固态图像传感器缺陷像素校正及信息生成方法、成像设备的制作方法

文档序号:7588214阅读:190来源:国知局
专利名称:固态图像传感器缺陷像素校正及信息生成方法、成像设备的制作方法
技术领域
本发明涉及一种用于校正固态图像传感器中缺陷像素的方法和成像设备,更具体地说,涉及一种应用到例如数字相机或电影摄像机的电子图像记录设备的技术,这是一种用于校正在固态图像传感器的生产中产生在感光像素中的缺陷(缺点)的信号处理技术。本发明还涉及一种包括成像器件的数字相机,该成像器件具有对于每个像素来说不同的光接收感光度和光接收信号饱和电平的两种类型的光接收元件,以及一种用于在安装在数字相机上的成像器件中产生像素信息的方法。
背景技术
用在数字相机之类产品中的固态图像传感器,例如电荷耦合器件(CCD)与常规的卤化银照相相比具有非常小的动态范围,因此与卤化银照相相比,甚至正确曝光所拍摄的图像似乎也可能有些不令人满意。此外,可能会发生所谓的阴影细节的损耗和过焦强光,导致取决于成像条件的图像品质严重退化。为了消除这些不利因素,提出一种方法,该方法可以通过获取对同一场景进行不同程度曝光的大量图像并配合计算得出的大量图像数据来获得具有较大动态范围的图像。
日本专利申请公开号为No.9-205589的文献公开了一种CCD固态成像设备,该设备把一个单位单元划分为两种类型的光接收区域(高感光度区域和低感光度区域),并且分别地结合或附加从两个光接收区域读出的信号,从而获得动态范围的增加,两种类型的光接收区域对于二维地设置在光接收表面上的大量的光接收部分(单位单元)来说具有不同的感光度。
CCD之类的固态图像传感器是通过在半导体衬底上形成大量例如光电二极管的感光元件而获得的,但在图像传感器的生产中,由于进入半导体衬底中的杂质等,可能在局部基底上产生不能捕获像素值的缺陷像素。
对于具有这样缺陷像素的图像传感器,日本专利申请公开号为No.7-143403的文献公开了一种根据从邻近缺陷像素周围的大量像素的组合信号来校正缺陷像素的像素值的技术。
使用CCD之类的成像器件具有通过集成几十万到数百万的非常小的光接收元件形成的光接收区域,因此生产不具有例如缺陷像素的缺陷光接收元件的成像器件是有困难的。从而,执行校正处理以便预先知道对于成像器件中每个像素(缺陷数据)的缺陷的存在/不存在,记录每个像素是否有缺陷的数据表被存储在配备相应成像器件的数字相机的非易失性存储器中,并且当处理图像信号时,数字相机参考存储在非易失性存储器中的数据表,用邻近的正常像素的信号取代每个缺陷像素的信号(例如参看日本专利公开号为No.1-29475的文献)。
在一种作为常规操作而使用的校正固态图像传感器中缺陷的方法中,执行校正以便将在生产工序中表现等于或大于所限定水平的不规则状态的感光像素判断为缺陷,以及如果缺陷的数目等于或小于所限定的数目,常常用周围的像素信息代替从判断为缺陷的感光像素中输出的信号,或常常输出几个周围像素的平均值。
根据这种常规的校正方法,如果将相当多的感光像素判断为缺陷,并且用周围像素的值校正从这些缺陷输出的信号,那么在图像信号处理之前,所产生的图像数据好象被局部基底上的低通滤波器(LPF)过滤似的。
具有对于每个像素来说不同光接收感光度和光接收信号饱和电平的两种类型的光接收元件的宽动态范围的成像器件具有实质上增加了数目的光接收元件。在这种情况下,如果对于每个低亮度(标准信号)情况下的光接收元件的累积电荷、高亮度(高亮度信号)情况下的光接收元件的累积电荷以及标准信号和高亮度信号的混合输出所产生的数据表存储在非易失性存储器中,那么非易失性存储器需要具有大的存储容量,并且使校正处理复杂化。

发明内容
考虑到这些情况作出本发明,本发明的一个目的是提供一种用于校正缺陷像素的方法和一种能够不引起解析感光度下降而精确地校正缺陷像素的像素值的成像设备,本发明的又一个目的是提供一种数字相机,该数字相机具有有效校正成像器件的功能并且使用相对于光接收元件数目来说少量的信息,这种类型的成像器件具有对于每个像素不同光接收感光度和光接收信号饱和电平的两种类型的光接收元件,以及一种用在数字相机中产生像素信息的方法。
为了达到上述目的,本发明针对一种用于校正固态图像传感器中缺陷像素的方法,该固态图像传感器中具有根据预定设置排列的多个像素单元的结构,每一个像素单元由具有相对较大面积的主感光像素和相对较小面积的辅助感光像素的组合而成,以及有选择地提取由根据主感光像素光电转换的信号电荷的信号和根据由辅助感光像素光电转换的信号电荷的信号,所述方法包括如下步骤如果对于固态图像传感器的任何单元,构成像素单元的主感光像素是正常像素,并且辅助感光像素是缺陷像素,那么判断从存在于含有缺陷辅助感光像素的像素单元周围的像素单元的主感光像素中取得的信号的电平是否低于指示饱和输出的预定饱和电平;以及如果从存在于含有缺陷辅助感光像素的像素单元周围的像素单元的主感光像素中取得的信号的电平低于饱和电平,那么根据等同于缺陷感光像素的值的像素单元中的主感光像素的像素值校正缺陷辅助感光像素的像素值。
根据本发明,对于主感光像素和辅助感光像素可以取得光学上同相的信息,并且在同一像素单元中的主感光像素和辅助感光像素处于几乎同一位置的前提下,能操作主感光像素和辅助感光像素。如果在一个像素单元中辅助感光像素是有缺陷的,并且不能从辅助感光像素中提取正常的信号,那么使用像素单元中的正常主感光像素的输出值(像素值)校正缺陷辅助感光像素的像素值。然而,如果从存在于缺陷像素周围的像素单元的主感光像素(正常像素)中取得的信号的电平低于饱和电平,那么仅仅执行这种校正。
如果从存在于缺陷像素周围的像素单元的主感光像素中取得的信号的电平等于饱和电平,即对于主感光像素的像素值是饱和的高亮度区域,那么优选执行常规(低通滤波器型)校正,这是因为用在同一像素单元中的主感光像素的像素值校正辅助感光像素的缺陷是不恰当的。
相反,如果从存在于缺陷像素周围的像素单元的主感光像素中取得的信号的电平低于饱和电平,即没有超出主感光像素的动态范围,那么用在一个像素单元中的主感光像素的像素值校正辅助感光像素的缺陷,这是因为入射光总量和像素值之间存在确定的关系(例如,比例性)。因此,与常规校正相比降低了低通滤波影响,并且在校正后能取得解析感光度。
根据本发明的一个方案,通过等同于缺陷辅助感光像素的像素值的主感光像素的像素值除主感光像素的感光度对辅助感光像素的感光度的比值,判断缺陷辅助感光像素的像素值。
根据本发明的另一个方案,对于固态图像传感器的任何像素单元,如果构成像素单元的主感光像素是缺陷像素,那么根据存在于含有缺陷主感光像素的像素单元周围的像素单元的主感光像素的像素值校正缺陷主感光像素的像素值。
另一个方案中,不受限制地执行用于主感光像素的缺陷的常规校正,同时对于辅助感光像素的缺陷执行使用在同一像素单元中的主感光像素的像素值的上述校正。
本发明的另一个方案的特征在于,对于固态图像传感器的任何像素单元,如果构成像素单元的主感光像素是缺陷像素,并且辅助感光像素是正常像素,那么根据等同于缺陷主感光像素的像素值的像素单元中的辅助感光像素的像素值校正缺陷主感光像素的像素值,如果从存在于含有缺陷主感光像素的像素单元周围的像素单元的主感光像素取得的信号的电平超出预定标准。
