发送器和发送器的调整方法

文档序号:7604470阅读:325来源:国知局
专利名称:发送器和发送器的调整方法
技术领域
本发明涉及一种发送器,具体地说,涉及一种包括高频功率放大器的发送器,该高频放大器用于低失真和高效率地放大具有包络可变分量的调制信号。
背景技术
对于设置在无线电通信系统的发送器的输出部分中的功率放大器,需要具有低失真和高效率的兼容性。功率放大器根据晶体管用作电流源还是开关来分类。将晶体管用作电流源的放大器包括A类放大器、AB类放大器、B类放大器和C类放大器。此外,将晶体管用作开关的放大器包括D类放大器、E类放大器和F类放大器。
作为用于放大包括包络可变分量的调制信号的高频功率放大器,将A类线性放大器或AB类线性放大器用于线性放大该包络可变分量。但不利的是,线性放大器的功率效率比C类或E类非线性放大器的低。因此,当线性放大器用于诸如便携式电话、便携式信息终端等等将电池用作电源的便携式无线电装置时,会不利地减少使用时间。此外,在安装了使用大功率的多个发送器的移动电信系统的基站设备中,该设备会被不期望地增大,并且会不利地增大所产生的热量。
因此,作为具有高效发送功能的发送器,提出了一种EE&R(包络消除和恢复)发送器,其包括振幅相位提取部件、振幅调制部件、相位调制部件和非线性放大部件,将规定包络电平的信号输入非线性放大部件,并将效率高的非线性放大器用作高频放大器。此外,还公知一种发送器,其中非线性放大器的包络信号的非线性通过负反馈来补偿,以消除振幅失真。
图9示出作为第一现有例子的上述EE&R发送器结构的框图。该第一现有例子的发送器包括发送数据输入终端111、振幅相位提取部件112、振幅调制部件113、相位调制部件114、非线性放大部件115和发送输出终端116。
在图9中,假定从发送数据输入终端111输入的发送数据信号Si(t)通过
Si(t)=a(t)exp[jφ(t)](1)表示,振幅相位提取部件112从Si(t)中提取出振幅数据a(t)和相位数据exp[jφ(t)]。非线性放大部件115的源电压值由振幅调制部件113根据振幅数据a(t)来设置。另一方面,通过在相位调制部件114中对载波角频率ωc调制相位数据exp[jφ(t)]而产生信号Sc,并将Sc输入非线性放大部件115中。
Sc=exp[ωct+φ(t)](2)通过将非线性放大部件115的源电压值a(t)乘以相位调制部件114的输出信号,产生一个信号。将通过将该所获得的信号放大非线性放大部件115的增益G而获得的RF信号Srf输出到非线性放大部件115的输出端。
Srf=Ga(t)Sc=Ga(t)exp[ωct+φ(t)](3)如上所述,由于输入非线性放大部件115的信号是规定包络电平的信号,因此效率好的非线性放大器可以用作高频放大器。由此,可以实现效率高的放大器。
在第一现有例子中,没有示出振幅调制部件113的细节。但是,振幅调制部件113采用包括例如DA(数字-模拟)转换部件、脉冲宽度调制部件、开关和低通滤波器的结构,这些部件顺序串联地连接到开关的输入源电压。在振幅调制部件113中,振幅数据作为数字值在DA转换部件中被转换为模拟信号,并且在脉冲宽度调制部件中对该模拟信号的脉冲宽度进行调制。该开关根据脉冲宽度调制部件的脉冲输出开关。该开关的输出在低通滤波器中平滑为振幅调制信号,并用作非线性放大部件115的源电压(例如参见非专利文献1)。
此外,相位调制部件114采用具有PLL(锁相环)的结构。也就是说提供了未详细示出的PLL,其中例如相位频率比较部件、低通滤波器和压控振荡器顺序串联连接,并且压控振荡器的部分输出作为反馈信号通过分频器反馈到相位频率比较部件。此外,Δ∑调制部件的输出输入到上述分频器中。在相位调制部件114中,通过由分频器对压控振荡器的输出进行分频而获得的信号频率在相位频率比较部件中与参考频率进行比较,以输出这两个频率之间的差异。相位频率比较部件的输出经过低通滤波器成为压控振荡器的控制电压,并且该压控振荡器的输出由规定相位和频率锁定。在上述PLL中,分频器的分频比根据通过对相位数据执行Δ∑调制而获得的信号来变化,从而相位调制可以施加到压控振荡器的输出上(参见非专利文献2)。
