供查询反馈时。
参考图34及35,PALM PILOT系列装置的一些在此项应用中已有说明的独特功能为□触控式屏幕1000可以轻易取代其它键盘设计的功能。
□触控式屏幕1000可以显示不同亮度以及不同颜色之影像的功能。
□键入字型区1001的位置是离此触控式屏幕有一段距离的,或是在此触控式屏幕的一个非中心区。
□使用此个人数字助理来执行不同的程序,例如定序程序或是通讯率程序,而这些程序都会占用和键盘同样的触控式屏幕空间。
触控式屏幕可以轻易取代其它键盘设计的功能在此项应用是用来实行一个指定的键入装置以便代表许多不同的符号或是符号组,依在任一个指定时间之键盘模式而定。当触控式屏幕用在键盘上时,每一个键入装置是与一个触控式屏幕之指定区相连的。此触控式屏幕可同时作为视觉显示器以及多种机械式键入装置的双重功能被用在依模式来为每一个键入装置指定不同功能以及不同标示上面。然而,值得一提的是,以在每一个机械键钮上安装其个别显示装置之传统可压式结构的机械键钮可达到同样的效果。如此一来,在这里这个参考一个由触控式屏幕所构成之装置所指出的模式转换方法可被应用在由机械键钮所构成的装置之上,例如在本文中所说明的许多其它装置上。
模式选择 在键盘设计中增加符号数的一个可在已知键钮数为固定之情况下编码的策略是随模式转换键钮数来增大键盘。按下一个模式转换键钮会改变由多个其它键钮来进行编码的符号。一个标准例子是,一般打字机键盘上之移转这个透过将字母键钮从小写变为大写符号之编码的键钮。大写字母在原则上能以一组和为小写字母编码之键钮不同的键钮来进行编码,而如果在正常通讯中大写字母出现的频率和小写字母的相同,那么,将会是一个可拥护的选择。同时在原则上,在不同模式中可达到的大小写字母并不意味着一个大写字母一定要和所相对应之小写字母的同样键钮相连。在实际应用上也是选择同样的键钮指定,因为它具有非常合乎传统,容易理解以及大小写字母之间存在统计关系等的特质。
由此可得,下列三项原则主导了符号对模式和模式中键钮的指定与统计关系的结合度,与传统关系的结合度,以及符号之间的概念性关系。在打字装置的设计上使用歧异编码时有关模式设计之问题会是最严重的,这是因为数个键钮必需已经具备为一个以上的字母符号在每个键钮上进行编码的功能,并且足够用来进行符号编码之键钮数通常是极有限的。然而,在这些非字母符号都是紧密相连的情况下,这样一个已经应用在为字母符号制造歧异编码的方法也是能够同样的应用在如标点符号之非字母符号上面。
这些需要由键盘进行编码的符号将会分为几个和模式相对应的子集。依需要使用者多少的操作才能够达到个别的模式以及/或者符号在每一个模式之中的使用频率而定,这些模式将会至少是部分排列完成的。如此我们则能将之称为一等,二等,三等模式,依需要达到个别模式之操作量的增加以及/或者符号在模式中的使用频率减低来列推。
最理想的是将字母符号安置于单个或数个第一种模式中。细微的设计问题必定是和非字母符号对模式之指定方法以及各个模式之空间性设计排列有关的。
第一个所要考量的统计标准是非字母符号的使用频率。有些非字母符号,例如标点符号和数字,对可能有和字母符号相等或更高之使用率而可能产生的通讯来说是相当重要的。这些标点符号是在一等或二等符号组中以任何有效键盘设计来包含的候选符号。接下来所要考量的这个统计标准是因非字母符号与其它非字母符号接触而产生的相连性。某些非字母符号与其它非字母符号之间存在着传统性以及概念性之关系,例如,(左括号)这个符号即是和(右括号)这个符号相连的,这是因为这两个符号在一起才是有意义的。这个符号是和,这个符号相连的,这是因为这两个符号有类似的意义,词尾或句尾。这些是全球通用的例子,对大部分的语言使用者来说是相当熟悉的,在这些情况下包括如英文的许多语言。在特殊用途之键盘设计上也可以考量其它较本土性的关系,例如,在以及/之间的关系/一般用在互联网之网页地址(URL或网址)。
非字母符号也可能和字母符号有统计性,传统性以及概念性的关系。对某些符号来说,透过参考语料库来分析他们彼此之间的统计性关系是有可能的。对另外的符号来说,由于他们几乎从不在文字中出现,分析这些符号之统计性关系则需要使用者研究报告或是专门的软件。这里可用“backspace”(消除键),“page up”(上一页键)以及其它用来进行编辑检视或另外可处理文字的符号来作例子。
在参考数据是以此方法求得的情况下,下一个符号对模式指定的步骤会是以能够最佳符合统计性,传统性以及概念性关系的方法来排列这些符号。一个更进一步也可列入考量的限制是此排列之记忆性潜质。在理想的状况下,所有的符号在所有的模式中都是“有意义”的排列,也就是说,符号之样式是简单的,熟悉的,最好还是视觉结构优良的。尽管是受过严格训练的触键式打字员也有可能会退回来使用视觉扫描模式在键盘上找出不常用到的符号。在此情形下,记忆性潜质可能成为在专为较少用符号专用之排列中的主要考量。值得一提的是,记忆性潜质可以透过为心理学家所熟悉的暗记任务而设立之实验规则来进行量化。
要对这个方法作说明,则必须有一个字母符号a-z,数字以及32非字母符号的标准设计~`!@#$%^&*()_-+={[]|\;”<,>.?/这是在所指定的一个标准键盘上找出来的。如图36A-C所示,这样的一个排列是由三个模式转键钮,三个个别包含了16个符号键钮之模式所构成的。这个配置是为PALM PILOT系列装置所设计的。此项设计尚未由心理学上的测验证实为最佳化的。
这里的第一个模式,(图36A),包含了一个字母的歧异编码,一个space(空格键)/backspace(消除键)键钮,一个基本标点符号以及一个可向前或向后移转模式的键钮。
这里的第二个模式,(图36B),包含了数个另外的标点符号,这些符号的排列会是1)一个shift(移转)键钮连到有相关意思的符号,例如,左右括号,或者,在没有相关意思的情况下则连到符号形状,这将有助于记忆此符号之位置。在这里应用了一项传统,也就是硬式符号,较有菱角的符号,在左边,而软式符号,较有曲线的符号,在右边。既然所有或大部分的键钮都有正好两个符号,符合人体工学如前所述之歧异消除装置则可以在每一个模式中操作。
键盘之可选择性透明度 目前,一般显示在一个PALM PILOT系列触控式屏幕装置上之键盘的应用是键盘占屏幕的一个部份,而剩余的屏幕区则为一个接收键盘之键入的应用程序专用,例如一个通讯簿应用程序。在此装置之极度有限的显示区域之下,键盘以及应用程序之间共存的结果造成键盘以及应用程序都必须是非常小型的。在此装置中所是用的键盘并不适用于进行触键式打字,而因受其尺寸之限,也不会是触键式的。然而,应用此项发明方法而制造出的键盘,尽管是在一个个人数字助理之触控式屏幕上的有限位置中,其尺寸将会是合于作为可键入装置的。在此一项重要的发现是,在键盘为触键式的情况下,则将不需对使用者显示键盘。就算不能实际看到,使用者的手指也“知道”键钮的位置。因此,键盘可以是透明化的,占用整个触控式屏幕的,而应用程序则可为不透明化的,并且同时占用整个触控式屏幕的。如此的显示方法,使用者能够直接在应用程序上对其进行打字键入。在图35中,有一个以此方法1003显示之键盘和一个应用程序1002,这里所显示的是一个绘图程序正进行绘图功能。画出一个透明键盘是不可能的,此图以灰色来标示键盘,而以黑色来标示应用程序。的确,让使用者来选择键盘透明度是可行的,例如,依她或他的触键打字技巧而定。
已经指出的是,不同模式可能包含对使用者而言不同熟悉度之符号。考量这些不相同性,键盘透明度也可依模式功能来进行调整,随着模式中符号不熟悉度增加而减少透明度。值得注意的是,分辨键盘和应用程序的同样效果可透过调整其它视觉因素来达到,例如,在调整透明度之外,调整影像的颜色。
