色散减小的喇曼光纤放大器的制作方法

文档序号:7920799阅读:216来源:国知局
专利名称:色散减小的喇曼光纤放大器的制作方法
背景技术
发明领域本发明涉及高增益喇曼光纤放大器,和适用于这种放大器中的光纤。
现有技术的描述在光纤芯中具有高浓度锗的光纤,例如其中芯的折射率比周围包层区域大0.020(Δn>0.020)、并且具有小有效面积(小于20μm2)的光纤,当用作喇曼放大的介质时,一般可以获得令人满意的增益。例如,在市售的色散补偿模块(DCM)中该光纤用作色散补偿光纤(DCF)。参见例如于2002年3月16日提交的,名称为“喇曼放大的色散补偿模块”的美国专利申请10/099,820,该申请被转让给本发明的受让人。
通常将使用呈现出高喇曼增益的光纤的放大器视为可在多波长范围内实现高而且平坦的增益特性的装置,仅受到相关泵浦结构的限制。当将喇曼放大器与掺铒光纤放大器(EDFA)进行比较时,发现相应放大器所需的增益光纤的长度具有很大差别。例如,EDFA仅需要零点几米的光纤,而在喇曼放大器中一般需要几千米的光纤。由此,当设置在通信系统中时,典型的喇曼放大器可能会引入较大的色散和色散斜率。
而EDFA可能将很小的色散引入通信系统中,该放大器仅在大约1528至1565nm和1570至1615nm的波长范围内提供增益。不过,喇曼放大器能够在更多的波长范围上工作,仅受到可使用的泵浦结构的限制。具体来说,喇曼放大器的增益区域处于比泵浦波长长大约100nm的波长处。因此,如果需要1500nm处的增益,则将泵浦波长设置为大约1400nm,喇曼放大器将能够提供所需的增益。
通常还知道,通过将在所关心的波长下分别具有相等的正色散和负色散的光纤组合起来,可以获得“0”的净色散。该技术被用于现代光通信系统中,其中在斜率匹配的色散补偿模块(DCM)中,用具有负色散的光纤来补偿传输光纤的正色散。但是,包括一典型的传输光纤和一斜率匹配DCM的具有中性总色散的光纤对不是有效的喇曼放大器,因为传输光纤的长度必须比模块光纤的长度大许多倍。并且,典型的传输光纤是喇曼放大的不良介质,因为它们具有低模态喇曼增益系数(0.4至0.71/W/km),并且有效面积大于5μm2。对于普通传输光纤,所需的长度大约为模块DCF长度的7倍。对于色散位移型光纤,诸如,例如可从OFS Fitel购得的Truewave光纤,所需的长度大约比DCF的长度大25倍。
可从OFS Fitel购得的DCM采用称为RightWaveDK光纤的色散补偿光纤。RightWave DK光纤呈现负色散斜率,补偿传统单模光纤的大约65%的色散斜率,在1550nm下可实现-2040ps/nm那样低的色散值。
现代光通信系统的色散容限极窄。因此,当设置于通信系统中时,极其需要在宽带宽上可获得具有基本上零净色散的高增益的喇曼光纤放大器。
发明概述根据本发明,适合用作喇曼光纤放大器中增益光纤的光纤包括一通常为圆柱形的芯,一外包层,和相对外包层的折射率分布。芯的直径在3至6微米(μm)之间,芯的折射率与外包层的折射率之间的差(Δn)在0.015至0.035之间。该折射率分布包括一靠近芯周围的沟槽区域,并且该沟槽区域的宽度在1至4μm之间,相对折射率在-0.005至-0.015之间。
根据本发明另一个方面,一喇曼光纤放大器包括一第一光纤,具有一信号输入端和一与该信号输入端相对的输出端;一第二光纤,具有一信号输出端和一与该信号输出端相对的输入端,其中第二光纤的输入端被连接或耦合到第一光纤的输出端,并且以这样一种方式将一泵浦光源耦合到第一和第二光纤上,以便相对于施加给第一光纤的信号输入端并从第二光纤的信号输出端输出的光信号实现喇曼放大。确定第一和第二光纤的长度,使得在光信号波长处下这些光纤呈现出大小基本上相等且符号相反的色散。具有正色散的光纤包括一通常为圆柱形的芯,一外包层,和一相对外包层的折射率分布。该芯的直径在3至6微米(μm)之间,Δn在0.015至0.035之间。该折射率分布包括一靠近芯周围的沟槽区域,且此沟槽区域的宽度在1至4μm之间,Δn在-0.005至-0.015之间。
为了更好地理解本发明,参考下面结合附图和所附权利要求的描述。
