直接转换无线电收发信机的制作方法

文档序号:7651121阅读:259来源:国知局
专利名称:直接转换无线电收发信机的制作方法
技术领域
本发明涉及无线电收发信机和实现无线电收发信机的集成电路,每一个收发信机具有低IF接收机和发射机,并特别适用于2.4GHzISM频带,但不是专用于该频带。
背景技术
诸如FHSS 802.11和SWAP-CA的无线电连网标准需要采用CSMA(载波检测多址)协议,其中需要发射的无线电终端必须在发射之前监视它希望发射到的无线电信道,以便检查该信道未被另一无线电终端使用。如果信道正在被使用,无线电终端将不进行发射。CSMA协议的效率取决于无线电终端能够从接收模式向发射模式切换的速度。在它进行切换时,它不能接收,因而无法检测另一个无线电终端是否开始发射,这样可能导致发射冲突。需要短的接收/发射切换时间使冲突最小化,从而使无线信道利用效率最大化。
诸如FHSS 802.11的无线电标准要求采用时分多址协议,其中无线电终端在发射和接收之间交替变换。同样,需要接收和发射模式之间短的切换时间使无线电终端不能通信的停滞时间最少。
在模式之间切换的一种方法是对发射机和接收机采用独立的本机振荡器,但这是昂贵的。在模式之间切换的较便宜的方法是重新调谐公共的振荡器,但这样是慢的。
需要采用高度集成的收发信机结构来实现低的无线电终端成本。一种能够方便集成的接收机结构是利用多相IF滤波器的低IF结构。这种结构在欧洲专利申请No.99944448.2(在本发明的申请日尚未公开)中进行了描述。利用多相IF滤波器的低IF接收机可能对来自在附近频率上工作的发射机的干扰敏感。这个问题在诸如存在未经协调的应用的2.4GHz ISM带的射频频带上尤为突出。
在欧洲专利申请No.99944448.2中公开的减轻干扰的一种解决方案是切换本机振荡器(LO)注入频率,从而偏移接收机的镜频。在欧洲专利申请No.99944448.2中所述的用于实现此方面的一种方法是使为收到信号的I(同相)或Q(正交)分量注入的LO信号反相。
最好通过在可能之处再用发射机和接收机的电路来降低收发信机的成本。美国专利No.5392460中公开了一种采用再用的收发信机结构,其中采用发射机和接收机公共的基准频率发生器,但发射机和接收机采用单独的频率合成器。在这种先有结构中,模拟信号的调制在上变频之前就被应用到发射机合成器,而在上变频之后采用数字信号的调制。
还在美国专利No.5392460中公开的另一种收发信机结构再用产生接收机LO注入信号的合成器也产生发射机LO注入信号,但结合了第二发射机合成器来混频直至达到最后的发射载频。同样,模拟信号的调制在上变频之前就被应用到发射机合成器,而在上变频之后采用数字信号的调制。
如果使用美国专利No.5392460中公开的这些结构之一实现欧洲专利申请No.99944448.2中描述的用于CSMA或用于TDMA的LO切换技术,需要切换接收机合成器,这样做速度慢,导致期间无法接收的不希望有的时段。
发明的公开本发明的目的是提供一种改进的收发信机,它能够具有快的切换时间并且在发射机和接收机之间再用一些部件,而且适合于高度集成。
根据本发明的一个方面,提供一种适合于在公共频率上发射和接收的半双工无线电收发信机,它包括发射机和低IF接收机,还包括信号发生装置,所述信号发生装置包括第一和第二频率发生器,其中所述第一频率发生器在接收和发射期间产生频率为标称载频的信号,其中所述第二频率发生器产生偏移信号,它在接收期间是低IF频率的,而且其中在接收期间将第一频率发生器产生的信号与偏移信号合成而产生下变频信号。
通过利用第一频率发生器产生频率为载频的信号、供所述发射机和接收机分别用于发射和接收,而不需切换第一频率发生器的频率,收发信机在发射和接收模式之间切换的时间可以保持为短暂的,并可以在发射机和接收机之间再用一些部件。由第二频率发生器提供载频与接收机的下变频信号的频率之间的差。在某些实现中,第一和第二频率发生器可以使用公共的频率基准源。
在发射期间,调制可以被应用于或者第一或者第二频率发生器。
在本发明的一个实施例中,在发射期间,由信息信号对第一频率发生器产生的标称载频的信号进行直接调制。
在另一实施例中,在发射期间,由信息信号对第二频率发生器产生的偏移信号进行调制,由调制后的偏移信号对第一频率发生器产生的信号进行调制,从而通过载频信号的间接调制产生调制载波信号。