如果在每个时刻使用在同一像素单元中的辅助感光像素的像素值校正主感光像素的缺陷,由于大的增益可能使S/N恶化,因此优选执行用于由于伽马(gamma)转换等还可以使S/N恶化的低亮度区域的常规校正。其中,预先限定用于判断可以使S/N恶化的是否是低亮度部分的一个确定值,并且如果超出确定值,那么缺陷主感光像素的像素值使用在同一像素单元中的辅助感光像素的像素值。
另一个方案中,当校正主感光像素的缺陷时,等同于缺陷主感光像素的像素值的像素单元中的辅助感光像素的像素值乘主感光像素的感光度对辅助感光像素的感光度的比值的计算,从而判断缺陷主感光像素的像素值。
为了达到上述目的,本发明还提供一种成像设备,包括具有根据预定排列形式设置的多个像素单元结构的固态图像传感器,每一个像素单元由具有相对较大面积的主感光像素和相对较小面积的辅助感光像素的组合构成,以及有选择地提取由根据主感光像素光电转换的信号电荷的信号和根据由辅助感光像素光电转换的信号电荷的信号;判断器件,如果对于固态图像传感器的任何像素单元,构成像素单元的主感光像素是正常像素并且辅助感光像素是缺陷像素,那么判断从存在于含有缺陷辅助感光像素的像素单元周围的像素单元的主感光像素中取得的信号的电平是否低于指示饱和输出的预定饱和电平;以及缺陷像素校正器件,如果用判断器件判断从存在于含有缺陷像素的像素单元周围的像素单元的主感光像素取得的信号的电平低于饱和电平,那么根据等同于缺陷辅助感光像素的像素值的像素单元中的主感光像素的像素值校正缺陷辅助感光像素的像素值。
优选地,对于在同一像素单元中的主感光像素和辅助感光像素设置同一彩色元件的滤色器,以及在每个像素单元上方给一个像素单元提供一微小镜头。
为了达到上述目的,本发明还提供一种包括成像器件的数字相机,该成像器件具有对于每个像素不同的光接收感光度和光接收信号饱和电平的两种类型的光接收元件,数字相机包括存储器,存储用于限定在至少一个光接收元件中具有缺陷的像素作为缺陷像素的像素信息;以及校正处理电路,根据像素信息校正缺陷像素的输出信号。
数字相机根据用于限定在至少一个光接收元件中具有缺陷的像素作为缺陷像素的像素信息校正有缺陷像素的输出信号,从而有可能使用相对于光接收元件的数目来说较少量信息来有效地执行校正。
本发明还提供一种用于在成像器件中产生像素信息的方法,成像器件具有由多个像素构成的成像区域并且具有对于每个像素不同的光接收感光度和光接收信号饱和电平的第一和第二光接收元件,所述方法包括如下步骤读出对于每个像素的第一光接收元件的输出信号以便产生指示像素是否有缺陷的信息;读出对于每个像素的第二光接收元件的输出信号以便产生指示像素是否有缺陷的信息;以及计算在上述步骤中产生的多个信息的逻辑和并且产生用于限定具有等于1的计算结果的像素作为缺陷像素的像素信息。
根据本发明,可以正确地产生用于限定在至少一个光接收元件中具有缺陷的像素作为缺陷像素的像素信息。
本发明还提供一种用于在成像器件中产生像素信息的方法,成像器件具有由多个像素构成的成像区域,每一个像素具有不同的光接收感光度和光接收信号饱和电平的第一和第二光接收元件,所述方法包括如下步骤每次对于每个像素读出第一光接收元件的输出信号和第二光接收元件的输出信号以便产生指示像素是否有缺陷的信息;读出对于每个像素的第一光接收元件的输出信号以便产生指示像素是否有缺陷的信息;读出对于每个像素的第二光接收元件的输出信号以便产生指示像素是否有缺陷的信息;以及计算在上述步骤中产生的多个信息的逻辑和并且产生用于限定具有等于1的计算结果的像素作为缺陷像素的像素信息。
根据本发明,能正确而快速地产生用于限定在至少一个光接收元件中具有缺陷的像素作为缺陷像素的像素信息。


下面将参考

本发明的特性以及其它目标及有益效果,在所有附图中用相同的参考字符指示相同或类似的部分。在其中图1是作为本发明一个实施例的电子相机的结构框图;图2是图1所示的CCD的光接收表面的结构的平面图;图3是沿图2的线3-3截取的截面图;图4是沿图2的线4-4截取的截面图;图5是图1所示的CCD整体结构的示意平面图;图6是主感光像素和辅助感光像素的光电转换特性的示图;图7为图1所示的信号处理单元的详细结构框图;图8为体现本发明的相机中的第一控制例的缺陷校正处理程序的流程图;图9为体现本发明的相机中的第二控制例子的缺陷校正处理程序的流程图;图10为体现本发明的相机中的第三控制例子的缺陷校正处理程序的流程图;图11给出了CCD结构的另一个例子的平面图;图12是沿图11的线12-12截取的截面图;图13给出了CCD结构的又一个例子的平面图;图14显示了在常规成像器件中入射光的总量和输出信号(感光度曲线)之间的关系;图15是在每个像素上都具有主像素和辅助像素的成像器件的原理解释图;图16是作为本发明实施例的用于产生像素信息的一个程序的流程图;图17是作为本发明实施例的用于产生像素信息的另一个程序的流程图;图18是作为本发明实施例的用于产生像素信息的又一个程序的流程图;图19是作为本发明实施例的用于产生像素信息的再一个程序的流程图;以及图20是作为本发明实施例的数字相机结构的一个例子的框图。
具体实施例方式
根据附图将详细地说明本发明的优选实施例。
图1是作为本发明一个实施例的电子相机的结构框图。相机10是数字相机,它可以通过CCD固态图像传感器(下文简称CCD)135将拍摄的物体的光学图像转换成数字图像数据,并且,作为本发明实施例的一种用于校正有缺陷图像的方法也应用于部分信号处理器件中,该信号处理器件处理从CCD13中取得的图形信号。
通常通过装设在相机10中的中央处理单元(CPU)16控制相机10的所有操作。CPU16是根据预设程序控制主相机系统的控制器件,以及用作执行各种类型的计算的计算设备,例如自动曝光(AE)计算、自动调焦(AF)计算、自动白平衡(AWB)计算和用于缺陷像素校正的计算。
CPU16通过总线18连接到只读存储器(ROM)20和例如随机存取存储器(RAM)22的存储器上。通过CPU16执行的程序、用于控制所需的各种类型的数据等都存储在ROM20中。存储器22用作程序扩充的区域和CPU16的计算工作区域,并且还用作用于图像数据暂时存储的区域。
电可擦可编程随机存取存储器(EEPROM)24连接到CPU16上。EEPROM24是非易失性存储器件,在其中存放CCD13的缺陷像素的信息、用于AE、AF、AWB等等控制所需的数据或通过用户设定的专用信息,并且能够重写所必需的数据,即使当关闭电源时也能保留信息的内容。CPU16针对EEPROM24执行所必需的计算等。
为相机10提供供用户输入各种命令的操作单元30。操作单元30包括各种操作单元,例如快门按钮、变焦开关和模式转换开关。快门按钮是用于输入指令以开始照相的操作器件,并且是包括具有S1开关和S2开关的两级闪击型开关,当半压按钮时开启S1开关,当全压按钮时开启S2开关。随着S1开启,执行AE处理和AF处理,随着S2开启,执行用于存储的曝光。变焦开关是改变成像缩放比例因素和播放缩放比例因素的操作器件。模式转换开关是用于成像模式和播放模式之间切换的操作器件。