图10示出作为第二现有或常见例子的具有负反馈的发送器的结构框图。
第二常见例子的发送器包括发送数据输入终端111、振幅相位提取部件112、振幅调制部件113、相位调制部件114、非线性放大部件115、发送输出终端116、定向耦合部件117、包络检测部件118、AD(模拟数字)转换部件119、加法部件120和放大部件121。和图9所示发送器部件相同的部件用相同附图标记表示。
下面描述第二现有或常见例子的发送器的操作。除了与图9所示的第一常见例子中的发送器相同的操作之外,第二常见例子的发送器还将RF信号的包络成分反馈为非线性放大部件115的输出。非线性放大部件115的输出可以由定向耦合部件117分流,并输入包络检测部件119,以检测RF信号的包络信号。所检测的包络信号在AD转换部件119中经过模拟数字转换,经过模拟数字转换的包络信号在加法部件120中被从原振幅数据中减去,然后在放大部件121中被放大,并被输入振幅调制部件113。非线性放大部件115的包络信号的非线性由上述反馈补偿,从而可以消除振幅失真(参见非专利文献3)。
(非专利文献1)Peter B.Keningstopm,“HIGH-LINEARITY RF AMPLIFIERDESIGN”first edition,ARTECH HOUSE,INC.,2000,p426-443。
(非专利文献2)R.A.Meyers and P.H.Waters,“Synthesizer review forPAN-European digital cellular radio”poc.IEE Colloquium on VLSI Implementationsfor 2nd Generation Digital Cordless and Mobile Telecommunications Systems,1990,p.8/1-8/8。
(非专利文献3)Peter B.Kenington,“HIGH-LINEARITY RF AMPLIFIERDESIGN”first edition,ARTECH HOUSE,INC.,2000,。156-161.
但是在图9所示的第一常见例子的发送器中,振幅信号和相位信号通过不同路径到达非线性放大部件115,由于振幅调制的信号路径和相位调制的信号路径之间的延迟时间的差异,输出信号出现不期望的失真。
图10所示的第二常见例子的发送器具有通过负反馈回路减小振幅失真的结构。为了进一步增加振幅失真的减小量,需要增大回路增益。因此,负反馈回路的稳定性被不利地恶化。
本发明就是要解决上述问题,并且本发明的一个目的是提供功率效率好并且能输出低失真稳定信号的发送器。

发明内容
根据本发明的发送器包括振幅相位提取单元,用于从输入的发送数据中提取振幅数据和相位数据;延迟单元,用于延迟振幅数据和相位数据中的至少一种;相位调制单元,用于调制相位数据的相位;高频放大单元,采用来自相位调制单元的相位调制信号作为输入信号来放大高频信号的功率;以及振幅调制单元,用于调制振幅数据的振幅,以输出用于控制施加到高频放大单元的源电压的振幅调制信号。
根据上述结构,振幅信号路径和相位信号路径的延迟时间可以通过延迟单元调整,从而减小了由于两个路径之间的延迟时间差而产生的失真。因此,可以通过高频放大单元利用相位调制信号和振幅调制信号高效地放大功率。还调整延迟时间,从而可以输出具有低失真的稳定信号。
作为本发明的另一实施例,发送器还包括包络检测单元,用于检测高频放大单元输出信号的包络分量,以及负反馈回路,用于将该包络分量负反馈到由振幅相位提取单元提取出的振幅数据。
根据上述结构,包络分量由负反馈回路进行负反馈,以便将包络分量与振幅数据进行比较。由此消除了输出信号的振幅失真。此外,由于振幅信号路径和相位信号路径的延迟时间可以由延迟单元调整,因此可以减小由于两个路径之间的延迟时间差而产生的失真。在这种情况下,由于负反馈回路的回路增益可以降低,因此提高了稳定性。