附图的简要说明在图中

图1为根据本发明的喇曼增益光纤的折射率分布,表示通过光纤芯与外围包层的截面的折射率之间的差;图2表示根据本发明的喇曼光纤放大器的结构;图3为表示由图2的放大器得到的作为波长的函数的净增益和噪声因数的曲线;图4为表示当将图1的光纤与相对色散斜率(RDS)稍微不同的色散补偿光纤组合在一起时所得到的剩余色散的曲线。
本发明的详细说明图1为表示通过本发明光纤10的截面的折射率分布的曲线。y-轴绘出Δn,即所测得的通过光纤10的芯12和外围包层16的截面的折射率之间的差,为沿曲线的x-轴测得的截面中的位置的函数。光纤10具有高喇曼增益系数,正色散,并且色散斜率适合于与现有光纤诸如,例如所述具有负色散的RightWave DK光纤匹配。图2表示根据本发明的喇曼放大器50,包括本光纤10和确定长度的现有负色散光纤,如RightWaveDK光纤,其中放大器50的总色散接近或者基本为零。
使用改进的化学汽相沉积(MCVD)方法制造光纤10,得到下面的特征1.高喇曼增益系数。
2.正色散,即在1550nm下的色散大约为10至12ps/nm/km。
3.与典型DCF(例如RightWave DK光纤)匹配的相对色散斜率(RDS)。
4.在泵浦和信号波带中具有良好的光谱特性,即从1400nm至1650nm具有低光谱衰减。
5.低弯曲损耗,截止波长小于1400nm。
如所提到的,光纤10呈现出图1中的折射率分布。具体来说,光纤10的芯12的Δn大约为0.0236,直径大约为4.68微米(μm)。靠近芯的沟槽区域14具有大约-0.0085的Δn,而且芯12和沟槽区域14的总直径大约为8.10μm〔即沟槽区域14的宽度为(8.10-4.68)/2=1.71μm〕。光纤10的外包层16的总直径大约为125μm。
因而光纤10的芯12具有高Δn(>20×10-3),小直径。沟槽区域14是薄的,并且具有大约-9×10-3的Δn的深凹陷。如果没有沟槽区域14,光纤10将表现出较小的正色散,RDS大约为0.0085ps-1。提供沟槽区域14,用于减小光纤10的有效面积,增大其色散,减小其RDS,使光纤能够与所提到的RightWave DK光纤很好地匹配。
所制造的具有上述技术要求的光纤10呈现出下列特性
为了使光纤10保持上面的特性,最好使光纤的几何形状基本上保持在下面的范围内区域 尺寸 与外包层的折射率差(Δn)芯12 直径=3至6μm0.015至0.035沟槽14宽度=1至4μm -0.005至-0.015外包层16 宽度=62.5μm0将一定长度的本光纤10与可购得的色散补偿光纤诸如具有负色散的RightWave DK光纤连接起来,得到图2中的喇曼放大器结构,具有基本上为零的净色散和色散斜率。如上表所示,在1550nm下喇曼增益光纤10的色散为12ps/nm/km,而DK光纤具有大约-100ps/nm/km的色散。因此,如在喇曼放大器结构中使用8至10倍于DK光纤的喇曼增益光纤10,则在1550nm下的总色散为零。另外,本光纤10与DK光纤在1550nm下的相对色散斜率相等,导致1550nm下总色散斜率为零。作为附加的特征,DK光纤也是用于喇曼放大的优良的增益介质。
实例利用5000米的本光纤10和560米负色散补偿光纤52制成图2中的喇曼放大器50,其中使用RightWave DK光纤作为负色散补偿光纤52。提供更长长度的光纤,用较小的泵浦功率可以获得相同的净增益,但是由于双瑞利后散射增大,也将导致更高的多路干扰(MPI)。
输入信号进入光纤52的一端54,其相对的一端56连接到本光纤10的一端58。以与光纤10的信号输出端62相反(反向)的泵浦结构设置泵浦60。如果需要,放大器50可以被向前(共)泵浦或双向泵浦。
从1526至1610nm,在整个C-波段和L-波段检测输入信号波长发生改变。对于下面给出的泵浦功率和波长,60个输入信道,并且总输入功率为0dBm(每个信道为0.0167mW)时可获得10dB的平均净增益,并且增益波动小于0.4dB。