此外,除上面描述的器件以外,操作单元30还包括根据成像目的来设定最佳操作模式(连续曝光模式、自动成像模式、手动成像模式、影像模式、景观模式、夜视模式,等等)的成像模式设定器件,以及操作器件,例如,用于在液晶显示器(显示器件)32上显示菜单屏幕的菜单按钮、用于从菜单屏幕上选择所期望的项目的十字按钮、用于提供命令以限定所选择的项目或执行处理的OK按钮、以及用于输入命令以删除例如所选择的项目、取消指示的内容或使返回最近在前的操作状态的取消按钮。
此外,操作单元30不仅包括例如暂停开关元件、转盘元件和杠杆开关的结构,而且还包括通过可以从菜单屏幕上选择所期望的项目的用户界面所确定的配置。
把来自操作单元30的信号输入到CPU16。CPU16根据来自操作单元的输入信号控制相机10的每个电路,并且执行例如镜头驱动控制、成像操作控制、图像处理控制、图像数据存储/播放控制、液晶显示器32的显示控制。
液晶显示器32能用作电子取景器,用于检查拍摄图像时的视角。液晶显示器32还用作用户界面的显示屏幕,在上面显示必须的信息,例如菜单信息、选择项目和设定内容。此外,不同类型的显示器件,例如有机EL(电致发光)还可以用于代替液晶显示器。
现在来说明相机10的成像功能。
相机10包括光学系统单元34和CCD13。不同系统的图像传感器,例如MOS型固态成像系统能用于代替CCD13。光学系统单元34包括拍摄镜头(未示出)、光圈和机械快门构件。拍摄镜头由自动变焦镜头构成,并且尽管在附图中没有显示出详细的光学结构,但拍摄镜头主要包括影响定标因数改变(焦点距离可变的)行为的定标因数可变镜头组、校正镜头组和有助于焦距调整的焦距镜头。
当用户操作操作单元30的变焦开关时,根据开关操作从CPU16输出光学系统控制信号到电动机驱动电路36。根据来自CPU16的控制信号,电动机驱动电路36产生用于驱动镜头的信号,并且把信号提供给变焦电动机(未示出)。这样,用从电动机驱动电路36输出的电动机驱动电压驱使变焦电动机,并且使拍摄镜头中的定标因数可变镜头组和校正镜头组沿着光轴来回地移动,从而改变拍摄镜头的焦距距离(光学变焦定标因数)。
穿过光学系统单元34的光进入CCD13的光接收表面。在CCD13的光接收表面上以平面形式设置大量的光传感器(光接收元件),并且以对应于每个光传感器的预定排列结构设置红色(R)、绿色(G)和蓝色(B)的原色的滤色器。
用每个光传感器把CCD13的光接收表面上形成的物体图像转换成对应于入射光总量的信号电荷总量。CCD13具有根据快门脉冲的定时来控制每个光传感器的控制电荷积累时间(快门速度)的电子功能。
根据从CCD驱动器40供给的脉冲,连续地读出CCD13的每个光传感器中积累的信号电荷,作为对应于信号电荷的电压信号(图像信号),并且把从CCD13输出的图像信号传送给模拟处理单元42。模拟处理单元42是包括相关双采样(CDS)电路和增益调整电路的处理单元,并且在该模拟处理单元42中,执行采样处理和将彩色分离成R、G和B的彩色信号的处理,以及调整每个彩色信号的信号电平。
用A/D转换器44把从模拟处理单元42输出的图像信号转换成数字信号,然后通过数字信号处理单元46存储在存储器22中。定时发生器(TG)48根据CPU16的命令把定时信号提供给CCD驱动器40、模拟处理单元42和A/D转换器44,并且用定时信号使电路同步。
信号处理单元46还用作控制存储器22的读出/写入的遥控器的数字信号处理模块。信号处理单元46是图像处理器件,包括缺陷像素校正单元、执行AE/AF/AWB处理的自动计算单元、白平衡电路、伽马(gamma)转换电路、同步电路(用于校正由单个平板CCD的滤色器排列产生的彩色信号的空间移位,以计算每个点的颜色)、亮度/彩色差异信号发生电路、轮廓校正电路和反差校正电路,并且根据来自使用存储器22的CPU16的命令处理图像信号。
通过总线18把存储在存储器22中的数据(CCDRAM数据)传送给信号处理单元46。使输入到信号处理单元46的图像数据受到例如白平衡调整处理、伽马(gamma)转换处理和用于转换成亮度信号(Y信号)与彩色差异信号(Cr、Cb信号)(YC处理)的预定处理,然后存储在存储器22中。
如果拍摄的图像是显示器输出的,那么从存储器22中读出图像数据,并且传送到显示电路50。把传送到显示电路50的图像数据转换成用于显示的预定模式的信号(例如,NTSC模式的彩色合成图像信号),然后输出到液晶显示器32。用从CCD13输出的图像信号定期地重写存储器22中的图像数据,并且把从图像数据产生的图像信号提供到液晶显示器32,从而拍摄的图像(连贯图像)实时显示在液晶显示器32上。用户通过显示在液晶显示器32上的图像(所谓的连贯影像)能观察视野的角度(合成)。
当用户决定视野的角度并按下快门按钮时,然后CPU16探测出这些,并且响应快门按钮(S1=ON)的半按执行AE处理和AF处理,以及响应快门按钮(S2=ON)的全按启动用于拍摄图像的CCD曝光和读出控制。
就是说,CPU16执行各种类型的计算,例如焦距估计计算和响应S1=ON的来自拍摄的图像数据的AE计算,根据计算的结果传送控制信号到发动机驱动电路36,并且控制AF电动机(未示出)以移动光学系统单元34的焦距镜头到聚焦位置。
AE计算单元包括用于把拍摄的图像的一个屏幕分割成多个区域(例如16×16)和集成用于每个分割的区域的RGB信号的电路,并且把集成的值提供给CPU16。可以测定用于每个RGB的彩色信号的集总的值,或可以测定用于这些信号中仅仅一个(例如,G信号)被集总的值。
CPU16根据从AE计算单元取得的集总的值执行加权和,检测物体的亮度(主体亮度),并且计算适合于成像的曝光值(成像EV值)。
为了在宽动态范围以外正确地执行光度测量,相机10的AE两次或多次执行光度测量以正确地确认物体的亮度。当在5-17EV的范围以外执行光度测量时,能用一次光度测量在3EV的范围以外执行提供的光度测量,例如当改变曝光条件时在最大值处执行四次光度测量。
在一定的曝光条件下执行光度测量,并且监控每个分割的区域的集成值。如果任何饱和的区域存在于图像中,那么执行光度测量而同时改变曝光条件。另一方面,如果没有饱和的区域存在于图像中,那么正确地执行光度测量,并因此不作出曝光条件的进一步改变。
这样,两次或多次执行光度测量以在宽范围(5-17EV)以外执行光度测量,并且判定最佳的曝光条件。此外,对于每个类型的相机,可以设定能或应当用一次光度测量来度量的范围作为最合适的范围。
CPU16根据上述AE计算的结果控制光圈和快门速度,并且响应S2=ON取得用于存储的图像。
使响应快门按钮(S2=ON)的全按拍摄的图像数据受到YC处理和在如图1所示的信号处理单元46中的其它预定的信号处理,然后,在压缩/放大电路52中根据预定的格式(例如,JPEG格式)压缩。压缩的图像数据通过介质界面单元54存储在存储媒体14中。压缩格式不限于JPEG格式,还可以应用MPEG或其它的格式。
对于存储图像数据的器件,各种类型的介质,例如用Smart MediaTM、Compact FlashTM等表示的半导体存储器卡、磁盘、光盘和磁光盘。存储图像数据的器件不限于可移动介质,还可以是固嵌在相机10内的存储介质(内部存储器)。