综合型协调/歧异式键盘 针对这此发明之这一观点的一个重要发现是基于协调样式只需要两个键钮来进行实质同步操作,如使Qwerty式键盘对大写字母进行编码的一个协调样式,将会是可供立即学习的并可供一个较大的使用者群来使用。然而,传统方法已证明比此更复杂的协调样式将不会被广泛接受。
值得注意的是,共有两种主要的传统方法是以少量的键钮来制造打字装置协调方法以及歧异编码方法。此项发明的其中一个观点即是在说明如何相得益彰的来结合这两种方法。
我们可以分辨有两种协调方法1)保留一个键钮或数个键钮来作为形成调和功能的方法,所熟悉的透过一个移转键钮以及一个字母键钮的协调组合来键入大写字母的移转键钮即是一个例子,而我们通常所指的此类键钮就是指移转键钮而言,2)经由实质同步操作数个字母键钮而形成的协调方法。在此项应用中采用的是这些方法中的第一个,在下一项应用中采用的则是这些方法中的第二个。
此项发明的这个观点之主要卓见是,由使用者实质同步操作一组键入工具可以立即结合成一个单一的指令。因此,一组键钮动作不会比一个单一键钮动作较易或较难驾驭,然而,一组键钮又比一个单一键钮实质涵盖较多的信息,也就是说可用来创造易操作而低歧异度的编码以及依寻此编码所建立的打字装置。由此可得,要使此键盘能够简单操作,协调在实质同步操作中必须是对不能超过一组的键钮来进行的。在此项应用中其中一组会是保留作为形成协调用的键钮,而其它组则是一个与至少一个译码符号相应的键钮。少用符号仍然有可能会需要实质同步操作两个以上键钮,那么,常用符号则可与一个单一键入工具相连而不超过此项发明的范围。
至少有其中一个译码符号是一个极度相关符号时会是理想的。如此,若有一个协调的形成是不完整的,也就是在移转键钮不应按下而按下或应按下而没有按下的时候,此歧异消除软件则可用于修正这个错误。
由此可知,依寻此项应用的原则,当进行协调以及歧异编码程序时能够以任何方式来组成一个优先级,而理想的组合如下□不超过两个键入工具需要进行实质同步操作以对任何实质可能符号进行编码。
□查找错误率和/或查询率为最佳化的。
□协调可经由一个模式移转键来完成。
□(理想的情况下)使用模式移转键的机率是最低的。
当依寻此原则完成结合协调以及歧异编码程序时,可达到惊人且相得益彰的结果,而这将会在此应用中透过一个综合型协调/歧异编码程序应用在包含标准歧异编码的电话机来说明。我们已经可以看到标准歧异编码之查找错误率以及查询率是相当差的。因此,使用一个综合工具能够使一个应用标准歧异编码键盘成为易触键式的成果是相当不寻常的。此项应用之目标是制造一个如下所述之键盘□易触键式,与应用标准歧异编码之标准电话机完全兼容,□容易操作,□容易学习,□并且是用最少的键钮动作。
图38中所展示的即是一个应用标准歧异编码标之准电话机。在此图中可见,有数个键钮10000用来进行字母及数字编码,这里共有八个。两个键钮10001,10002只进行数字编码,而两个键钮10003,10004分别对非字母符号*和#进行编码。在此项应用中,其中一个从10001,10002,10003,10004所组成的组群中所选出的键钮将会作为模式移转键来使用,理想的情况下10001为数字1进行编码。所选出的这个键钮将以移转键钮称之,原因将会是显而易见的。键钮10001在左手握住电话机时,还是能够以左手拇指方便的进行操作,而右手则用来操作其它的键钮。对一个以右手握住电话机而右手拇指操作移转键钮之应用来说,键钮10004可作为移转键钮来使用。
10000中数个键钮的每一个键钮各有相对应之字母,而这些字母将分入两个子集中,我们将其分别称为移转组以及非移转组。字母及键组(移转组,非移转组)之指定会如下述般□最低的查找错误率,□最低的查询率,□其中的移转组,在不失去一般性之下,会拥有一个字母配合一个键钮特质,□最低的移转键钮操作机率在一般的情况下,依查找错误率,查询率以及其它人体工学标准来进行同步最佳化即意味着会有所折衷。举例来说,要透过消除由每个键钮一个单一字母,以便于字母数在移转组中可因键钮而异所构成之键组(移转组,非移转组)中一组的限制来达到较佳之查找错误率以及查询率是有其可能的。然而,移转组以及非移转组之间分隔的规律性使得键盘较易于学习,并且符合于人体工学标准,这在此是受到优先考量的。学习度可经由选择当数个集合时也是容易记得的个体或者可透过记忆力来得到进一步的改善。然而,这一个选择可能会影响查找错误率以及查询率。
总共有11664个移转组/非移转组之不同的配对都受限于移转组之每一个键钮只包含一个字母。这个数字小到足以其人体工学属性来对所有的可能性组合进行测试。
图39将测试上述所有11664编码及标准歧异编码(SAC)的结果以查找错误率对查询率的点图方式呈现。值得一提的是,虽然所有编码都较标准歧异编码为佳,但大部分都只有很小程度的优越性。然而这却是一个颇大的分布,就拿最佳编码CEHLNSTY来说,它的查找错误率为每431字符出现一次查找错误,查询率为每21字符出现一次查询,而这就在查找错误方面较标准歧异编码好15倍,及查询方面较标准歧异编码好10倍。最佳编码为AbC dEf gHi jkL mNo pqrS Tuv wxYz,而其中使用大写字母的部分就是移入编码组的构成要素。值得再度强调的是,此编码是以我们已有的参考数据来说的最佳编码。虽然从许多其它英语语料库的数据中来说,此编码仍是数一数二的选择,但其它的资料仍有可能产生不同的最佳编码。综合型协调/歧异编码法可适用于任意的歧异编码,而此歧异编码并不受限于是否为标准歧异编码或是英文字母排列的限制,也没有8个键钮或是尽可能相等分隔法的拘束。假如编码有更多的自由选择空间,综合型协调/歧异编码法的品质可在查找错误率与查询率方面大幅提高,而其它例如移转键钮使用率最小化等的人体工学标准,皆可与错误率和查询率的最佳化有利地结合。此类最佳化的步骤在于追求现有电话系统的完全兼容性。虽超出以上应用之范围,却仍在本发明的涵盖之下。
为了促进此键盘之可学习性与可操作性,在图38中可看出,组成移转编码组的字母在对应的键钮上用大写呈现,而组成非移转编码组则用小写。或者使用不同的大小,颜色及字体来标示字母的差异。
操作此装置是再简单不过了。如果在需要键入的文字中包括移转编码组的字母,必须和在按此对应的键钮的同时按下移转键钮,则此字母将以非歧异的方式呈现。反过来说,如果需要键入非移转编码组中的字母,按下对应的键钮将使此字母以歧异的方式呈现。
依照本发明的教义看来,和此应用对应的歧异消除功能可以实体地溶入电话机身。可以用在通讯的传送端和/或通讯的接收端,例如使用者用电话联系的中央计算器。
在标准电话键钮板上有4个键钮可以用来对非字母信息编码,例如模式改变的功能。使用上述的合成式编码符号法,在电话键钮板上用来编码非字母信息的符号数目可以进一步增加。特别是如果需要更少的歧异性时,移转字母的数目可以稍作增加。例如,分别将4个移转键钮各个和每个字母键钮其中一个连结,虽然每个字母所需的按键数增加,文字的键入却可以达到完全歧异消除的地步。简单来说,移转键钮和符号译码子集的连结是可以有很多想象空间的。下文会就教义的国际化作更独特的探讨,目前为止仅止于英文部分的细节。
值得一提的是,移转键钮和剩下以*、#和0键钮排列的非字母键钮在同时使用的情况下,可以编码至少6个非字母的键钮,例如标点符号,模式切换符号等等。
使用标准歧异编码之错误纠正此项应用的键盘在需按移转键钮而没有按或是不该按移转键钮而按的情况下,特别是初学者使用时,仍然可以对想达成的文字编码。通常这样的操作会在歧异消除装置以为综合型协调/歧异编码的编码序列是正确的情况下,产生毫无意义的编码。当上述的情况发生时,与其发出查询,可以试用其它不管移转键钮是否被按的歧异消除法,此编码序列则会被当成与标准歧异编码相同看待而加以解译。通常,以上这类解译就会将使用者原本要键入的文字找出。