此外,作为本发明的另一个实施例,发送器还包括延迟量转换和控制单元,用于转换和控制延迟单元的延迟量。当具有不同信号带宽的发送数据作为发送数据输入时,延迟量转换和控制单元将延迟量转换为对应于该信号带宽的延迟量。
根据上述结构,根据发送数据的信号带宽的变化来转换延迟量。由此,即使转换了具有不同信号带宽的发送数据,也可以调整振幅信号路径和相位信号路径的延迟时间,从而可以减小由于两个路径之间的延迟时间差而产生的失真。此外,如果提供了负反馈回路,则可以调整延迟时间来满足该信号带宽。由此可以改善负反馈回路的稳定性。
此外,作为本发明的另一实施例,发送器还包括延迟量表,用于存储按照发送器状态而预置的延迟量数据;以及延迟量转换和控制单元,用于根据延迟量表的延迟量数据来转换和控制延迟单元的延迟量。
根据上述结构,延迟量设置在延迟量表中,以根据发送器的状态读取延迟量,从而可以调整振幅信号路径和相位信号路径的延迟时间。由此在任意操作状态下,都可以减小由于振幅信号路径和相位信号路径之间的延迟时间差产生的失真。此外,如果提供了负反馈回路,还可以改善负反馈回路的稳定性。
此外,作为本发明的另一实施例,发送器还包括高频输出测量单元,用于测量高频放大单元输出信号的特性;以及延迟量计算单元,用于根据高频输出测量单元的测量结果计算规定的延迟量,以设置延迟单元的延迟量。
根据上述结构,作为高频放大单元的输出信号特性,例如测量相邻信道的调制精确度或泄漏功率等。由此可以检测输出信号的失真量。因此,根据测量结果计算用于减小发送器输出信号失真的适当延迟量,并设置到延迟量表中。由此可以正确调整发送器中的延迟单元的延迟量。
用于调整本发明发送器的方法涉及一种用于调整发送器的方法,该发送器包括延迟单元,用于从输入发送数据中提取延迟振幅数据和相位数据中的至少一种;和高频放大单元,采用通过调制振幅数据和相位数据获得的振幅调制信号和相位调制信号来放大高频信号的功率。该用于调整放大器的方法包括高频输出信号测量步骤,用于测量在发送器中的高频放大单元输出信号的特性;以及延迟量计算步骤,用于根据测量结果计算适当的延迟量,以设置延迟单元中的延迟量。
根据上述过程,作为高频放大单元输出信号的特性,例如测量相邻信道的调制精确度或泄漏功率等。由此可以检测输出信号的失真量。因此,根据测量结果计算用于减小发送器输出信号的失真的适当延迟量,并设置到延迟量表中。由此可以正确调整发送器中延迟单元的延迟量。


图1示出根据本发明第一实施例的发送器主要部件结构的框图。
图2示出该实施例中振幅调制部件的结构示例的框图。
图3示出该实施例中相位调制部件的结构示例的框图。
图4示出根据本发明第二实施例的发送器主要部件结构的框图。
图5示出根据本发明第三实施例的发送器主要部件结构的框图。
图6示出根据本发明第四实施例的发送器主要部件结构的框图。
图7示出延迟量表的示例。
图8示出根据本发明第五实施例的发送器主要部件结构的框图。
图9示出作为第一常见例子的EE&R发送器结构的框图。
图10示出作为第二常见例子的具有负反馈的发送器结构的框图。
在附图中,附图标记1表示发送器数据输入端,2表示振幅相位提取部件,3和24表示振幅调制部件,4表示相位调制部件,5和25表示非线性放大部件,6和26表示发送输出端,7表示定向耦合部件,8表示包络检测部件,9表示AD转换部件,10表示加法部件,11表示放大部件,12和13表示延迟部件,20表示控制信号输入端,21表示延迟量转换和控制部件,22表示振幅数据路径切换部件,23表示相位数据路径切换部件,40表示转换信号输入端,41表示延迟量表,51表示RF信号测量部件,52表示延迟量计算部件,60表示DA转换部件,61表示脉冲宽度调制部件,62表示开关,63表示源电压输入端,64和71表示低通滤波器,70表示相位频率比较部件,72表示压控振荡器,73表示分频部件,74表示Δ∑调制部件。
具体实施例方式
现在参考附图描述本发明的实施例。