当用操作单元30的模式选择开关选择播放模式时,读出在存储介质中存储的最后的图像文件(最后存储的文件)。使从存储媒体14中读出的图像文件的数据通过压缩/放大电路52受到放大处理,并且通过显示电路50输出到液晶监控器32。
在播放模式中通过在一个信息帧播放期间操作十字按钮,信息帧能以正向或反向的方式传送。从存储媒体14中读出传送的下一个信息帧文件,并且更新显示的图像。
图2为CCD13的光接收表面的结构的平面图。图2中示出了并排放置的两个光接收单元(像素PIX),但实际上,在固定排列的节距处以水平(纵向)方向和垂直(横向)方向放置了大量的像素PIX。
每个像素PIX包括两个具有不同感光度的光电二极管区域61和62。第一光电二极管区域61具有相对大的面积,并且构成主感光部分(下文简称主感光像素)。第二光电二极管区域62具有相对小的面积,并且构成辅助感光区域(下文简称辅助感光像素)。垂直传送通道(VCCD)63在像素PIX的右侧。
图2中所示的结构是蜂窝状结构的像素排列,并且在相对于彼此之间以横向方向半个节距所代替的位置处放置图中所示的两个上部和下部像素PIX。在图2中所示的像素PIX的左侧上示出的垂直传送通道63希望用于读出来自像素(未示出)的电荷并且传送电荷,该像素设置未这些像素PIX的上部和下部侧。
如图2中的虚线所示,需要用于四个相位驱动(φ1、φ2、φ3、φ4)的传送电极64、65、66、67(共同用EL指代)设置在垂直传送通道63上方。如果用两层多晶硅构成传送电极,例如,施加φ1的脉冲电压的第一传送电极64、施加φ3的脉冲电压的第三电极66是由第一层多晶硅层构成,以及施加φ2的脉冲电压的第二传送电极65和施加φ4的脉冲电压的第四电极67是由第二层多晶硅层构成。此外,传送电极64还控制从辅助感光像素62到垂直传送通道63的电荷的读出。传送电极65还控制从主感光像素61到垂直传送通道63的主感光像素61的电荷的读出。
图3是沿图1的线3-3截取的截面图,图4是沿图1的线4-4截取的截面图。如图3所示,p型阱71形成在n型半导体衬底70的一个表面上。两个n型区73和74形成在p型阱71的表面区域上以形成光电二极管。用参考数字73标记的n型区域中的光电二极管对应于主感光像素61,以及用参考数字74标记的n型区域中的光电二极管对应于辅助感光像素62。
P+型区域76是像素PIX的沟道终止区域,垂直传送通道63与之是电隔离的。
如图4中所示,构成垂直传送通道63的n型区域77被设置靠近构成光电二极管的n型区域73。n型区域74和77之间的p型阱71构成读数晶体管。
例如氧化硅的绝缘层形成在半导体衬底的表面上,并且由多晶硅形成的传送电极EL形成在其上。这样设置传送电极EL以便覆盖在垂直传送通道63正上方。氧化硅的绝缘层等还形成在传送电极上,并且用钨等材料在其上形成覆盖例如垂直传送电极63的元件和具有在光电二极管上方的开口的光阻挡膜78。
以这样的方式形成由硅酸盐玻璃等材料形成的层间绝缘膜79以覆盖光阻挡膜78,并且使膜的表面平整。滤色器层80形成在层间绝缘膜79上。滤色器层80包括三种或多种例如红色、绿色和蓝色区域的彩色层,并且把一种彩色的彩色区域分配给每个像素PIX。
在滤色层上,用抗蚀材料或类似的材料形成与像素PIX一致的微小镜头81。一个微小镜头81形成在每一个像素PIX上,并且具有聚集通过光阻挡膜78界定的开口上方入射的光的功能。
通过微小镜头81的入射光是通过滤色器层81彩色分隔的,并且进入主感光像素61和辅助感光像素62的每个光电二极管。进入每个光电二极管的光转换成对应于光的总量的信号电荷,并且各自独立地被读出到垂直传送通道63。
这样,不同感光度的两种类型图像信号(高感光度图像信号和低感光度信号)能独立地从一个像素PIX中提取出来,并且获得光学上同相的图像信号。
图5示出了在CCD13的光接收区域中的像素PIX和垂直传送通道63的排列。以蜂窝状结构设置像素PIX以便用在纵向和横向方向上半个像素节距(1/2节距)以横向方式移动单元的几何形状的中心点。也就是,成直线(或成行)的彼此邻近的像素PIX,以相对于在其它线(或行)中单元排列的纵向(或横向)方向用几乎1/2的排列间距移动以一条线(或行)的单元排列。
施加脉冲电压道传送电极EL的VCCD驱动电路84设置在光接收区域PS的右侧,图5中光接收区域PS中设置像素PIX。如上所述,每个像素PIX包括主感光部分(主像素)和辅助感光部分(辅助像素)。靠近每行以Z字形的形式设置垂直传送通道63。
以水平的方向传送从垂直传送通道30传送来的信号电荷的水平传送通道(HCCD)85设置在光接收区域PS的下侧上(在垂直传送通道63的下部一端侧上)。
水平传送通道85由两个相位驱动的传送CCD构成,并且水平传送通道85的最后一段连接到输出单元86。输出单元86包括输出放大器,探测输入的信号电荷并且把电荷作为信号电压输出到输出端子。这样,在像素PIX中光电转换的信号作为点状顺序信号行被输出。
图6是主感光像素61和辅助感光像素62的光电转换特性的示意图。横轴线示出了入射光的总量,纵轴示出了在A/D转换后的图像数据值(QL值)。在该例子中,作为例子示出12位数据,但不限于到该处的位的数目。
如图所示,主感光像素61和辅助感光像素62之间的光敏度比值是11/a(a>1)。主感光像素61的输出与入射光的总量成比例的逐渐增加,并且当入射光的总量是“c”时,输出达到饱和值(QL值=4095)。此后,即使入射光的总量正加,主感光像素61的输出也保持常数。“c”称为主感光像素61的饱和光总量。
另一方面,辅助感光像素62的光敏度是主感光像素61的光敏度的1/a,并且当入射光的总量是α×c(b>1,α=a/b)时,在QL值=4095/b处饱和。这时“α×c”称为辅助感光像素62的饱和光总量。
这样,通过合成具有不同光敏度的主感光像素和辅助感光像素,与仅仅具有主感光像素的结构相比,CCD13的动态范围能随着α的因素增加(在该例子中用大约4的因素)。
根据从主感光像素61取得的信号执行快门按钮的S1=ON的AE处理和AF处理。如果选择执行宽动态范围成像的成像模式,或由AE的结果(例如ISO光敏度和光度测量的值)或根据白平衡增益值等自动选择地宽动态范围成像模式,那么响应快门按钮的S2=ON把CCD13暴露到光中,并且在曝光后,首先读出主感光像素61的电荷,然后读出辅助感光像素62的电荷,并与关闭以隔绝光的进入的机械快门的垂直驱动信号(VD)同步。
下面将说明CCD13的输出信号的处理。
图7示出了图1所示的信号处理单元46的详细结构的框图。
如图7所示,信号处理单元46包括偏移量处理单元101、黑斑校正单元102、缺陷校正单元103、白平衡(WB)增益单元104、伽玛校正单元105、加法单元106、YC转换单元107和各种校正单元108。
偏移量处理单元101是校正CCD输出的暗流元件的处理单元,并且执行像素值减去从CCD13上的光接收像素中取得的光学黑体(OB)信号的值的计算。