值得注意的是,在图38表示的装置中,一个高相关度符号(空格键)一个低相关度或非相关度符号(消除键)配成一对。这种配对法基本上是要让歧异消除软件纠正像该按空格键而按消除键或是该按消除键而按空格键的错误。
适应可触键打字型查询法当查询如上述被准许时,将移转键钮当作卷轴键钮会是理想的选择。值得一提的是,只要有合适的软件不论在任何时候都能将此键钮是否为移转或是卷轴的功能定位。当装置是在查询模式时,此键钮则发挥卷轴的功能,而在其它的情况下则是移转的功能。
移转键钮之替换位置再一次以图38作参考,我们知道这项应用是为了能操作现有标准电话而设计。如果电话的制造以此应用为前提,则应增加键钮1005为移转的功能。这些增加的键钮应配置于电话的两侧较为理想,以便在手掌握住电话时可用姆指激活此键钮。图38显示上述之配置。其它可用同手(无论左右手)手指激活的键钮10006也能发生功效。
查询中低频率字符筛检 通常一个非常高频率字符会和一个非常低频率字符有所歧异。举例来说,在英文中CEHLNSTY的情况下,非常高频率字符”for”就和非常低频率字符”fop”有所歧异。将这些非常低频率字符从字典中删除,可以在对上述字典于其所代表语言的最小影响下有效地改善查询率。举例来说,将可能性少于五万分之一的字符删除,可改善CEHLNSTY的查询率到每46字符出现一次查询。此类筛检可用例如”间隙因素”的方法达成。”间隙因素”则是受查询的两个字符间的比率,例如最高频率和最低频率字符的比率。举例来说,将间隙因素假设为500,我们就会获得如图xxx所示之分布,且在图中特别指出的两个编码分别是标准歧异编码(SAC)以及CEHLNSTY编码。
国际化 要为此项应用作国际化有两点主要的关键,而熟悉应用此项发明教义的使用者则能轻而易举地解决。这两点是1)对腔调的处理,及2)创造出可同时用在多种语言的归纳型编码。稍后将对这两点作简单地探讨。
对腔调的处理。 许多语言都会用到含有抑扬腔调的字母。举例来说,法文中的”e”可以有”e”,”è”或”é”的写法。如果没有抑扬腔调的话,”èlève”(意为”学生”)则会和”èlevé”(意为”升起”)产生歧异。我们可以从另一个移转键钮的使用来着手。此移转键钮和编码键钮同时使用时,将有选择含有抑扬腔调的字母之功能此键钮可称为抑扬腔调移转键钮。举例来说,在法文使用CEHLNSTY编码时,抑扬腔调移转键钮可以和”def”键钮同时使用来对”è”或”e”编码,再靠歧异消除功能来决定哪一个是适合的抑扬腔调。使用以上步骤,我们在一组法文字符频率数据中发现以CEHLNSTY编码的(查找,查询)率来看,不使用抑扬腔调移转键钮时为(38,3),而用抑扬腔调移转键钮时为(584,24)。电话键钮板上的最下一行键钮都可以用来当作抑扬腔调移转的功能。在特制键钮板上,可以另增键钮来提供抑扬腔调移转的功能。以人体工学的角度来看,如果腔调移转键钮的操作能和平常的移转键钮类似会较理想。举例来说,可以使用姆指动作的某一方向来为普通移转键钮的操作编码,而使用姆指动作的另一方向为腔调移转键钮的操作编码。
多国语言歧异编码既然不同语言之间的资料通常都不相同,为某一种语言作实值性最佳化的编码不见得也会符合其它语言的最佳化。对某一种语言来说属于高触键度打字的编码也不见得会符合其它语言的要求。
举例来说,为英文最佳化的CEHLNSTY在被用于法文时,就比特地为法文最佳化而选择的编码表现来得差。虽然CEHLNSTY在法文打字来说属于高触键度,并不是每一种语言的情况都会如此。
为了达到经济上的优势,制造厂商应生产一部在各种不同语言的区域都能适用的机器。对可键入型装置如行动电话来说,键钮上会标有为其所设计之歧异编码。如果选择一个多种语言都能适用的编码,则不论是专攻任何的语言区域,上述的键钮卷标方式可用在全部的生产线上。
应用上述之技巧,可以编出同时为各种不同语言最佳化的歧异编码。在多国语言最佳化的方法中,取决人体工学标准之间比重的步骤可以算是取决多国语言标准之间比重的步骤中的子步骤之一。不同的情况下必须使用不同的比重方式。举例来说,同时对英文和德文的资料作最佳化时,或许编码在英文方面表现的比重比在德文方面来的重要。
将最低表现最高化会是最理想的比重方法。上述之步骤则称为最低-最高步骤。
假设要对一组不同的语言11,12,…,1n及一组人体工学标准e1,e2,…,em作最佳化。在已知歧异编码c1,c2及使用em为人体工学标准的情况下,如果em的最小值除以语言1n对c1来说比对c2高,则c1拥有比c2高的评价。当有很多人体工学标准必须受最佳化时,有可能发现某编码在一个特定的人体工学标准下特别好,而在另一个特定的人体工学标准下比较差。以这个例子来讲,人体工学标准必须如前文所说依互相之间的重要当作比重的考量。
依照以上的概念举例来说,假设有一组语言需要对查找错误率及查询率作最佳化。在这个例子我们将用不按照英文字母顺序的排列,使用8种标准的键入功能,一种任意式键入功能,以及腔调移转键钮的任意式键入功能。于是这8种标准的键入功能能像前文所说,同时和其中一种任意式键入功能激活而达成综合型协调/歧异编码的应用。
首先,需要考虑最佳化的语言组包括法文,意大利文,葡萄牙文及西班牙文,而每种语言都有分别的参考数据。
使用引导式随机前进可轻易获得以下之编码joz m b h x akn r pw d iy l gq t ev c fu s。此编码对法文,意大利文,葡萄牙文及西班牙文之(查找错误率,查询率)分别为(3250,265),(11400,3800),(4720,505)及(6280,400)。而此编码对荷兰文,英文及德文的表现则较差,分别为(65,4.8),(93,10)及(360,13)。
在花费计算器运算的相同时间内,对荷兰文,英文及德文的最佳化时可得以下之编码cjk r biy l fv e mo a sz p hx g tu d qw n。而(查找错误率,查询率)分别为(1220,44),(816,44)及(480,47)。此编码对法文,意大利文,葡萄牙文及西班牙文之(查找错误率,查询率)则分别为(253,20),(306,50),(525,36)及(4236,272)。虽然以上的结果对这些随机取样的语言来说已经算不错,但是和专门对语言歧异性作最佳化的结果比较起来仍相差很多。以上的结果指出,每种语言之间的差异愈大,编码表现的共通性就愈低。
在现实的情况下,是否将某些语言包括在多国语言最佳化的计划是商业性而非构想性之决定。此项发明的重点指出,即使在选择的语言下有最低程度的表现,此编码仍需具备高触键度的键入能力。在之前检视过的个例中,对法文,意大利文,葡萄牙文及西班牙文之最佳化产生C等级之高触键度的编码,但对荷兰文,英文及德文来说,最低程度的表现只有A等级之高触键度。
单手可用之高触键度掌上型装置在上述的综合型协调/歧异编码应用中可看出,较优越的键入功能可用于歧异编码符号编码进而降低整体系统的歧异性。以上现有的应用显示同样一组键入功能可用于协调信息及歧异编码符号的编码。在上述个例中的歧异编码可以使用多等级编码来表示第一段的键入序列用来选择编码的第一个子集,而第二段的键入序列用来选择编码的第二个子集等等。理想上来说,第二个子集是第一个子集之中的一个子集,而第三个子集是第二个子集中的一个子集(也就是第一个子集之中的一个子集)。这就是内行人熟悉的“分点占领”法。目前为止,还不能完全了解的是a)一组符号中连续子分隔的数目可因最小子集含有多于一个符号以上而受限,成为歧异之编码。b)以子分隔性质的选择来对最后歧异编码的歧异性作最低化的处理。c)歧异消除可在同时改善其它人体工学标准例如在依循传统的时候实行最佳化。d)阶级上等级的转移只需按协调下配对的键钮即可达成。
关于以上几项发现的具体延伸论点将以图39至47为参考作更详细的讨论。值得注意的是,这是在无限种能依照此项发明的教义而制造之装置里的其中一种。所有使用分点占领法来建立编码及同时改善其它人体工学标准例如在依循传统的时候实行最佳化的键入装置,都是包括在以上应用范围内。