在本发明的另一个实施例中,其中调制被应用于第二频率发生器,所述第二频率发生器在接收期间被锁定在频率基准上,在接收期间对锁定的第二频率发生器的控制信号进行采样,而且采样的控制信号被用于控制发射期间的频率调制偏移。
第二频率发生器可以任选地包括VCO或数控振荡器(NCO)。
在本发明的再一个实施例中,可以在高端注入和低端注入之间切换接收机下变频信号。通过这种方式可能减轻镜像信道上的干扰。
在本发明的又一个实施例中,用集成电路实现所述收发信机。
附图简介现在参考附图通过举例描述本发明,其中

图1是根据本发明制造的收发信机的第一实施例的原理框图,图2是表示用于图1所示收发信机的复合混频器结构的原理框图,图3是用于图1所示收发信机的发射和接收模式中所需的收发信机设置表,以及图4是根据本发明制造的收发信机的第二实施例的原理框图,图5是根据本发明制造的收发信机的第三实施例的原理框图。
在附图中,等同的模块用相同的标号来标注。
实现本发明的方式现描述三个示例实施例。参考图1,它示出第一实施例,其中的信号发生装置2具有用于要发射的输入信息信号的输入端3、第一输出端4和第二输出端5。发往这些输出端的信号取决于收发信机的工作模式,这会在下面进行描述。信号发生装置2的第一输出端4被耦合到发射机功率放大器7,该放大器7的输出被耦合到天线开关8,天线开关8也连接到接收机放大器10,并且天线开关8的设置确定当收发信机工作于发射模式时,天线9连接到发射机功率放大器7的输出端,还是当收发信机工作于接收模式时,天线9连接到接收机放大器10的输入端。控制装置100控制天线开关8的操作。
接收机放大器10的输出端被耦合到第一混频器11的第一输入端和第二混频器12的第一输入端。第一混频器11的第二输入端被耦合到信号发生装置2的第一输出端4,而第二混频器12的第二输入端被耦合到信号发生装置2的第二输出端5。对应于接收信号的同相(I)分量的第一混频器11的输出被耦合到多相IF滤波器13的第一同相信号输入端。对应于接收机信号的正交(Q)分量的第二混频器12的输出被耦合到第一可转换反相器16,而第一可转换反相器16的输出被耦合到多相IF滤波器13的第二正交信号输入端。多相滤波器13的第一和第二、分别为同相和正交的输出分别经放大器6和17被分别耦合到解调器14的同相和正交信号输入端,解调器14在其输出端15上发出基带信息信号。
信号发生装置2包括第一频率发生器40和第二频率发生器41。现在对信号发生装置2的结构、连同它用于产生收发信机工作在发射模式和接收模式所需的各种信号进行描述。
第一频率发生器40包括诸如晶振的频率基准25、载频合成器26以及第一90°移相器28。频率基准25的输出端被耦合到载频合成器26的输入端,该合成器产生频率为标称无线电载频ωc的同相信号分量cosωct,这个分量被提供给复合混频器1的第一输入端。同相信号分量cosωct也被提供给第一90°移相器28,该移相器产生频率为标称载频ωc的正交信号分量sinωct,这个分量提供给复合混频器1的第二输入端。
或者,对于固定频率应用,第一频率发生器40可以包括固定载频振荡器,代替频率基准25和载频合成器26的组合。
第二频率发生器41包括压控振荡器(VCO)27,它在第一输出端18上产生可变偏移频率ω0的同相信号分量cosω0t,该分量被提供给复合混频器1的第三输入端,它还在第二输出端19上产生正交信号分量sinω0t,该分量被提供给复合混频器1的第四输入端。此外,通过控制到VCO 27的电压输入,VCO 27可以停止振荡,以及反向,使得第二输出端19上的正交信号分量被反相而变成-sinω0t。国际专利申请PCT/EP00/00514中公开了这样一种VCO。
参考图2,图中示出复合混频器1的结构,其中有第三混频器30、第四混频器31、第五混频器32和第六混频器33。第四混频器31的第一输入端和第六混频器33的第一输入端被耦合,以便接受提供给复合混频器1的第一输入端的无线电载频ωc的同相信号分量cosωct。第三混频器30的第一输入端和第五混频器32的第一输入端被耦合,以便接受提供给复合混频器1的第二输入端的无线电载频ωc的正交信号分量sinωct。
第四混频器31的第二输入端和第五混频器32的第一输入端被耦合,以便接受提供给复合混频器1的第三输入端的频率为ω0的VCO同相信号分量cosω0t。