泵浦波长(nm)泵浦功率(mW)1422 2471435.51731451 1001466 701477 721505 84图3为对于图2中的放大器50所得到的曲线,其中曲线70表示净增益,曲线72表示噪声因数,以dB为单位。平均MPI为44.4dB。
图4表示一个喇曼增益光纤10与如图所示相对色散斜率(RDS)稍微不同的三个不同的RightWave DK光纤相连接的例子。在三个不同的波长范围内,即S-波段(曲线80)、C-波段(曲线82)和L-波段(曲线84),得到几乎为零的剩余色散。具体来说,在C-波段中,从1520至1570nm,剩余色散在±0.025ps/nm/km之内。
相比之下,图4中的曲线86表示将丹麦的OFS Fitel制造的具有负色散的标准喇曼增益光纤和具有正色散的标准传输光纤相结合时的剩余色散。可以看出,在1550nm下可以得到零剩余色散,在非1550nm的波长下,存在很大的剩余色散,因为该光纤的斜率不匹配。
上面的描述代表本发明的最佳实施例,显然在不偏离下面权利要求提出的本发明的精神和范围的条件下,本领域技术人员可以进行多种改变和变型。
权利要求
1.一种光纤,具有一通常为圆柱形的芯,一外包层,和一相对外包层的折射率分布,其中(a)该光纤芯直径在3至6微米(μm)之间,芯与外包层的折射率之间的差(Δn)在0.015至0.035之间;(b)该折射率分布包括一靠近芯周围的沟槽;以及(c)该沟槽区域的宽度在1至4μm之间,且相对外包层的Δn在-0.005至-0.015之间。
2.根据权利要求1所述的光纤,其中该沟槽区域的宽度为大约为1.71μm。
3.根据权利要求1所述的光纤,其中该沟槽区域的Δn大约为-0.0085。
4.根据权利要求1所述的光纤,其中在1550nm下该光纤呈现出11至12ps/nm/km之间的正色散。
5.根据权利要求4所述的光纤,其中在1550nm下该光纤具有大约为0.0027nm-1的相对色散斜率。
6.根据权利要求1所述的光纤,其中该光纤具有大约17μm2的有效面积。
7.根据权利要求1所述的光纤,其中该光纤芯的Δn大约为0.0236。
8.一种喇曼光纤放大器,包括一第一光纤,具有一信号输入端和一与该信号输入端相对的输出端;一第二光纤,具有一信号输出端和一与该信号输出端相对的输入端,其中所述输入端被耦合到第一光纤的输出端;以及一以这样一种方式耦合到第一和第二光纤上的泵浦光源,以便相对于施加给第一光纤的信号输入端并从第二光纤的信号输出端输出的光信号实现喇曼放大;其中确定第一和第二光纤的长度,使得这些光纤具有基本上相等的相对色散斜率,并且在光信号波长上呈现出大小基本相等、符号相反的色散,且具有正色散的光纤包括一通常为圆柱形的芯,一外包层,和一相对外包层的折射率分布,并且(a)该光纤芯的直径在3至6微米(μm)之间,芯与外包层的折射率之间的差(Δn)在0.015至0.035之间;(b)该折射率分布包括一靠近芯周围的沟槽区域;以及(c)该沟槽区域的宽度在1至4μm之间,相对外包层的Δn在-0.005至-0.015之间。
9.根据权利要求8所述的喇曼光纤放大器,其中第一和第二光纤在1550nm下具有大约为0.0027nm-1的相对色散斜率。
10.一种喇曼光纤放大器,包括权利要求1所述的光纤。
全文摘要
一种被泵浦的喇曼光纤放大器,包括两个光纤,确定这两个光纤的长度,使得在输入光信号波长下,该光纤呈现出大小基本上相等、符号相反的色散。且具有正色散的光纤具有一圆柱形的芯,一外包层,和一相对外包层的折射率分布。该芯的直径在3至6微米(μm)之间,芯与外包层的折射率之间的差(Δn)在0.015至0.035之间。该折射率分布包括一靠近芯周围的沟槽区域,沟槽区域的宽度在1至4μm之间,Δn在-0.005至-0.015之间。这两个光纤是按色散斜率匹配的,使得在一宽波长范围上该放大器的净色散基本上保持为零。
文档编号H04B10/17GK1456905SQ0213155
公开日2003年11月19日 申请日期2002年9月11日 优先权日2002年5月8日
发明者彼得·加尔德, 拉斯·格兰纳-尼尔森, 贝拉·帕尔斯多特 申请人:菲特尔美国公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1