此项应用装置具有单手可用之高触键度。其附加的优越特点包括1完全非歧异型文字键入法的可使用性。
2最佳化高触键度歧异型文字键入法的可使用性。
3撷取资料时最低键钮数模式的可使用性。
4且以上三种模式互相具有符合人体工学的最高兼容性。
理想上来说,除了以上的人体工学标准以外,扫描时间也该是需要最佳化的标准之一。下一段落将讨论扫描时间的最佳化。
为建立以多等级歧异编码为主之可触键装置,我们将以图39为参考来作概观性的讨论。
在第一个步骤150中,必须挑选出一组第二等级的译码符号。这些译码符号是由歧异编码代表,也有可能包括例如英文中a到z的字母。
在下一个步骤151中,必须挑选出一个适合所有多等级编码的人体工学标准。此项人体工学标准可以是,举例来说,高触键度或是查找错误。通常许多适合所有多等级编码的人体工学标准可以同时适用。在下一个步骤152中,将挑选出的第二等级译码符号划分到子集中。每一个第二等级的子集都会分配到一个译码符号,所以整体的编码才能依选择的人体工学达到最佳化。目前为止,这个方法与任何最化歧异编码方法并没有不同之处。然而,却可能有另外的限制,比如在所能允许的编码符号数目上的限制,这也成就了此方法之下一个步骤的执行。在这下一个步骤153中,第二级编码符号将会被收集到群组之中。这些群组被视为第一级编码之译码符号。在没有意外的情况下,第二级编码的编码符号会成为第一级编码之译码符号。如此一来,第一级编码符号会被指定给每一个群组,这也就形成了一个第一级歧异编码。符合人体工学标准的其它最佳化可在第二级编码进入群组之指定中来进行。大致来说,多级编码的每一级编码可依不同的人体工学标准来进行最佳化。这些标准可以是和所有多级编码最佳化所采用的人体工学标准相同或是不同。在最后一个步骤154中,此一多级编码则会应用在一个打字装置中。
在这个多级编码方法的说明中,第二级编码方法是将此方法往第一级编码推进。在操作一个应用多级编码装置时,这个顺序会是相反的首先,透过操作键入装置来选出第一级编码的一个组成,之后,再透过进一步操作键入装置来选出第二级编码的其中一个组成。这可说是此分点占领法之精随所在。此项方法也可应用在第三以及更高级编码,这对于熟练的使用者来说会是显而易见的。
在实际应用中,多级编码中每一级之属性必需同步最佳化以达到所要之所有多级编码属性。目前的这一项应用可以具体的来说明如何计划以及执行此同步最佳化。简而言之,我们可透过图40来说明此项应用中的这个架构方法。为了能够完全的显示这个程序,我们替所有多级编码选出三个人体工学标准,第一级编码设定了两个标准,而第二级编码设定了三个标准,如此即构成了这个多级编码。在此项应用中,这三个应用在多级编码上之人体工学标准是易触键度,查询率以及查找错误率。第一级编码是依寻结构精确度和英文字母顺序排列来进行最佳化,而第二级编码则是依寻分隔相等度,结构精确度和实质英文字母顺序排列来进行最佳化。
在此应用中的第一个步骤3100是(第二级)译码符号的选择。也就是从字母a到字母z之中来选择。接下来,步骤3101,3102以及3103在多级编码中分别选择易触键度,查询率以及查找错误率作为人体工学标准。再下来,选择结构精确度在步骤3104中作为人体工学标准。由于此装置是为能够以手握装置而手指进行打字而设计的,结构精确度在此达到最高点,也就是4个键入装置以及4个相对应的第一级编码符号各个都由一个不同的手指负责。
在第二级步骤3105中选择结构精确度作为人体工学标准。在第一级编码中各个编码符号将会与数个第二级编码符号相对应。假如4个第一级符号的每一个都与4个第二级编码符号相对应,则第二级编码之结构精确度能够达到最高点,也就是在有16个第二级编码符号的情况下结构精确度才会达到最高点。假如26个第二级译码符号是分布在第二级译码符号之中,并且第二级译码符号中的1个或2个是与16个第二级编码符号的每一个都是相连的,那么,16个第二级编码符号也可以与第二级译码符号相连,由此可达成最佳分隔相等度。如次则这个分布意味着,在4个和8个第二级译码符号之间最终将有一个会与4个第一级编码中的每一个相连。
接下来,在步骤3106中,我们选择了英文字母顺序排列作为第一级编码中的人体工学标准。想要依寻此一标准来进行最佳化则需要同时对第一及第二级编码进行同步最佳化。也就是字母a到字母z需要按照英文字母顺序排列来显示在和每一个手指分别相连之键入装置所相对应的显示上面。由于这些显示是按照手指的顺序来作排列的,这个排列意味着,字母顺序之中第一部份字母必须要与第一个手指所相连的键入装置相连的第一级编码符号相连的第二级译码符号相连。同样的,第二组字母,接续第二组字母之字母顺序排列,必须要与下一个手指所相连的键入装置相连的第一级编码符号相连的第二级编码符号相连,对其他两个第一级编码符号也可依此类推。因此,依寻字母顺序来进行最佳化与选择为这26个字母选择一个排列分格是相对应的,也就是按照此项发明之中其它应用所讨论过的同样方式。这一次,排列分格中4个组成部分的每一部份必须有4个或8个子部分,如此我们列出的所有的人体工学标准才能够同步最佳化。这将会是和在对此项应用最佳模式之详细说明中所显示的一样,也就是,当依寻所考量过之其它全部的人体工学标准来进行最佳化时,我们可以找出尽可能相等分隔编码,这对第一级编码来说也是一样的。
最后,在步骤3107中,我们选择了实质英文字母顺序排列作为第二级歧异编码中的人体工学标准。这代表了我们将会,在全部其它的字母对第二级编码符号之指定上的限制为已知的情况下,尽可能的将字母按照字母顺序来进行排列。严格英文字母顺序排列的偏离度可以经由许多方法来测量,举例来说,透过所需要的配对排列数目将已知排列带入严格英文字母顺序排列。
现在参考图41-47,我们将说明一个易触键式打字装置,这个装置可经由单手来进行打字,可至少对字母[a-z]进行编码并且包含了一个按照上述说明之方法所架构的编码。要按照此项应用之方法使装置成为易触键式,那么就必须固定符号进入子集,子集中的子集等等的分隔,也就是说,例如,依前面所键入的是哪一个符号而不作改变。这个固定之分隔只适用于所需要的易触键度,然而此发明之原则却是可以在一个较广的范围中来应用。举例来说,使用字符完整化机构能够大幅度的降低键钮动作的数目。字符完整化机构的行为是复杂且不易预测的,具字符完整化功能之装置则没有成为易触键式的可能。然而,在歧异度越低字符完整化越能够得到改善的情形下,同样可达成易触键式编码的最佳化程序则可以达成有效字符完整化机构。由此可知,在一个易触键式打字装置上增加字符完整化机构并不能够将此装置设于此项发明的范围之外。
现在我们对这项应用作出进一步的限制,也就是这个装置之符号键入可打字的部分必须是能够以单手来握住的,并且必须是只能以这只握住装置的手来进行打字的。要限制对数字动作之需求,大部分的符号都能透过对以下这5个键入装置的一系列操作来进行键入可由握住装置2100-2103这一手的手指来进行操作的4个键入装置以及可由握住装置2104这一手的拇指来进行操作的1个键入装置。在图41中所展示的这个装置是为了可由左手握住而设计的;显而易见的,也能设计出相对称可由右手握住,或是一个可由其中一手来进行操作之两手俱利的装置。
在理想的情况下,与键入装置2100-2103各个相连的是一个视觉显示器2106-2109,正显示着目前与已知键入装置相连的子集组成部分。操作这个键入装置来选择所相对应之子集。键入装置2104可用来进一步改善子集选择和/或用来选择其它符号的子集。举例来说,“space”这个单一的符号可与键入装置2104相连;这个或其它与键入装置2104相连的符号可优先显示在显示器2110上。字母[a-z]可分布在4个键入装置2100-2103之中。优先选择这样的键入装置字母分布则可使歧异度(查找错误率和/或查询率)降到最低,并且可以同时遵守传统的字母排列顺序。这样的遵守能够帮助初学的使用者,只需透过轻松扫描候选字母即可找出所需之字母。