(第一实施例)图1示出根据本发明第一实施例的发送器主要部件结构的框图。
第一实施例的发送器包括发送数据输入端1、振幅相位提取部件(对应于振幅相位提取单元)2、振幅调制部件(对应于振幅调制单元)3、相位调制部件(对应于相位调制单元)4、非线性放大部件(对应于高频防大单元)5、发送输出端6和延迟部件(对应于延迟单元)12和13。该实施例的发送器的特征在于,延迟部件12设置在振幅调制部件3的预置级,延迟部件13设置在相位调制部件4的预置级。
在从发送数据输入端1输入的发送数据信号中,在振幅相位提取部件2中提取并输出振幅数据和相位数据。从振幅相位提取部件2输出的振幅数据在延迟部件12中被延迟规定的延迟量。然后,通过在振幅调制部件3中调制振幅而获得的振幅调制信号被输入非线性放大部件5中作为源电压值。此外,从振幅相位提取部件2输出的相位数据在延迟部件13中被延迟规定的延迟量。然后,通过在相位调制部件4中调制相位而获得的相位调制信号被输入非线性放大部件5中作为输入信号。
非线性放大部件5具有半导体放大元件以形成高频放大器。在非线性放大部件5中,来自相位调制部件4的相位调制信号被乘以作为源电压值的来自振幅调制部件3的振幅调制信号,以便从发送输出端6输出放大了规定增益的RF信号。在此,由于输入非线性放大部件5的信号是规定包络电平的信号,因此可以形成具有高效率的非线性放大器作为高频放大器。
图2示出图1中振幅调制部件3的结构例子的框图。振幅调制部件3包括DA(数字-模拟)转换部件60、脉冲宽带调制部件61、开关62、源电压输入端63和低通滤波器64。在振幅调制部件3中,DA转换部件60、脉冲宽度调制部件61、开关62和低通滤波器64顺序串联连接。源电压从源电压输入端63输入开关62。
在振幅调制部件3中,具有数字值的振幅数据在DA转换部件60中被转换为模拟信号,并在脉冲宽度调制部件61中调制该模拟信号的脉冲宽度。开关62根据脉冲宽度调制部件61的脉冲输出开关。开关62的输出在低通滤波器64中平滑为振幅调制信号,并且该振幅调制信号作为源电压施加到非线性放大部件5。
图3是图1的相位调制部件4的结构示例的框图。相位调制部件4包括相位频率比较部件70、低通滤波器71、压控振荡器(VCO)72、分频部件73和Δ∑调制部件74。相位调制部件4具有采用PLL(锁相环)的结构,其中提供了这样一个PLL,相位频率比较部件70、低通滤波器71、压控振荡器72顺序串联连接,该压控振荡器72的一部分输出作为反馈信号,通过分频器73反馈到相位频率比较部件70。此外,Δ∑调制部件74的输出输入到分频器73。
在相位调制部件4中,通过由分频器73对压控振荡器72的输出进行分频而获得的信号频率在相位频率比较部件70中与参考频率进行比较,以输出两个频率之间的差异。相位频率比较部件70的输出经过低通滤波器71变成压控振荡器72的控制电压,并且压控振荡器72的输出由规定相位和频率锁定。在上述PLL中,分频器73的分频比例根据在Δ∑调制部件74中对相位数据进行Δ∑调制而获得的信号进行改变。由此,可以对压控振荡器72的输出进行相位调制。
在如上构造的发送器中,振幅调制部件3具有在振幅调制信号中主要由低通滤波器64产生的延迟。另一方面,相位调制部件4具有在相位调制信号中主要由低通滤波器71产生的延迟。因此,由于振幅调制部件3和相位调制部件4之间的延迟量差而在振幅和相位之间产生相对差异。
在第一实施例中,延迟部件12和13分别设置在振幅信号路径和相位信号路径中。由此,例如当振幅信号路径的延迟量大时,振幅信号路径的延迟部件12的延迟量被设置为0,而调整相位信号路径的延迟部件13的延迟量。由此,振幅信号路径的延迟量可以对应于相位信号路径的延迟量。通过这种方式,可以减小由于振幅调制信号的延迟而导致的失真。
此外,当相位信号路径的延迟量大时,相位信号路径的延迟部件13的延迟量被设置为0,而调整振幅信号路径的延迟部件12的延迟量。由此,相位信号路径的延迟量可以对应于振幅信号路径的延迟量。通过这种方式,可以减小由于相位调制信号的延迟而导致的失真。