黑斑校正单元102是校正结合由光学系统引起的光总量分散的改变的CCD输出的不均匀性的处理单元,并且根据像素PIX的位置用预先准备的校正系数乘像素值以使输出电平均衡。
此外,由于在亮度黑斑产生的现象中主感光像素61和辅助感光像素62是不同的,对于主感光像素61的像素值和辅助感光像素62的像素值执行不同的黑斑校正。对于主感光像素61来说与屏幕的中央区域相比外围更趋进于黑暗;以及对于辅助感光像素62来说在相对于微小镜头81的位置和在像素PIX中的位置产生唯一的黑斑(与屏幕的中央区域中的光的总量相比使得在外围的光的总量增加的现象),像素PIX中形成辅助感光像素。根据主感光像素61和辅助感光像素62的黑斑图案执行用于消除这些现象的信号校正处理。
缺陷校正单元103是校正CCD13的缺陷像素的信号值的处理单元。像素PIX的缺陷具有三个方面,包括(1)仅仅是使主感光像素61有缺陷的情况;(2)仅仅是使辅助感光像素62有缺陷的情况;(3)是同时使主感光像素61和辅助感光像素62有缺陷的情况。
下面将详细说明对应于上述三个方面的缺陷校正的算法,并且校正方法包括使用周围有缺陷像素的像素PIX的像素值的常规(低通滤波型)方法以执行校正,以及使用在同一像素PIX中的正常辅助感光像素或主感光像素的方法以执行校正,以及取决于情况能改变的校正方法。
通过缺陷校正单元103执行缺陷校正处理取得的图像数据存储在存储器中作为CCDRAM数据。存储在存储器22中的CCDRAM数据被送到WB增益单元104。
WB增益单元104包括用于增加和减少R、G和B的彩色信号的电平的增益可变放大器,并且根据来自CPU16的命令执行每个彩色信号的增益调整。在WB增益单元104中受到增益处理的信号被送到伽玛校正单元105。
伽玛校正单元105转换输入/输出特性,以便它们根据CPU16的命令成为所期望的伽玛特性。受到伽玛校正的图像信号被送到加法单元106。加法单元106是把从主感光像素取得的信号和从辅助感光像素取得的信号加在一起(合成)的处理单元,并且根据下面的公式(1)产生输出信号输出信号=g×(主感光像素的信号)+(1-g)×(辅助感光像素的信号) (1)其中只要满足0≤g≤1的要求,表示加法率的系数g能设为最合适的。CPU16取决情况可变化地设定系数g。
从加法单元输出的信号被送到YC转换单元107。YC转换单元107包括同步处理单元和YC转换处理单元,同步处理单元插入结合信号面板CCD13的滤色器排列结构的彩色信号的空间偏差以计算每个点的彩色(RGB),YC转换处理单元产生来自RGB信号的亮度/彩色差异。
通过YC处理单元107产生的亮度/彩色差异信号(YCrCb)被送到各种校正单元108。各种校正单元108包括,例如,轮廓增强(光圈校正)单元和带有彩色差异矩阵的彩色校正单元。
现在将说明如上面描述所配置的相机10中的一种缺陷校正方法。
图8示出了第一控制例的缺陷校正处理程序的流程图。当开始缺陷校正的处理(步骤S110)时,首先执行主感光像素缺陷61的缺陷校正(步骤S120)。由于主感光像素61的缺陷像素的位置信息已经存储在EEPROM24中,根据位置信息,周围有缺陷像素设置的正常主感光像素61的像素值用于执行低通滤波器(LPF)型校正(以便用周围像素信息代替有缺陷像素的校正,或输出几个像素的平均值)(步骤S130)。
对于存储在EEPROM24中的所有主感光像素缺陷,判断是否结束主感光像素缺陷的校正(步骤S140),并且如果不结束校正,那么对于其它的主感光像素缺陷重复步骤S130的校正处理。
如果在步骤S140处判断结束对于主感光像素缺陷的校正,处理继续步骤S150,开始辅助感光像素62的缺陷校正。当校正辅助感光像素缺陷时,首先,对于含有辅助感光像素缺陷的部分光度测量区域读出部分光度测量数据(步骤S152),并且根据光度测量数据做出关于动态范围的判断(计算值指示区域的亮度平均值)(步骤S154)判断含有辅助感光像素缺陷的区域(部分)的亮度是否在主感光像素的动态范围内(动态范围小于100%)(步骤S154),并且如果动态范围小于100%,即,感光像素数据的区域不饱和,那么处理继续步骤S156。此外,优选提供一定的裕量用于判断饱和。
在步骤S156处,无论在像素PIX中的主感光像素Main[y][x]是否等同于辅助感光像素Sub[y][x]被校正的缺陷是有缺陷或是被判断。根据存储在EEPROM24中的缺陷像素位置信息执行判断。
如果判断主感光像素Main[y][x]是有缺陷的,即在确定的感光像素位置([y][x])中的主感光像素和辅助感光像素是有缺陷的,仍然执行低通型校正,并且从每个附近的感光像素的信息中判断像素值(步骤S 158)。
另一方面,如果主感光像素Main[y][x]是正常像素,在步骤S160处,用在同一位置处的主感光像素Main[y][x]的输出除感光度比值取得的值填充辅助感光像素缺陷(步骤S160)。
也就是说,根据下面的公式(2)判断辅助感光像素Sub[y][x]的值Sub[y][x]=Main[y][x]/感光度比值 (2)通过用在同一像素单元中的主感光像素61的像素值校正辅助感光像素62的缺陷,与常规校正相比,降低了低通滤波影响,并且在校正之后能保持分辨感光度。
在步骤S158和步骤S160之后,处理继续到步骤S170。在步骤S170处,判断是否结束存储在EEPROM24中所有辅助感光像素缺陷的校正,并且如果不结束校正,处理返回到步骤S154,重复其它的辅助感光像素缺陷的上述校正处理。
如果在步骤S170处判断结束所有辅助感光像素缺陷的校正,那么终止缺陷校正的程序(步骤S180)。
在步骤S154处,如果动态范围等于或大于100%,即,在主感光像素数据饱和的区域的情况下,处理继续到步骤S158,通过低通滤波型校正填充辅助感光像素缺陷。
这原因就是为什么当校正辅助感光像素62的缺陷时,在同一位置处用主感光像素数据校正缺陷,仅仅对于部分,判断动态范围小于100%,这样对于100%或更大的动态范围的部分,随着辅助感光像素缺陷的值在同一位置处的主感光像素数据饱和,并因此从电平的观点来看不能正确地执行校正,如果使用主感光像素的数据执行校正的话。
无论主感光像素饱和或是从在图8的流程图中的部分光度测量数据所示的每个区域的计算值判断,而在另一个实施例中,当在曝光条件下拍摄图像时,用AE控制判断每个区域的计算值可以预先从预定的值判断主感光像素是否饱和。
在AE处理后从用S2=ON获得的图像数据可以直接地判断主感光像素是否饱和。
图9示出了第二控制例的缺陷校正处理程序的流程图。在图9中,与图8的流程图相同的步骤给出相同的步骤数字并且不再阐明其说明。
在图9中所示的控制例子中,执行步骤S153和步骤S155的处理代替图8的流程图中的步骤S152和步骤S154的处理。
也就是说,当开始辅助感光像素缺陷的校正(步骤S150)时,从存储器22中读出等同于辅助感光像素缺陷的值的像素PIX中的主感光像素数据(主感光像素的像素值)(步骤S153),并且判断等同于被校正的辅助感光像素Sub[y][x]的值的在像素PIX中的主感光像素Main[y][x]是否饱和(步骤S155)。