图42说明字母[a-z]的一个排列,在此排列之中字母[a-f]是与第一键入装置2100相连的,[g-l]与第二键入装置2101相连,[m-r]与第三键入装置2102相连,最后,[s-z]与第四键入装置2103相连。这些相连关系构成了在第一级编码中之第一级子集。简而言之,在理想的情况下,将会选择把4-8字母与这4个键入装置中的每一个相连与每一个键入装置相连的字母子集可以进一步的再分入4个子集中,而这4个子集中的每一个不能含有超过两个以上的字母。此项限制之功能将会很快的明朗化,并且对于一位熟练的使用者而言,如何将此项应用原则扩展到含有不同数目之符号以及不同数目之键入装置的语言上会是显而易见的。
图43中说明了一个把如图42中所示之第一级子集分隔的第二级子集的例组。图43是一个含有四个栏以及四个列的表格。这些栏是靠第一步骤中所启用的键入装置来标示,而这些列则是靠第二步骤中与每一个键入装置相连的符号来标示。因此,举例来说,假如首先启用的是键入装置2100,那么,在第二步骤中ac这个符号会与键入装置2100相连,而be这个符号则与键入装置2101相连等等。在子集大小以及查询率的极限是如同上文中所说明的形况下,选择这个排列可以使查找错误率以及查询率降到最低。使用我们的参考数据则这个编码的查找错误率以及查询率是(1100,69)。值得非常小心注意的是,在这个例子中,第一级子集中的字母是按照字母顺序来排列的,但是,第二级子集子集中的字母则只能够部分性的按照字母顺序来排列。针对这个例子,我们已决定在第二级放松对字母排列顺序的限制,如此来改善查找错误率以及查询率,并且产生一个尽可能为易触键式的编码。这显示了,字母排列顺序是可/或不可最佳化的,正如任何其它的人体工学标准一样,而最佳化之属性在一个多级歧异编码中可以是每一级不同的。再次声明,英文字母排列顺序的优势为扫描时间缩短,尤其是对初学的使用者来说。由于在第二级所显示的符号数少,扫描时间原本就短,透过现在我们所要讨论的机构可以更进一步的缩短。
要打出一个所需的字母,首先,使用者启用键入装置2100-2103中其中与包含所需字母中与第一子集相对应的一个键入装置。接下来,使用者会再次透过启用键入装置2100-2103中其中与包含所需字母中与第一子集相对应的一个键入装置来选择第二级子集中的其中一个子集。图44说明了一个此类装置的操作范例,在这里使用者打出的是字母e。参照图42,我们可以看到,字母e是透过第二级模式与键入装置2100相连的。使用者启用这一个键入装置的时候,显示状况将会是如图44中所展现的一样。现在字母e是与键入装置2101相连的。当操作此键入装置时,则会输出字母e。同样的键入装置之操作次序可以用在字母b的选择上,如此这个编码则是歧异的。如同在其它的应用中,到底是要字母b或是e将会透过一个歧异消除机构而取决于其前后关系。
字符是透过按照此方法所依序选择的字母键入的,而终止此字符则是透过启用与拇指及双手相连的键入装置2104。值得注意的是,在一个双按键法是用来为每个字母进行编码时,这个键入装置则形成一个单/双手之应用的基础。更具体的来说,假如一只手是用来标示每一个字母的第一个按键动作,而另一只手则是用来标示每一个字母的第二个按键动作,那么,第一及第二个按键动作的讯息则可同步来进行键入。许多的实际应用也可以此为基础。举例来说,[4]中的这个“运指”机构就可作为一个单/双手之应用的实际基础。[4]中所提出的这个编码是建立在移动感应器能够感应到每一个手指之数个不同位置的基础上来为每个字母歧异消除式编码。这将会需要较精确的感应器。然而,若使用此项应用中的一个双手形式,则可使用较简单的感应器。这些感应器只会需要纪录每个手指的二元(上/下)讯息。在此软件及硬件的复杂度可同时减低。另外,按照此项发明之原则所建立的装置会是较易于使用者学习及操作的。
视觉快取 扫描时间是依视觉从一组字母当中找出一个所需之字母的时间。不按正规打字法的打字员会视觉性扫描键盘找出下一个字母之后,再按下其相对应之键钮。扫描时间是依以下几个因素而定的,包括使用者对键盘之排列外观的熟悉度。不按正规打字法的打字员可能大概知道所需要的字母在哪里,而只以视觉扫描来作确认,或是找出正确位置。由于扫描时间改善是透过一般使用者对英文字母顺序排列的熟悉度而达到的,此项应用选择了英文字母顺序排列来作为第一级编码。再另一种字母顺序排列中,某些特定的字母是从一组为了在一个与此键钮相连之视觉显示器上能清楚辨别,选择的区域中显示之指定键钮上的这一组字母中被选出来的。这些字母即为在任何情况下最有可能被选择的字母,而将其至于一个能清楚辨别的位置上则使其更容易被找出。原则是类似运用在某些计算器处理器中将最近用过的资料储存在寄存器里以便于在下次需要时快速找出的快取,这是基于最近用过的资料将较有可能再次被使用的假设情况下。这里,在语言的相关资料为已知的情况下,字母并不是因为他们最近被使用过而放置在快取中,而是因为他们下次需要被使用的机率。但是,视觉快取这个专有词仍然是适用的。
现在,我们将会依此项应用之前后关系来说明视觉快取的一个应用。值得注意的是这个发明能允许一个更大范围的调整而不需对调整其主要特性,举例来说,在快取的大小及位置上,如何安置快取,如何标示快取等等来作调整。
从我们的标准资料分析当中,我们发现透过第一级编码来与键入装置2100相连的字母[a-f],“a”是最容易成为一个字符的第一个字母。同样的,与键入装置2101相连的字母[g-l]之中,“i”是最容易成为一个字符的第一个字母,“o”是在与键入装置2102相连的字母[m-r]之中最可能的一个,而“t”则是在与键入装置2103相连的字母[s-z]之中最可能的一个。
透过将字母a,i,o,t安排在屏幕中一个明显的位置,例如,屏幕中左上角与每一个键入装置相连的位置。这将会使得这些字母成为在与每一个相连屏幕之一个由左到右,上到下之标准视觉扫描的第一接触字母。理想的情况下,其它不同于这个英文字母顺序排列之单一字母的选择,例如为子集中其它字母所保留的字母顺序排列。在快取中的字母以及其它字母之间的分辨可以透过为快取字母选择和其它字母不同的字型颜色,大小,样式,等等来作进一步的标示。
现在参考图45以及46,我们将看到此项发现可以用来降低扫描时间。图45说明了“think”这个字符是如何在没有使用视觉快取的情况下键入的,而图46则说明了同一个字符在有使用视觉快取的情况。因此,在图45中,字母“ t”是透过首先启用第一键入装置2103所相对应的字母“ t”来键入的。在第一键入装置启用之前,屏幕显示会是如在此图中之第二栏所显示一样的。当2103启用后,屏幕显示会变为如第三栏所显示一样的。当键入装置2101启用后,字母“t”即为其输出结果。在“think”这个字符的其它字母被键入时,屏幕显示会有类似的变化。
在图46中,分辨字母是否为储存在视觉快取中是透过以大写字母代表储存在视觉快取中的字母来作为标示,而非储存在视觉快取中字母则以小写字母来代表。根据我们的参考数据,我们发现百分之42的字符的第一字母都不是a,i,o或是t。因此,百分之42的时间使用者开始键入一个字符时将会及时在快取中发现所需之字母。
当一个字符被键入时,最有可能的下一个字母会因键入这个字符而产生的前后关系有所改变。由此可知,选来储存在视觉快取中的字母会因所键入的字符而有所改变,并且也取决于键入的是哪一个字符。