从VCO 27的第二输出端19提供给复合混频器的第四输入端的正交信号分量sinω0t被耦合到第二可转换反相器36,后者能够在控制装置100的操作下,输出或者非反相形式的或者反相形式的VCO正交信号分量。从第二可转换反相器36输出的VCO正交信号分量被耦合到第六混频器33的第二输入端和非可转换反相器29。非可转换反相器29的输出端被耦合到第三混频器30的第二输入端。
在VCO 27正向工作(从而分别在它的第一和第二输出端18和19提供cosω0t和sinω0t)而且第二可转换反相器36被设置为非反相时,在第三、第四、第五和第六混频器输出端形成并提供以下乘积第三混频器30的输出=-sinωct×sinω0t第四混频器31的输出=cosωct×cosω0t第五混频器32的输出=sinωct×cosω0t第六混频器33的输出=cosωct×sinω0t第三混频器30的输出端被耦合到第一加法器34的第一输入端,第四混频器31的输出端被耦合到第一加法器34的第二输入端。第一加法器34的输出提供复合混频器1的第一输出4,它是载频加VCO频率的同相分量,即当VCO 27正向工作、从而在其第二输出端19提供sinω0t,并且第二可转换反相器36被设置为非反相时[cosωct×cosω0t]-[sinωct×sinω0t]=cos(ωc+ω0)t第五混频器32的输出端被耦合到第二加法器35的第一输入端,而第六混频器33的输出端被耦合到第二加法器35的第二输入端。第二加法器35的输出提供复合混频器1的第二输出5,而且是载频加VCO频率的正交分量,即当VCO 27正向工作、从而在其第二输出端19提供sinω0t,而且第二可转换反相器36被设置为非反相时 +[cosωct×sinω0t]=sin(ωc+ω0)t当第二可转换反相器36被设置为反相且VCO 27正向工作时,第一加法器34的输出端向复合混频器1的第一输出端4提供载频减去VCO频率的同相分量,即[cosωct×cosω0t]+[sinωct×sinω0t]=cos(ωc-ω0)t同时第二加法器35的输出端向复合混频器1的第二输出端5提供载频减去VCO频率的正交分量,即[sinωct×cosω0t]-[cosωct×sinω0t]=sin(ωc-ω0)t当收发信机处于接收模式时,使用上述的信号分量,这一点在下文描述。当收发信机处于发送模式时,第二可转换反相器36被设置为非反相并且VCO 27可任选地反向,从而分别在其同相和正交的第一和第二输出端18和19提供cosω0t和-sinω0t。在这种情况下,第一加法器34的输出端向复合混频器1的第一输出端4提供载频减去VCO频率的同相分量,即[cosωct×cosω0t]+[sinωct×sinω0t]=cos(ωc-ω0)t这样,使VCO 27反向具有使载波信号上的频率偏移反相的效果。当收发信机处于发射模式时,不使用复合混频器1的第二输出端5提供的信号。
图3的表中总结了在信号发生装置2的第一和第二输出端4和5产生的发射和接收模式所需的信号以及可转换反相器16、36的设置。
再参考图1,频率基准25被耦合到分频器24,后者将频率基准信号分频而降到低IF。一般,低IF等于信道间隔的一半,但可以使用其它适宜的频率。分频器24的输出端被耦合到鉴相器20的第一输入端。由VCO 27的第一输出端18通过同相信号被耦合到鉴相器20的第二输入端。鉴相器20的输出端被耦合到选择开关23的第一输入端,而选择开关23的输出端被耦合到VCO 27的电压控制输入端。
提供给信号发生装置2的输入端3的输入信息信号被耦合到输入放大器22,而输入放大器22的输出端被耦合到选择开关23的第二输入端。
此外,鉴相器20的输出端被耦合到采样保持电路21,采样保持电路21的输出端被耦合到输入放大器22,以便控制提供给VCO 27的电压控制输入端的输入信号电平。
当需要收发信机在接收模式下利用高端LO注入工作时,控制装置100进行以下设置a)选择开关23被设置成向其输出端提供由鉴相器20提供的信号,从而形成控制回路,使得VCO 27锁定在低IF上的分频后的频率基准信号上。
b)VCO 27正向工作并且第二可转换反相器36被设置成非反相,使得发生器2分别在输出端4和5上提供载波加偏移频率的同相和正交分量,这些分量分别被第一和第二混频器11和12用作高端下变频信号。