如图6中所示,通过判断是否达到饱和值来执行关于饱和的判断,而小于饱和值(QL值=4095)的值可以用提供用于关于饱和判断的确定容限(margin)设定作为确定的值。
如果判断在同一位置处与辅助感光像素缺陷的值相同的主感光像素数据在图9中的步骤S155处饱和,那么执行常规(低通滤波型)校正(步骤S158)。另一方面,如果判断在同一位置处与辅助感光像素缺陷的值相同的主感光像素数据不饱和,那么处理继续到步骤S156,判断主感光像素Main[y][x]是否有缺陷。
如果主感光像素Main[y][x]有缺陷,那么执行低通滤波型校正(步骤S158),并且如果主感光像素Main[y][x]是正常像素,那么主感光像素Main[y][x]的输出用于判断辅助感光像素Sub[y][x]的值(步骤S160)。
这样,根据用S2=ON取得的实际主感光像素数据判断主感光像素61是否饱和,取代响应S1=ON取得的除法光度测量数据。
在用图8和9说明的控制例子中,辅助感光像素62的数据不用于主感光像素61的缺陷校正,当在取得主感光像素61的CCDRAM数据之后读出辅助感光像素62的数据时,并从而有利于能快速地开始主感光像素61的CCDRAM数据的信号处理(白平衡处理、伽玛处理,等等)。
图10示出了第三控制例的缺陷校正处理程序的流程图。在图10中,与图8的流程图相同的步骤给出相同的步骤数字并且不再阐明其说明。
当在图10的步骤S120处开始主感光像素缺陷的校正时,首先读出用于含有缺陷像素的部分光度测量区域的在AE处理期间部分光度测量数据(步骤S122),并且根据光度测量数据判断亮度(步骤S124)。
如果在S124处判断图像数据是高亮度区域,处理继续到步骤S126,其中判断等同于被校正的主感光像素Main[y][x]的值的像素PIX中的辅助感光像素Sub[y][x]是否有缺陷。根据在EEPROM24中的缺陷像素位置信息执行判断。
如果辅助感光像素Sub[y][x]有缺陷,即判断在确定感光像素位置([y][x])中的主感光像素和辅助感光像素都有缺陷,仍然执行低通滤波型校正(步骤S130)以从附近的感光像素信息填充缺陷。
另一方面,在步骤S130处,如果辅助感光像素Sub[y][x]是正常像素,那么用在同一位置处的辅助感光像素Sub[y][x]乘感光度比值取得的值填充主感光像素缺陷(步骤S132)。
也就是,根据下面的公式(3)判断主感光像素Main[y][x]的值Main[y][x]=感光度比值×Sub[y][x]校正 (3)然而,如果用公式(3)计算的结果超出饱和输出值,用饱和输出值修剪输出信号。
如果辅助感光像素62的数据用于校正主感光像素61的缺陷,以这种方式,由于大的增益可以恶化S/N,并因此仍然执行LPF型校正以填充来自附近像素信息的像素值的方法用于低亮度区域(具有低于确定值的亮度的区域),低亮度区域由于伽玛转换等S/N可以进一步恶化。
对于靠近具有大于确定值的亮度的饱和光总量的区域,用在同一像素PIX中的主感光像素的输出能恰当地校正辅助感光像素缺陷。
此外,对于具有超出饱和光总量的高亮度区域,即使辅助感光像素的数据乘以感光度比值,也超出了主感光像素的饱和输出值(4095),并因此用饱和输出值(4095)修剪校正值)。
在步骤S130或步骤S132之后,处理继续到步骤S140。在步骤S140处,判断是否结束存储在EEPROM24中的所有主感光像素缺陷的上述LPF型校正(步骤S140),并且如果不结束校正,处理返回到步骤S124,重复其它的主感光像素缺陷的校正处理。
如果判断结束在步骤S140处的所有主感光像素缺陷的校正,处理继续到步骤S150,开始辅助感光像素62的缺陷校正。用图8说明辅助感光像素缺陷的校正。
此外,在图10中所示的控制例子中,辅助感光像素62的像素值用于校正主感光像素缺陷,并因此主感光像素61的数据和辅助感光像素62的数据都存储在临时基底上的存储器22内。然后,从存储器22中读出主感光像素61的数据和辅助感光像素62的数据以执行用于缺陷校正的处理。
图11示出了CCD13的结构的另一个例子。图11是平面图,并且图12是沿图11的线12-12截取的截面图。在这些附图中,与图2和图3相同或类似的元件给出相同的标记,并且不再阐述其说明。
如图11和12所示,p+型隔离区88形成在主感光像素61和辅助感光像素62之间。该隔离区88用作沟道终止区域(沟道塞),并且电隔离光电二极管区。光阻挡膜89形成在对应于隔离区88的位置处的隔离区88上方。
通过使用光阻挡膜89和隔离区88,有效地隔离入射光,并且接下来阻止在主感光像素61和辅助感光像素62中累计的电荷混合。其它的结构与图2和3中所示的例子的结构相同。
像素PIX的单元的几何形状和开口的几何形状不限于图2和11所示的例子,而可以具有各种形式,例如多边形和圆形。此外,光接收单元的隔离形式(分隔形式)不限于图2和9中所示的形式。
图13示出了CCD13的结构的又一个例子。在图13中,与图2和11所示的例子的元件相同或类似的元件给出相同的标记,并且不再阐述其说明。图13示出了沿倾斜的方向隔离的两个感光像素(61,62)的结构。
这样,对应分隔的感光区域的累计电荷将能够分别地读出到垂直传送通道,并且合适地设定分割形式、分离的部分的数目、相关的区域尺寸等。然而,将辅助感光像素的面积设定为小于主感光像素的面积的值。优选限制主感光像素的面积的减少以使感光度的下降最小。
现在将说明本发明的另一个实施例。
安装在数字相机上的成像器件受到能够进行光电转换的光的总量限制,并且如果接收的光的总量达到一确定值,那么如图14所示输出信号(光接收信号)饱和。这种现象通常发生在成像器件中。
因而,在安装在根据本发明实施例的数字相机上的成像器件中,制作不同光接收感光度的两种类型的光接收元件(下文,具有相对高的感光度的光接收元件简称为主像素,并且具有相对低的感光度的光接收元件简称为辅助像素)以存在于同一成像器件中,并且辅助像素的饱和电平设定等于或大于其感光度的减少速率的程度。例如,与主像素相比,设定辅助像素的感光度为1/16,并且设定饱和电平为1/4。然后,如图15所示,可以作出光电转换,即,可以执行成像,直到光的总量是主像素的光的总量的四倍大。动态范围增加400%。
用图2至图5和图11至图13说明安装在根据本发明实施例的数字相机上的成像器件的结构。
现在将说明作为本发明一个实施例的用于产生像素信息的方法。
图16示出了用于产生像素信息的一个程序的流程图。
首先,设定遮光条件,即,没有光进入成像器件的成像区域的条件(S201)。在该条件下,读出用于每个像素的主像素的输出信号(下文简称为标准信号)(S202),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(1)(S203)。接下来,读出对于每个像素的辅助像素的输出信号(下文简称为高亮度信号)(S204),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(2)(S205)。