在上面的描述中,将延迟部件12和13中任一个的延迟量被设置为0。但是,可以对相位信号路径和振幅信号路径之一的延迟量进行粗调整,而对另一路径的延迟量进行精细调整。
作为延迟部件12和13的特定延迟量设置方法,例如采用一种用于根据设计时的电路特性来设置延迟量的方法或一种用于将延迟量调整为适合生产时的个体的值的方法。
如上所述,根据第一实施例的结构,延迟部件12设置在振幅调制部件3的预置级,延迟部件13设置在相位调制部件4的预置级。由此,可以调整振幅信号路径和相位信号路径的延迟时间,并且减小由于两个路径之间延迟时间差而产生的失真。
(第二实施例)图4示出根据本发明第二实施例的发送器主要部件结构的框图。
除了图1所示的第一实施例的结构之外,第二实施例的发送器还包括定向耦合部件7、包络检测部件(对应于包络检测单元)6、AD转换部件(模拟-数字转换部件)9、加法部件10和放大部件11。其它结构与第一实施例的相同,并且相同的部件用相同的附图标记表示,并在此省略其解释。
在第二实施例中,除了第一实施例的操作之外,还反馈RF信号的包络分量作为非线性放大部件5的输出。非线性放大部件5的输出的部分信号分量可以由定向耦合部件7分流,并输入包络检测部件8以检测RF信号的包络信号。所检测的包络信号在AD转换部件9中被转换为数字信号。该数字信号被负反向,并作为负分量输入加法部件10。在加法部件10中,从原振幅数据中减去该包络分量,然后,所获得的数据在放大部件11中被放大到规定电平并输入振幅调制部件3。
在第二实施例中,与第一实施例类似,由于振幅调制部件3和相位调制部件4之间的延迟量差异而在振幅和相位之间产生相对差异。因此,延迟部件12和13分别设置在振幅信号路径和相位信号路径中。例如,当振幅信号路径的延迟量大时,振幅信号路径的延迟部件12的延迟量被设置为0,而调整相位信号路径的延迟部件13的延迟量。由此,振幅信号路径的延迟量可以对应于相位信号路径的延迟量。通过这种方式,可以减小由于振幅调制信号的延迟而导致的失真。此外,当相位信号路径的延迟量大时,相位信号路径的延迟部件13的延迟量被设置为0,而调整振幅信号路径的延迟部件12的延迟量。由此,相位信号路径的延迟量可以对应于振幅信号路径的延迟量。通过这种方式,可以减小由于相位调制信号的延迟而导致的失真。
在上面的描述中,将延迟部件12和13中任一个的延迟量设置为0。但是,也可以对相位信号路径和振幅信号路径之一的延迟量进行粗调整,而对另一路径的延迟量进行精细调整。
如上所述,根据第二实施例的结构,延迟部件12设置在振幅调制部件3的预置级,延迟部件13设置在相位调制部件4的预置级。由此,可以调整振幅信号路径和相位信号路径的延迟时间,并且减小由于两个路径之间延迟时间差而产生的失真。此外,由于可以通过调整振幅信号路径和相位信号路径的延迟时间来减小振幅失真,因此不需要增加负反馈回路的回路增益。由此可以降低负反馈回路的回路增益,以改善作为高频放大器的稳定性。
(第三实施例)图5示出根据本发明第三实施例的发送器主要部件结构的框图。
除了图1所示的第一实施例的结构之外,第三实施例的发送器还包括控制信号输入端20,用于输入延迟和信号路径转换和控制信号,延迟量转换和控制部件(对应于延迟量转换和控制单元)21、振幅数据路径切换部件22、相位数据路径切换部件23、第二振幅调制部件24、第二非线性放大部件25和第二发送输出端26。其它结构与第一实施例的相同,并且相同的部件用相同的附图标记表示,在此省略其解释。
在第三实施例中,除了第一实施例的操作之外,还可以转换延迟量。第二振幅调制部件24和第二非线性放大部件25是用于发送不同于第一实施例的第一振幅调制部件3和第一非线性放大部件5的发送数据的发送数据的部件。发送数据的信号带宽也不同于第一实施例的信号带宽。
此外,第二振幅调制部件24的结构与图2所示第一实施例的相同,但是发送数据的信号带宽不同。由此,低通滤波器64的截止频率发生改变。此外,相位调制部件4的结构与图3所示第一实施例的相同,但是,低通滤波器71的截止频率改变,以满足发送数据的信号带宽。