在“think”这个字符的例子当中,在启用第一键入装置之前和之后以及在启用第二键入装置之前都可以在视觉快取中找到字母“t”,就如在图46中前四列所显示的一样,每一列都与一个键入装置显示相对应。一旦选择了字母“t”之后,在视觉快取中的字母就成为a,h,o,w,如图46显示之第二组的四列中。选择了第一键入装置(键入装置2101)作为开始键入字母“h”之后,根据参考数据,再要形成部分字符的字母只存在有两个可能性,也就是字母“h”以及字母“i”,这两个都会在第二显示中的视觉快取里面。依同样的方法来继续进行字母i,n,k,我们会发现所需要的字母总是会在此字符之视觉快取里面。的确,在启用第一键入装置键入字母“i”之后,在使用者实际上键入的是信息库中的字符的情况下,只剩下两个可能会需要用到的字母。那么,在例子当中,第二键入装置是形同虚置的情况下,则在启用第一键入装置之后能够立即输出字母“i”。
彻底歧异消除程序以及其它符号之键入如同已说明过的,一般都会要提供一个完全非歧异方法来在一个歧异编码的打字装置上进行符号键入。在目前的这项应用当中,一个提供非歧异键入的简单方法是透过在一个拇指能够容易操作的位置上提供一个如图42所示之另外的非歧异键入装置2105,也就是在优先位置上。然而,也是可以选择其它的位置。
在此应用当中,我们为了要限制第二级子集的大小已经选择将其限为至多2个符号。因此,这个歧异消除机构将总是能够正确选出所需之字母,或总能选出另一个不正确但与其配对的字母。当其相对应之键入装置是经由使用者所选出的情况下,任何歧异消除软键都可以制造出讯号来指示它将选择的两个符号。这个讯号可作为对使用者提供反馈之用,例如,经由重点化(highlighting)所选择的字母。假如所选择的字母并非所需之字母,那么,使用者机会选择启用图42中之彻底歧异消除装置2105来强迫选择另一个也就是非重点(non-highlighted)符号。
图48中所展示的即为一个使用此非歧异文字键入装置的范例。而在图46及47中,则说明“think”这个字符是如何键入的。这里,当非歧异键入装置2105是在激活用来键入“think”这个字符之字母的第一和第二键入装置之后才激活的情况下,第四栏所显示的即是将输出之字母。举例来说,假设我们是先激活键入装置2103之后再激活键入装置2101来键入 “think”这个字符的,那么进一步激活键入装置2105则会选出字母“u”。接下来字母“u”会成为这个字符之第一个字母。所有可能的字母都能够在这个方法中作歧异消除的键入。当这个第二级子集中只包含一个字母时,这个字母将可在不需激活键入装置2105的情况下进行歧异消除的键入,也就是说键入装置2105是不适用于此的。根据所指定的编码,子母d,f,h,l和p总是歧异消除地进行键入。
易触键度易触键度之测量及门限是一个新的有创意的概念来说明装置的确定规格。这个概念之广已经由一系列的应用来说明过,也就是透过挑战其极限来显示其应用范围。
要为易触键度之说明中再进一步增加确定性,此章节将提出一个易触键度另外的数字特质,此一特质将使任何歧异编码之易触键度成为可测量的,由此则可决定这个编码是否属于此项发明的范围。
语言数据 如同我们之前提到过的,要依一个语言语料库来代表一种语言是语言学家的一个研究题目。在为数字确定性着想之下,我们将一个代表性的语言语料库定义为一个从目标语言的一般性小报中随机选出之至少一千万字符的总集合。
键钮数目 我们需要定义以下四种键钮数目实质键钮数目,协调键钮数目,有效键钮数目以及混合有效键钮数目。实质键钮数目用来进行符号编码之按键数次。一个最基本的qwerty键盘有26个键钮各标有一个字母,一个移转键以及一个空格键,如此其实质键钮数即为28。协调键钮数目用来进行符号编码之键钮的特定组合数目。以最基本的qwerty键盘为例,移转键可与任何一个字母键钮相结合来组成一个大写字母,也就是说这个键盘的协调键钮数为28+26+-1=53,这是因为单独使用移转键并不能进行任何符号之编码。在没有例外的情况下,一个与qwerty键盘完全相同的键盘可以是由53个实质键钮所组成的,而每一个对单一符号进行编码,不论是一个大写字母或是一个小写字母。的确,有些早期的打字机就是这样的构造。
有效键钮数目当一组可在一个歧异编码中,一组语言资料中以及数个实质键钮中都以,p,来作表示的符号,则一个拥有可能性查找错误率及查询率最低之最佳歧异编码是存在的,这是在当此为编码上之唯一限制的情况下。我们姑且以pl以及pq来分别代表这两个资料。当其查找错误率及查询率等于pl以及pq时,在任意个实质键钮上之任何歧异编码都将有一个有效键钮数p。一个实质键钮数少于p的键盘没有可能支持一个有效键钮数等于或大于p的歧异编码。一个实质键钮上之歧异编码的有效键钮数是少于p的情况,对一个实质键钮数p上的歧异编码来说却是完全可能的,而且通常都是如此。混合有效键钮数目这是一项实验性质的发现,实质最佳之歧异编码的查找错误率及查询率透过次方定律而实质相连的,举例来说,透过图11中的实验结果。这里所作的说明是以英文为主的,实质最佳查询率之对数与实质最佳查找错误率之对数是成正比相连的。
我们可此项发现定义编码之查找错误率及查询率相连的单一数字这个编码的位置(查找错误率,查询率)标示在对数-数之最佳连结线上。
举例来说,以标准歧异编码为考量。这个编码的位置(查找错误率,查询率)是(29,2.2)。将此位置直线性的交叉标示在图11之最佳连结线上,我们会找出5.96这个数值,也就是此标准歧异编码的混合有效键钮数。虽然标准歧异编码是定义在8个实质键钮(协调键钮数也是8,因为在此不需要协调)之上,却在歧异度上与一个5.96实质(或协调)键钮数之实质最佳编码是相等的。确然有少数的实质键钮在实际上是不可行的,但是这些结果显示了要找出一个有查找错误率及查询率较标准歧异编码为佳之6个键钮实质最佳编码是有可能的。
这些考量使我们能够为混合查找错误率及查询率之实质最佳度来定义一个准确的,虽然会是断章取义的,数字门限假如其混合有效键钮数是在其协调键钮数的0.01之内,在参考这些数据后,则一个编码可说是实质最佳的,这是在没有其它人体工学上的限制加诸于此系统上时的形况来说的。我们也能够来定义一个准确的,虽然也会是断章取义的,易触键度门限一个英文的歧异编码可定义为易触键度最高的,当其混合有效键钮数至少是10的时候。我们可以透过限制一个编码必需为易触键式,其查找错误率及查询率必需是高于或等于一个英文易触键式编码而将此定义延伸到其它语言。然而标准歧异编码之混合有效键钮数却是小于10的,因此依照此章节中的种种考量也就不会为易触键式。
经由测量混合有效键钮数,任何歧异编码都将以是否具备易触键度之属性来进行过滤。举例来说,前文中已讨论过的这个综合形协调/歧异编码ab c df e gi h jk l mo n pqr s uv t wxz y共有9个实质键钮标准电话机上按键盘上的8个再加上一个移转键钮。其协调键钮数是16;也就是和16个独立键钮减一个移转键钮的歧异编码相等。在不应用一个间隔因素的情况下,其(查找,查询)率会是(431,21)而所相对应的是一个混合有效键钮数12.8。在考量间隔因素为500的情况下,此资料将提升为(440,46),而与其相对应的是一个混合有效键钮数13.75。无论考量间隔因素与否,此一编码都将是易触键式。值得注意的是,这里的混合有效键钮数是少于协调键钮数的,不过这个编码却是实质最佳化的因为有英文字母顺序排列上的附加限制。同样的,一个单手综合形协调/歧异编码之应用会有一个(查找,查询)率为(1100,69),而所得到的一个混合有效键钮数为15的编码,虽然其实质键钮数为四而协调键钮数为16。这即是一个易触键式编码,而在协调键钮数以及混合有效键钮数之间的差异是由第一级编码中英文字母顺序排列上的附加人体工学限制所造的。将此附加限制纳入考量,则此编码即为实质最佳化的。