然后,用标准白电平的光照射成像器件的成像区域(S206),读出用于每个像素的标准信号(S207),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(3)(S208)。
然后,用标准白电平的光照射成像器件的成像区域(S209),读出用于每个像素的高亮度信号(S210),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(4)(S211)。
此后,计算数据表(1)至(4)的逻辑和,并且产生用于限定具有等于1的计算结果的像素作为缺陷像素的校正表(像素信息)(S212)。
图17示出了用于产生像素信息的另一个程序的流程图。
首先,设定遮光条件(S321)。在这些条件下,混合用于每个像素的标准信号和高亮度信号并读出(S322),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(1)(S323)。
然后,用标准白电平的光照射成像器件的成像区域(S324),读出用于每个像素的标准信号(S325),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(2)(S326)。
然后,用标准白电平的光照射成像器件的成像区域(S327),读出用于每个像素的高亮度信号(S328),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(3)(S329)。
此后,计算数据表(1)至(3)的逻辑和,并且产生用于限定具有等于1的计算结果的像素作为缺陷像素的校正表(像素信息)(S330)。
根据图17的程序,对于由液晶缺陷产生光阻挡状态时的信号,每次读出标准信号和高亮度信号,从而,与图1的例子相比,使有可能取得缺陷数据以在较短时间内产生校正表。
图18示出了用于产生像素信息的又一个程序的流程图。
首先,设定遮光条件(S431)。在这些条件下,混合用于每个像素的标准信号和高亮度信号并读出(S432),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(1)(S433)。
然后,用标准白电平的光照射成像器件的成像区域(S434),读出用于每个像素的标准信号(S325),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(2)(S436)。接着,读出用于每个像素的高亮度信号(S437),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(3)(S438)。
此后,计算数据表(1)至(3)的逻辑和,并且产生用于限定具有等于1的计算结果的像素作为缺陷像素的校正表(像素信息)(S439)。
图19示出了用于产生像素信息的再一个程序的流程图。
首先,设定遮光条件(S541)。在这些条件下,混合用于每个像素的标准信号和高亮度信号并读出(S542),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(1)(S543)。
然后,用标准白电平的光照射成像器件的成像区域(S544),读出用于每个像素的标准信号和高亮度信号(S545),并且通过比较预先测量的缺陷电平产生指示像素是否有缺陷的缺陷数据表(2)(5546)。
此后,计算数据表(1)至(2)的逻辑和,并且产生用于限定具有等于1的计算结果的像素作为缺陷像素的校正表(像素信息)(5547)。
根据图18和19的程序,与图17的例子相比,使有可能取得缺陷数据以在更短时间内产生校正表。
图20示出了根据本发明实施例的数字相机的结构的一个例子的框图。数字相机200包括光学系统210、成像设备220、模拟信号处理单元230、A/D转换单元240、数字信号处理单元250、缓冲存储器260、压缩/放大处理单元270、YC/RGB转换单元280、介质驱动器290、LCD驱动器300、用于监控的LCD310、操作单元320、EEPROM330和CPU340等。
光学系统210包括镜头211、光圈212、快门213等,并且在成像器件220的成像区域PS上形成主体图像。当从成像器件220读出信号时,提供快门213用于防止光进入成像区域PS以引起模糊的情况,而不必要求限定成像器件220的结构。
图5中所示,成像器件220是宽动态范围成像器件,并且输出对应于进入成像区域PS的光的总量的图像信号到模拟信号处理单元230。
模拟信号处理单元230使输入的信号受到预定模拟信号处理,例如减噪处理、白平衡处理和γ处理,并且输出处理过的信号到A/D转换单元240。A/D转换单元240把输入的模拟信号转换成数字图像信号并且输出数字图像信号到数字信号处理单元250。
数字信号处理单元250使来自A/D转换单元240的输出信号受到预定的数字处理,例如,滤波处理和缺陷像素校正处理。
来自数字信号处理单元250的输出信号通过缓冲存储器260送到YC/RGB转换单元280、压缩/放大处理单元270、LCD驱动器300等。压缩/放大处理单元270以例如JPEG格式的预定的压缩格式压缩累积在缓冲存储器260中的图像数据并且在可移动介质291中存储图像数据,或放大来自可移动介质291中的图像数据。YC/RGB转换单元280把送到压缩/放大单元270没有压缩的图像数据转换成亮度数据Y和彩色差异数据Cr和Cb。当存储在可移动介质291中的图像数据(拍摄的图像)显示在用于监控的LCD310上。
对于可移动介质291,使用具有快闪存储器的小存储器卡片,等等。通过介质驱动器290从可移动介质291中写入或读出图像数据。
提供具有含有放松按钮的各种类型的操作部分的操作单元320。放松按钮是用于指示数字相机200以开始成像的操作部分,并且如果半按住按钮,执行光学系统的焦距控制和光圈控制,并且每次当全按住按钮时,拍摄图像,即,通过成像器件220、模拟信号处理单元230和A/D转换单元240拍摄图像信号。这时,通过光度测量/距离测量CPU(未示出)控制光学系统210,并且通过成像系统控制电路(未示出)控制成像器件220、模拟信号处理单元230和A/D转换单元240。
用于实现数字相机200的各种功能的程序和数据存储在EEPROM330中。存储在EEPROM330中的数据包括由图16至19的任一种程序所产生的用于成像器件220的校正表。CPU340通常通过执行存储在EEPROM330中的程序来控制数字相机200。
在数字相机200中,数字信号处理单元250执行缺陷像素的校正处理,例如,当处理图像信号时,参考储存在EEPROM330中的校正表,用正常像素的信号代替成像器件220中缺陷像素的信号。
同时,可根据一个校正表校正缺陷像素的输出信号,从而,有可能使用相对于成像器件220的光接收元件的数目的少量信息,有效地执行校正。可以降低存储校正表的EEPROM330的容量。
而且,在上述实施例中,尽管以使用CCD具有蜂窝结构的成像器件作为宽动态范围成像器件的例子,但是本发明的应用范围不限制于此,而且本发明对于互补金属氧化物半导体(CMOS)型成像器件和具有矩阵结构的成像器件是有效的。