在第三实施例中,切换振幅数据路径切换部件22和相位数据路径切换部件23的开关,以满足被延迟量转换和控制部件21采用的发送数据的信号带宽。
由此,切换振幅信号路径和相位信号路径,以使用第一振幅调制部件3和第一非线性放大部件5或第二振幅调制部件24和第二非线性放大部件25。
然后,延迟部件12和13分别设置在振幅信号路径和相位信号路径中。例如当振幅信号路径的延迟量大时,振幅信号路径的延迟部件12的延迟量被设置为0,而调整相位信号路径的延迟部件13的延迟量。由此,振幅信号路径的延迟量可以对应于相位信号路径的延迟量。通过这种方式,可以减小由于振幅调制信号的延迟而导致的失真。此外,当相位信号路径的延迟量大时,相位信号路径的延迟部件13的延迟量被设置为0,而调整振幅信号路径的延迟部件12的延迟量。由此,相位信号路径的延迟量可以对应于振幅信号路径的延迟量。通过这种方式,可以减小由于相位调制信号的延迟而导致的失真。
因此,在第三实施例中,延迟量转换和控制部件21切换振幅信号路径和相位信号路径,以调整每个路径的延迟量。由此,可以根据所采用的发送数据的信号带宽调整延迟时间,并减小由于延迟带来的失真。
在上面的描述中,将延迟部件12和13中任一个的延迟量设置为0。但是,也可以对相位信号路径和振幅信号路径之一的延迟量进行粗调整,而对另一路径的延迟量进行精细调整。此外,第三实施例的延迟量转换和控制也可以用于第二实施例的结构。
如上所述,根据第三实施例的结构,延迟部件12设置在振幅调制部件3的预置级,延迟部件13设置在相位调制部件4的预置级。当切换发送数据时,根据发送数据的切换来转换延迟量。由此,可以调整振幅信号路径和相位信号路径的延迟时间,以满足发送数据的信号带宽。由此可以减小由于两个路径之间的延迟时间差而产生的失真。此外,当第三实施例的延迟量转换和控制用于第二实施例的结构时,调整延迟时间以满足发送数据的信号带宽,从而可以改善负反馈回路的稳定性。
(第四实施例)
图6示出根据本发明第四实施例的发送器主要部件结构的框图。
除了图1所示的第一实施例的结构之外,第四实施例的发送器还包括延迟量转换和控制部件21、转换信号输入端40,用于输入延迟量表数据转换信号,以及延迟量表41。其它结构与第一实施例的相同,并且相同的部件用相同的附图标记表示,在此省略其解释。
在第四实施例中,除了第一实施例的操作之外,还通过预先设置和存储在延迟量表41中的延迟量数据转换延迟量。根据输入转换信号输入端40的延迟量表数据转换信号,从设置和存储在延迟量表41中的多个延迟量中读取和输出对应的延迟量数据。由转换控制部件21根据该延迟量数据转换延迟部件12和13中的延迟量。
在延迟量表41中,存储了对应于发送器的操作状态的延迟量数据。由此,可以设置发送器的操作状态中的延迟量的最佳值。
图7示出延迟量表41的一个例子。延迟量表41包括数据序号81、发送器的操作状态82和延迟量数据83。在发送器的操作状态62中存储发送器的操作状态。在延迟量数据63中存储对应于发送器操作状态的最佳延迟量数据。
例如,当振幅信号路径的延迟量大时,振幅信号路径的延迟部件12的延迟量被设置为0,而调整相位信号路径的延迟部件13的延迟量。由此,振幅信号路径的延迟量可以对应于相位信号路径的延迟量。通过这种方式,可以减小由于振幅调制信号的延迟而导致的失真。此外,当相位信号路径的延迟量大时,相位信号路径的延迟部件13的延迟量被设置为0,而调整振幅信号路径的延迟部件12的延迟量。由此,相位信号路径的延迟量可以对应于振幅信号路径的延迟量。通过这种方式,可以减小由于相位调制信号的延迟而导致的失真。
在上面的描述中,将延迟部件12和13中任一个的延迟量设置为0。但是,也可以对相位信号路径和振幅信号路径之一的延迟量进行粗调整,而对另一路径的延迟量进行精细调整。此外,第四实施例的延迟量转换和控制可以用于第二或第三实施例的结构。