c)第一可转换反相器16被设置为非反相。
如果在镜像信道上出现干扰信号,则通过将第一和第二可转换反相器16、36设置成反相而将接收机切换到低端LO注入。通过切换第二可转换反相器36,而不是使VCO 27反相来产生-sinω0t,避免了会使接收信号恶化的控制回路破坏。根据多相滤波器是如何实现的,在切换LO注入时可能需要改变某些滤波系数。
相反,如果在为低端LO注入设置接收机时在镜像信道上出现干扰,则可以通过将第一和第二可转换反相器16、36设置成非反相而将接收机切换到高端LO注入。
当需要收发信机在发射模式下工作时,控制装置100进行以下设置a)选择开关23被设置成向其输出端提供从输入放大器22收到的输入信息信号,从而使输入信号能够调制VCO 27。输入信号电平确定VCO 27的频率以及发射载波信号上的频率偏移。
b)采样保持电路21被设置成保持,从而使采样保持电路21上的在接收模式期间被采样的电压现在用作基准来控制输入放大器22和VCO 27提供的频率偏移。以这种方式,补偿了VCO元件的公差。
c)第二可转换反相器36被设为非反相。信号发生装置2的第一输出端4上提供的信号的频率等于载频加上VCO 27正向工作时输入信息信号引起的偏移,而且等于载频减去VCO 27反向工作时输入信息信号引起的偏移。
如果需要,可以通过将第二可转换反相器36设置为反相而使偏移的极性相反。
如果不需要接收机中在低和高端注入之间切换的能力,则可以省去第一和第二可转换反相器16、36,而用直接连接来代替。此外,专业读者会容易地认识到,这种固定注入可以通过适当地选择信号极性而设置成或者高端或者低端。
参考图4,在第二示例实施例中,信号发生装置2’具有用于要被发射的输入信息信号的输入端3、第一输出端4和第二输出端5。除了信号发生装置2’的内部结构中的差异以外,收发信机的结构与上面针对第一实施例描述的一样,因此只描述信号发生装置2’的结构上的差异。
产生同相和正交信号分量cosω0t和sinω0t的方法与图1所示的上述第一实施例中相同。同相信号分量cosω0t被耦合到第七混频器43的第一输入端,而正交信号分量sinω0t被耦合到第八混频器42的第一输入端。
由第一频率发生器4通过移相电路28’提供频率为载频的同相和正交分量cosωct和sinωct。同相分量cosωct被耦合到第七混频器43的第二输入端,而正交分量sinωct经第三可转换反相器49被耦合到第八混频器42的第二输入端。在加法器45中组合第七和第八混频器43、42各自的输出,并且在信号发生装置2’的第一输出端4上提供所得的和。所得的和被传递通过第二90°移相器48,在信号发生装置2’的第二输出端5上提供所得的经过移相的和。
借助于输出端4和5,将第二示例实施例的信号发生装置2’耦合到收发信机的其它部分,与耦合图1所示的上述第一示例实施例的信号发生装置2是一样的。
当收发信机发射时,第七和第八混频器43和42以及加法器45的组合形成众所周知的直接上变频拓扑结构,并在信号发生装置2’的第一输出端4上提供由输入信息信号调制的载频信号。
当收发信机在接收并且第三可转换反相器49由控制装置100设置为非反相时,第七和第八混频器43和42以及加法器45的组合在信号发生装置2’的第一输出端4上提供下变频信号的同相分量,即[cosωct×cosω0t]+[sinωct×sinω0t]=cos(ωc-ω0)t并且在第二90°移相器48中相移之后,在信号发生装置2’的第二输出端5上提供下变频信号的正交分量cos(ωc-ω0)t。
以这种方式,能够实现低端注入的下变频。同样,当使用低端注入时,第一可转换反相器16被设置为反相,从而使多相滤波器13能够选择所需的接收信号。
为了实现高端注入,第三可转换反相器49被设为反相,从而得到分别在信号发生装置2’的第一和第二输出端4和5上提供的cos(ωc+ω0)t和sin(ωc+ω0)t,而第一可转换反相器16被设为非反相。