此外,可适当地改变读出标准信号、高亮度信号的命令和图16至图19中类似的命令。可以适当修改设置例如光阻挡、用标准白平行光照射和用高亮度白电平光照射的条件的命令。
在上述例子中,用数字信号处理单元250执行缺陷信号校正处理,但为方便起见,可以用CPU340执行这种处理。
不必作为表格处理像素信息。也就是,像素信息的数据结构可能是排列结构、列表结构或任何其他结构。
在上述说明中,作为例子说明了具有蜂窝状结构的像素排列的CCD,但是本发明的应用范围不限于此,而且可以使用具有像素排列的图像传感器,以便在方形矩阵中排列所有的像素。
在上述实施例中,作为一个例子说明了数字相机,但是本发明的应用范围不限于此,而本发明还应用于具有电子成像功能的其它成像设备中,例如视频摄像机、DVD摄像机、有摄像功能的蜂窝电话、有摄像功能的PDAs或有摄像功能的移动个人电脑。
如上所述,根据本发明,在包括有在光学上同相拍摄信息的主感光像素和辅助感光像素的固态图像传感器中,根据在同一像素单元中的主感光像素的像素值校正辅助感光像素的缺陷,从而与常规的校正相比,有可能降低低通滤影响并保持校正后的分析感光度。
根据用于限定在至少一个光接收元件具有缺陷的像素作为缺陷像素的像素信息,本发明所述的数字相机校正缺陷像素的输出信号。
根据本发明中用于产生校正表的方法,能精确地产生用于限定在至少一个光接收元件具有缺陷的像素作为缺陷像素的校正表。
然而,应当理解没有意图将本发明限定到所公开的具体形式中,而正相反,本发明覆盖在附加的权利要求中所表述的精神和范围内的所有修改、替换和等同结构。
权利要求
1.一种用于校正固态图像传感器中缺陷像素的方法,该固态图像传感器中具有根据预定设置排列的多个像素单元的结构,每一个像素单元由具有相对较大面积的主感光像素和相对较小面积的辅助感光像素的组合而成,并且有选择地提取由根据主感光像素光电转换的信号电荷的信号和根据由辅助感光像素光电转换的信号电荷的信号,其特征在于所述方法包括如下步骤如果对于固态图像传感器的任何单元,构成像素单元的主感光像素是正常像素,并且辅助感光像素是缺陷像素,那么判断从存在于含有缺陷辅助感光像素的像素单元周围的像素单元的主感光像素中取得的信号的电平是否低于指示饱和输出的预定饱和电平;以及如果从存在于含有缺陷辅助感光像素的像素单元周围的像素单元的主感光像素中取得的信号的电平低于饱和电平,那么根据等同于缺陷感光像素的值的像素单元中的主感光像素的像素值校正缺陷辅助感光像素的像素值。
2.如权利要求1所述的方法,其特征在于通过等同于缺陷辅助感光像素的像素值的主感光像素的像素值除主感光像素的感光度对辅助感光像素的感光度的比值,判断缺陷辅助感光像素的像素值。
3.如权利要求1或2所述的方法,其特征在于对于固态图像传感器的任何像素单元,如果构成像素单元的主感光像素是缺陷像素,那么根据存在于含有缺陷主感光像素的像素单元周围的像素单元的主感光像素的像素值校正缺陷主感光像素的像素值。
4.如权利要求1或2所述的方法,其特征在于对于固态图像传感器的任何像素单元,如果构成像素单元的主感光像素是缺陷像素,并且辅助感光像素是正常像素,那么根据等同于缺陷主感光像素的像素值的像素单元中的辅助感光像素的像素值校正缺陷主感光像素的像素值,如果从存在于含有缺陷主感光像素的像素单元周围的像素单元的主感光像素取得的信号的电平超出预定标准。
5.如权利要求4所述的方法,其特征在于通过执行等同于缺陷主感光像素的像素值的像素单元中的辅助感光像素的像素值乘主感光像素的感光度对辅助感光像素的感光度的比值的计算,从而判断缺陷主感光像素的像素值。
6.一种成像设备,其特征在于具有根据预定排列形式设置的多个像素单元结构的固态图像传感器,每一个像素单元由具有相对大面积的主感光像素和相对小面积的辅助感光像素的组合而成,以及有选择地提取由根据主感光像素光电转换的信号电荷的信号和根据由辅助感光像素光电转换的信号电荷的信号;判断器件,如果对于固态图像传感器的任何像素单元,构成像素单元的主感光像素是正常像素并且辅助感光像素是缺陷像素,那么判断从存在于含有缺陷辅助感光像素的像素单元周围的像素单元的主感光像素中取得的信号的电平是否低于指示饱和输出的预定饱和电平;以及缺陷像素校正器件,如果用判断器件判断从存在于含有缺陷像素的像素单元周围的像素单元的主感光像素取得的信号的电平低于饱和电平,那么根据等同于缺陷辅助感光像素的像素值的像素单元中的主感光像素的像素值校正缺陷辅助感光像素的像素值。
7.如权利要求6所述的成像设备,其特征在于对于在同一像素单元中的主感光像素和辅助感光像素设置同一彩色元件的滤色器,以及在每个像素单元上方给一个像素单元提供一微小镜头。
8.一种包括成像器件的数字相机,该成像器件具有对于每个像素不同的光接收感光度和光接收信号饱和电平的两种类型的光接收元件,其特征在于所述数字相机包括存储器,存储用于限定在至少一个光接收元件中具有缺陷的像素作为缺陷像素的像素信息;以及校正处理电路,根据像素信息校正缺陷像素的输出信号。
9.一种用于在成像器件中产生像素信息的方法,该成像器件具有由多个像素构成的成像区域并且具有对于每个像素不同的光接收感光度和光接收信号饱和电平的第一和第二光接收元件,其特征在于所述方法包括如下步骤读出对于每个像素的第一光接收元件的输出信号以便产生指示像素是否有缺陷的信息;读出对于每个像素的第二光接收元件的输出信号以便产生指示像素是否有缺陷的信息;以及计算在上述步骤中产生的多个信息的逻辑和并且产生用于限定具有等于1的计算结果的像素作为缺陷像素的像素信息。
10.一种用于在成像器件中产生像素信息的方法,该成像器件具有由多个像素构成的成像区域,每一个像素具有不同的光接收感光度和光接收信号饱和电平的第一和第二光接收元件,其特征在于所述方法包括如下步骤每次对于每个像素读出第一光接收元件的输出信号和第二光接收元件的输出信号以便产生指示像素是否有缺陷的信息;读出对于每个像素的第一光接收元件的输出信号以便产生指示像素是否有缺陷的信息;读出对于每个像素的第二光接收元件的输出信号以便产生指示像素是否有缺陷的信息;以及计算在上述步骤中产生的多个信息的逻辑和并且产生用于限定具有等于1的计算结果的像素作为缺陷像素的像素信息。
全文摘要
在固态图像传感器中设置多个像素单元,每一个像素单元由具有相对较大面积的主感光像素和相对较小面积的辅助感光像素的组合而成,对于任何像素单元,如果辅助感光像素具有缺陷,读出在AE处理期间的部分光度测量数据,并且仅仅对于一部分用通过在同一位置的主感光像素的输出值除感光度比值所取得的值取代缺陷像素,该部分用于判断主感光像素是否饱和。从而,与使用周围像素信息校正缺陷像素的常规方法相比,可以在不引起分析感光度恶化时就正确地校正缺陷像素的像素值。
文档编号H04N9/64GK1533160SQ20041000192
公开日2004年9月29日 申请日期2004年1月17日 优先权日2003年1月17日
发明者小林宽和, 也, 小田和也, 三沢岳志, 志 申请人:富士胶片株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1