与此对照的是,Fujitsu的14-实质键钮编码,pn gt cr zk wj a ehi so ud xf ym vl qb,其(查找,查询)率为(105,4),而混合有效键钮数为8.47。这个编码既非实质最佳化的也非易触键式的,虽然其实质键钮数大于10。
虽然此发明中的应用例子已经在这里参考


过了,需要了解的是此发明并不局限于此,而许多其它由一为熟练的使用者在不背离此发明之范围之下所作的改变和调整都有可能会为其发生影响。
参考文献[1]http/www,fujit su.co.jp/hypertext/news/1996/Jun/ms-txt.htmlhttp/www,fujit su.co.jp/hypertext/news/1998/May/27-e.htmlhttp/www,fujit su.co.jp/hypertext/news/1996/Jul/text.htm[2]US5,818,437,缩小键盘歧异性计算器。US58184371998年10月6日[3]缩小键盘歧异性系统,PCT/US98/01307;WO98/33111[4]“主体结合式运指”无线可穿带式键盘,CHI 97 ElectronicPublications论文,作者FUKUMOTO,Masaaki及TONOMURA,YoshinobuNTT人体接口实验室,1-1 Hikari-no-oka.Yokosuka-shiKanagawa-ken,239日本(JAPAN)网上参考数据http//www.acm.org/turing/sigs/sigchi/chi97/proceedings/paper/fkm.htm#U21。
权利要求
1.一种可键入装置,其特征在于,包含有一个对使用者的操作起反应的键入机构以生成编码符号序列;一个将编码符号序列映像于译码符号序列的易触键式歧异编码机构;以及一个在反应使用者操作所述的键入机构时选择性输出译码符号序列的输出机构。
2.如权利要求1所述的可键入装置,其特征在于所述的易触键式歧异编码机构在实质上物理地远离于所述的键入机构,并且进一步包含一个通讯器来将由所述的键入机构生成的信号通讯至所述的歧异编码机构,而此讯号与所述的编码符号序列相对应并且被所述的歧异编码机构映像于译码符号序列。
3.如权利要求1所述的可键入装置,其特征在于所述的易触键式歧异编码为一最佳化的歧异编码,其按照至少包含查询率、查找错误率、结构精确度、外观精确度、分隔结构、传统保留度、跨平台的兼容性、排列的规律性以及扫描时间中的一个的人体工学标准来进行最佳化。
4.如权利要求3所述的可键入装置,其特征在于所述的最佳化的歧异编码为实质上是最佳的。
5.如权利要求3所述的可键入装置,其特征在于所述的最佳化的人体工学标准中的一项是符合传统的,其中所述的符合传统是表示与字母数字记号和标准电话键钮键入功能之间的标准联系关系,而此字母数字记号和标准电话键钮键入功能之间的标准联系关系包括非字母符号与4个非字母键钮的第一组,以及字母符号与8个字母与非字母键钮的第二组的联系关系。
6.如权利要求5所述的可键入装置,其特征在于至少有其中一项最佳化的人体工学标准是从由查询率、查找错误、构造精确度及外观精确度构成的组中选择,该可键入装置还包括至少一个协调性键入装置,该至少一个协调性键入装置是辅助性键钮,所述的非字母键入装置与0,1,*和#等符号常规联系,此协调性键入装置与从上述第二组中选择出的与字母符号相联系的键钮同时或依序操作,而和所述的键钮相联系的字母符号的子集也与所述的歧异编码的编码符号相联系。
7.如权利要求6所述的可键入装置,其特征在于所述的字母和非字母键钮中的一个的操作单独地将相应字母的子集与编码符号相联系,而与所述至少一个协调性键入装置相结合的相同的字母和非字母键钮的操作将其他字母的子集与所述歧异编码的另一个编码符号相联系,该其他字母的子集与所述字母和非字母输入装置中的一个相联系。
8.如权利要求7所述的可键入装置,其特征在于带有其中一个所述字母与非字母键钮的至少一个协调性键入装置的操作使来自于相对应的字母中的一组单个字母中的一个与相对应的编码符号相联系。
9.如权利要求8所述的可键入装置,其特征在于所述的一组单个字母分别为C,E,H,L,N,S,T和Y,对应于所述的字母与非字母键入装置标号从2到9。
10.如权利要求1所述的可键入装置,其特征在于还包括有主要键钮的第一子集及次要键钮的第二子集,其中所述的歧异编码为多级歧异编码,所述的次要键钮中一个的第一次激活选择译码符号的第一子集,第二次激活则选择译码符号的第二子集。
11.一种可键入装置,包括有多个键钮,这些键钮含有用于编码多个在统计上具重要性的符号的多个在统计上具重要性的符号键钮,所述的多个在统计上具有重要性的符号键钮的基数小于所述的多个在统计上具有重要性的符号的基数,因此至少所述多个在统计上具重要性的符号键钮中的一个和多于一个的所述在统计上具重要性的符号相对应,而该相对应度的选择使所述的可键入装置为高触键度。
12.如权利要求11所述的可键入装置,其特征在于所述的相对应度满足包括有查询率、查找错误、构造精确度、外观精确度及分隔构造的人体工学标准中至少一项,所述的相对应度与传统的一致性基本上是最佳化的。
13.如权利要求1所述的可键入装置,其特征在于相对于从包含有至少一千万字及基本代表此语言的文本文集中提取的统计,高触键度歧异编码机构具有每次查询至少10个字的查询率和每次查找至少100个字的查找错误率。
14.如权利要求1所述的可键入装置,其特征在于所述的键入机构具有似qwerty式的排列。
15.如权利要求1所述的可键入装置,其特征在于所述的键入机构嵌入于交通工具的方向盘上,从而所述的可键入装置可由驾驶者可在驾驶时使用。
16.如权利要求1所述的可键入装置,其特征在于所述的易触键式编码具有基本的英文字母的排列。
17.如权利要求1所述的可键入装置,其特征在于所述的易触键式编码同时对于一种以上语言的情况下仍为高触键度。
18.如权利要求1所述的可键入装置,其特征在于所述的易触键式编码对于在给定数目的键入,至少有一个查询率和查找错误率在最佳可能编码的5%以内。
19.如权利要求1所述的可键入装置,其特征在于还包括有触控屏幕,此触控屏幕包括有所述的输入机构,而与每一个所述键钮的相关联的译码符号则呈选择性的透明。
20.如权利要求1所述可键入装置,其特征在于还包括一个机构以将所述的装置在平面上位置与在计算器屏幕上位置联系起来,而与每一个所述键钮的相关联的译码符号成为所述计算机屏幕上位置的函数。
21.如权利要求20所述的可键入装置,其特征在于还包括能用拇指激活的键钮、握把及显示屏幕,所述的拇指激活键钮对输入无歧异符号有效,当手部处在一个对打字动作而言舒适的位置时所述的握把能让所述的可键入装置由手掌施加的压力沿着平面移动,以及所述的显示器对显示与当前键钮相联系的一组符号有效。
22.如权利要求1所述的可键入装置,其特征在于还包含四个基本上相同尺寸、基本上扁平的部分,每一部份都是可折叠地彼此相连,所述的可键入装置是两折的。
23.如权利要求1所述的可键入装置,其特征在于所述的键入机构的一个子组为基数13,所述的高触键式相似机构编码将a-z之中至少两个字母映像至所述键钮的每个子集,所述的可键入装置能够只用单手以基本上与以双手进行打字的无歧异可键入装置相同的姿势来进行打字。
24.如权利要求23所述的可键入装置,其特征在于所述的译码符号向所述的键钮的分配是所述分配允许一个基本上在外观上最佳化的布局。
25.如权利要求1所述的可键入装置,其特征在于所述的键钮是依标准数字按键盘样式来分布的。
26.如权利要求1所述的可键入装置,其特征在于所述的易触键式歧异编码机构是一个多级歧异编码机构。
27.如权利要求26所述的可键入装置,其特征在于还包含一组主要键钮,所述的多级歧异编码机构包括一个第一级歧异编码和一个第二级歧异编码,其中所述的主要键钮中的一个的第一操作选择一个从所述第一级歧异编码中提取的编码符号,而所述的主要输入装置中的一个的第二操作选择一个从所述第二级歧异编码中提取的编码符号。