参考图5,在第三示例实施例中,信号发生装置2”具有用于要被发射的输入信息信号的输入端3、第一输出端4和第二输出端5。除了信号发生装置2”的内部结构中的差别之外,收发信机的结构与上面针对第一实施例描述的一样,因此只描述信号发生装置2”的结构差异。在发射期间,输入信息信号未用于调制第二频率发生器41,而是用于调制第一频率发生器40,例如通过将输入信息信号注入到载频合成器26中,从而直接调制载频信号。在这个实施例中,在发射期间,第二频率发生器41对载频信号的调制不起作用,因此控制装置100可能使第二频率发生器41停止振荡,或者(未示出)可能直接向信号发生装置2的第一和第二输出端4、5提供由第一频率发生器40而不是复合混频器1提供的调制载频信号的同相和正交分量。
在任何示例实施例中,可以任选地以数控振荡器(NCO)实现第二频率发生器41,它产生数字式的同相和正交分量cosω0t和sinω0t,然后这些分量被通过数-模转换和低通滤波转换到模拟域。
有技术背景的读者容易认识到执行在低端与高端注入之间切换时所需的信号反转所用的备选位置。
如果不需要在低端和高端注入之间切换的能力,则可以省去可转换反相器16、36、49,而用直接耦合代替。此外,有技术背景的读者容易认识到这种固定注入可以通过适当地选择信号极性而被设置为或者高端或者低端。
任选地,第一频率发生器40可包括在高于标称载频的频率、例如2ωc频率上工作的振荡器,而且移相电路28’可包括分频功能,例如1∶2分频。这个选择便于数字实现。
任选地,尽管未示出,但是可以设置这样的装置,在收发信机接收时禁用或断开收发信机的发射机部分,例如以便防止从发射机泄漏到接收机。
任选地,发射机功率放大器7不被耦合到信号发生装置2的单个输出端(上述实施例中的输出端4),而是被提供了信号发生装置2的第一和第二输出端4、5上提供的正交信号之和。
工业适用性无线电收发信机。
权利要求
1.一种适合于在公共频率上发射和接收的半双工无线电收发信机,它包括发射机和低IF接收机,还包括信号发生装置,所述信号发生装置包括第一和第二频率发生器,其中所述第一频率发生器在接收和发射期间产生频率为标称载频的信号,其中所述第二频率发生器产生偏移信号,该信号在接收期间是低IF频率的,并且其中在接收期间将所述第一频率发生器产生的信号与所述偏移信号结合而产生下变频信号。
2.如权利要求1所述的收发信机,其特征在于在发射期间,由信息信号对所述第一频率发生器产生的信号进行直接调制。
3.如权利要求1所述的收发信机,其特征在于在发射期间,由信息信号对所述偏移信号进行调制,并且由所述调制后的偏移信号对所述第一频率发生器产生的信号进行调制,从而产生调制后的载波信号。
4.如权利要求3所述的收发信机,其特征在于所述第二频率发生器在接收期间被锁定在频率基准上,在接收期间对所述锁定的第二频率发生器的控制信号进行采样,并且采样的控制信号被用于在发射期间控制频率调制偏移。
5.如权利要求3所述的收发信机,其特征在于所述第二频率发生器包括压控振荡器。
6.如权利要求3所述的收发信机,其特征在于所述第二频率发生器包括数控振荡器。
7.如权利要求1所述的收发信机,其特征在于所述第一频率发生器包括在所述标称载频上工作的振荡器。
8.如权利要求1所述的收发信机,其特征在于所述第一频率发生器包括在高于所述标称载频的频率上工作的振荡器,它被耦合到提供标称载频的同相和正交信号分量的分频单元。
9.如权利要求1到8中任何一个所述的收发信机,其特征在于所述下变频信号能够在高端和低端注入之间进行切换。
10.一种集成电路,它包括如权利要求1到8中任何一个所述的无线电收发信机。
11.一种集成电路,它包括如权利要求9所述的无线电收发信机。
全文摘要
一种能够在公共无线信道上以半双工模式发射和接收的无线电收发信机包括直接转换发射机和低IF接收机。公共信号发生器(2、2’、2”)包括第一和第二频率发生器(40、41)。第一频率发生器产生发射机和接收机都使用的载频信号。在接收期间,第二频率发生器产生低IF频率的偏移信号,它与载频信号混频而形成下变频信号。在发射期间,或者在一个实施例中直接对载频信号应用调制,或者在另一实施例中对偏移信号应用调制,该偏移信号然后与载频信号混频而形成调制载频信号。
文档编号H04B1/40GK1404659SQ01805354
公开日2003年3月19日 申请日期2001年10月16日 优先权日2000年10月26日
发明者A·D·萨耶斯, P·R·马沙尔 申请人:皇家菲利浦电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1