28.如权利要求27所述的可键入装置,其特征在于所述的可键入装置是一个手持式的可键入装置,所述的一组主要键钮为基数4,因此所述的主要键钮与使用者握住所述装置这只手的手指一对一对应。
29.如权利要求28所述的可键入装置,其特征在于还包含一组显示器,这一组显示器中的每一个与所述的主要键钮中的一个相联系,所述的显示器中的每一个可操作于显示所述的第一级和第二级歧异编码的译码符号。
30.如权利要求29所述的可键入装置,其特征在于所述的多级歧异编码机构相对于以查找错误率和查询率是最佳化的,所述的第一级编码是相对于英文字母次序进行最佳化的,所述的第二级编码是以基本的英文字母次序以及分隔相等性来进行最佳化的。
31.如权利要求30所述的可键入装置,其特征在于还包含一个无歧异键钮,所述的无歧异键钮可用来明确地选择所述的第二级歧异编码的译码符号中的一个。
32.如权利要求29所述的可键入装置,其特征在于至少一个最有可能的译码符号首先依顺序显示在至少一个所述的显示器上来降低扫描时间,而所述的至少一个最有可能的符号会清楚易见地在其它较少可能的译码符号中区分出来。
33.如权利要求26所述的可键入装置,其特征在于还包含一组次要键钮,所述的次要键钮可用来生成由无歧异地编码的符号。
34.一种制造可键入装置的方法,包括下述步骤选择在一个多级歧异编码中作为代表的译码符号,该多级歧异编码包含一个第一级歧异编码和一个第二级歧异编码;选择一个人体工学标准以便对此多级歧异编码进行最佳化;将所述的被选择的译码符号分入第二级子集;分配一个第二级编码符号给每一个第二级子集,因此使所选择的人体工学标准为最佳化;将所述第二级编码符号集合成组,从而第二人体工学标准,可能与用于多级编码的最佳化的人体工学标准相同,为最佳化;分配一个第一级编码符号给每一个所述的组,因此与第二级编码符号及第一级编码符号相关的最佳化多级歧异编码被生成;将所述的多级编码应用于一个可键入装置中。
35.一种如权利要求34所述的方法得到的一种可键入装置。
36.如权利要求34所述的方法,其特征在于还包含下列步骤选择易触键度作为所述多级编码的第一人体工学标准;选择查询率作为所述多级编码的第二人体工学标准;选择查找错误率作为所述多级编码的第三人体工学标准;将第一级编码符号的个数固定为4,因此结构精确度,即所述第一级编码的第一人体工学标准,为最佳化;将第二级编码符号的个数固定为16,因此分隔精确度,即所述第二级编码的第一人体工学标准,为最佳化,同时,结构精确度,即所述第二级编码的第二人体工学标准,也为最佳化;选择英文字母序列作为所述第一级编码的第二人体工学标准;选择基本的英文字母序列作为所述第二阶段编码的第三人体工学标准;
37.一种用于歧异编码的最佳化结构的方法,包含下列步骤a)选择一组在统计上紧密相互联系的译码符号,这包含了下列分步选择一组参考数据;相对于所述的参考数据分析符号的统计相关性;b)选择一个歧异消除装置;c)选择编码符号的数目;d)选择一组人体工学标准;e)依其相互之间的关系来排列这些人体工学标准;f)选择一个最佳化方法,以及g)应用此最佳化方法。
38.如权利要求37所述的方法,其特征在于所述的应用最佳化方法的步骤包含下列步骤1.从一组候选编码中选择一个起始编码;2.将这个起始编码分配为一个当前编码和一个当前最佳编码;3.通过符号对键钮的指定的成对排列,最好是所有具可能性的成对排列,从所述的当前编码中通过对所述当前编码进行微扰生成一组新的编码;4.检测此组新编码中每一个的属性,5.检查是否已达到一个终止标准,例如一个限制性进一步发展的标准;6.假如已达到所提出的终止标准,则输出这个当前最佳编码,7.而若是没有达到所述的终止标准,检查此组新编码当中是否含有一个比所述当前最佳编码更优良的编码;8.而若是有至少一个编码在此组新编码中是比所述当前最佳编码更优良的,则指定该当前编码为当前最佳编码,9.而若是没有任何一个编码在该组新编码中是比所述当前最佳编码更优良的,则指定从这组新编码中随机所选出的一个编码为当前编码;以及10.依序重复这些步骤,从所述的生成一组新的编码的步骤开始。
39.如权利要求37所述的方法,其特征在于选择一组人体工学标准的步骤包含选择一个查找错误率来作为人体工学标准以及选择一个查询错误率来作为人体工学标准的步骤,所述的方法还包含下列步骤1)按照查找错误率以及查询率的可接受量化数值来定义易触键度;2)决定所需键钮的最小数目因此应用这个最小的键钮数目和所述的最佳化方法以及查找错误率以及查询率的可接受的量化数值;3)在一个目标打字装置的设计为给定的情况下来决定所能够允许的键钮的最大数目;以及4)假如所决定的最大键钮数小于所决定的最小键钮数,则执行所述的应用最佳化方法的步骤。
40.如权利要求37所述的方法,其特征在于还包含所述的选择降低的歧异度编码的步骤,此步骤进一步包含下列步骤1)选择在一个人体工学编码中作为代表的符号组;2)选择一个编码人体工学的方法;3)选择这一组编码元素的基数,该基数小于该符号组的基数;4)由此符号组当中选择一组符号的参考序列;5)分析该参考序列的数据来建立编码人体工学的方法的数据;以及6)为一个具有该编码人体工学的方法的基本上最佳数值的编码寻找一组可能性编码。
41.一种应用降低的歧异度编码来传送符号序列的方法,包含下列步骤1)选择一个降低歧异度编码;2)编码将该符号序列编码进入一个在选择降低歧异度编码中的编码元素序列,3)传输此编码元素的序列到一个接收器;以及4)在接收器端,计算出此编码成分序列的一组可能性译码。
42.一种可键入装置,其特征在于包含有一组用于键入信息的可操作的键钮,该组键钮中的每一个都含有一组与其相连的编码,而要对与此组键钮中特定的一个相联系的这一组编码的第一编码进行分配,则此组键钮当中至少有两个键钮被操作,并且要对与此组键钮中特定的一个相联系的这一组编码的第二或第三编码进行配置,只有此特定的键钮被操作;以及一个歧异式键入机构,其根据该组键钮中的随后的操作来决定在只有该组键钮中的该特定键钮被操作时是否采用第二或第三编码。
43.如权利要求42所述的可键入装置,其特征在于所述的至少两个键钮包括至少一个辅助键钮和至少一个字母数字键钮。
44.如权利要求42所述的可键入装置,其特征在于所述的至少有两个键钮与一个辅助键钮及一个字母数字键钮相对应,或与两个字母数字键钮相对应。
45.如权利要求42所述的可键入装置,其特征在于每一个字母数字键钮具有一个数字和至少两个字母与其相联系。
46.如权利要求42所述的可键入装置,其特征在于每一个字母数字键钮具有一个数字和至少三个字母与其相联系。
全文摘要
一种可键入装置(6005)的设计,特别是,应用了歧异编码(6001)的触键-键入装置(6005),其介绍了许多人体工学上的问题。这些问题的解决方法将在此有所说明。本发明讲解了在用于触键-键入装置,例如计算器、电话机、呼叫器、个人数字助理、智能卡、电视机顶装置及其它讯息设备等,的不同易触键式歧异编码(6001)和实质最佳化歧异编码(6001)的分类中选择歧异编码(6001)的方法,给出此设计在例如尺寸、外型、该设备的计算性能上的约束的限制、此类装置的一般性使用以及例如遵循英文字母排列顺序或是Qwerty式键盘的排列等的传统上的限制。
文档编号H03M11/00GK1330810SQ99814191
公开日2002年1月9日 申请日期1999年12月9日 优先权日1998年12月10日
发明者霍华德·安德鲁·古托维滋 申请人:伊顿尼生物工程有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1