如上所述,根据第四实施例的结构,延迟部件12设置在振幅调制部件3的预置级,延迟部件13设置在相位调制部件4的预置级。根据延迟量表41的延迟量数据正确转换延迟量。由此,可以相应调整振幅信号路径和相位信号路径的延迟时间,以获得对应于发送器状态的延迟量。由此可以减小由于两个路径之间的延迟时间差而产生的失真。此外,当第四实施例的延迟量转换和控制用于第二实施例的结构时,调整延迟时间以满足发送数据的操作状态,从而可以改善负反馈回路的稳定性。此外,当第四实施例的延迟量转换和控制用于第三实施例的结构时,即使切换发送数据,也可以调整延迟时间以满足发送数据的信号带宽。
(第五实施例)图8示出根据本发明第五实施例的发送器主要部件结构的框图。
在第五实施例中,一个包括RF信号测量部件(对应于高频输出测量单元)51和延迟量计算部件(对应于延迟量计算单元)52的调整装置连接到具有图7所示的第四实施例的结构的发送器50。其它结构与第四实施例的相同,并且相同的部件用相同的附图标记表示,在此省略其解释。
在第五实施例中,描述一种用于通过具有RF信号测量部件51和延迟量计算部件52的调整装置调整延迟量的方法。在图8中,对于从RF信号输出端6输出的发送器50的输出信号,例如由RF信号测量部件51测量的相邻信道的调制精度或泄漏功率等。通常,诸如相邻信道的调制精度或泄漏功率的特性由于输出信号的失真而恶化。因此,调整延迟时间,从而根据RF信号特性的测量结果减小振幅信号路径和相位信号路径之间的延迟时间差,而这也是导致输出信号失真的原因。此时,由延迟量计算部件52计算延迟部件12和13的延迟时间,从而使相邻信道的调制精度或泄漏功率具有期望值并存储在延迟量表中。然后,根据延迟量表数据转换信号的输入读取和输出存储在延迟量表41中的延迟量数据。
例如,当振幅信号路径的延迟量大时,振幅信号路径的延迟部件12的延迟量被设置为0,而调整相位信号路径的延迟部件13的延迟量。由此,存储延迟量数据并且可使振幅信号路径的延迟量对应于相位信号路径的延迟量。此外,例如当相位信号路径的延迟量大时,相位信号路径的延迟部件13的延迟量被设置为0,而调整振幅信号路径的延迟部件12的延迟量。由此,存储延迟量数据并且可使相位信号路径的延迟量对应于振幅信号路径的延迟量。通过这种方式,可以设置延迟量从而减小由于相位调制信号和振幅调制信号之间延迟的差异而导致的失真。
在上面的描述中,将延迟部件12和13中任一个的延迟量被设置为0。但是,也可以对相位信号路径和振幅信号路径之一的延迟量进行粗调整,而对另一路径的延迟量进行精细调整。此外,第五实施例的延迟量调整功能可以用于第三实施例的结构。
如上所述,根据第五实施例的发送器和调整装置的结构以及延迟量调整方法,可以计算合适的使发送器输出信号的失真减小的延迟量并设置到延迟量表中。
根据上述实施例,提供了用于调整振幅信号路径和相位信号路径的延迟时间的延迟单元,以将两个路径的延迟时间调整为相等。由此,可以减小由于两个路径的延迟时间差导致的发送器输出的失真。因此,在发送器中,可以实现功率效率很高、且能输出具有很小失真的稳定信号的高频功率放大器。
通过参照特定实施例详细描述了本发明。但是,本领域的技术人员应当理解,在不脱离本发明精神和范围的情况下可以做出各种修改。
本发明基于2003年2月6日提交的日本专利申请2003-029792,其内容作为参考合并于此。
工业实用性如上所述,根据本发明,提供了功率效率很高、且能输出具有很小失真的稳定信号的发送器。
权利要求
1.一种发送器,包括振幅相位提取单元,用于从输入的发送数据中提取振幅数据和相位数据;延迟单元,用于延迟振幅数据和相位数据中的至少一种;相位调制单元,用于调制相位数据的相位;高频放大单元,采用来自相位调制单元的相位调制信号作为输入信号来放大高频信号的功率;以及振幅调制单元,用于调制振幅数据的振幅,以输出用于控制施加到高频放大单元的源电压的振幅调制信号。
2.根据权利要求1所述的发送器,还包括包络检测单元,用于检测高频放大单元的输出信号的包络分量,以及负反馈回路,用于将该包络分量负反馈到由振幅相位提取单元提取出的振幅数据。
3.根据权利要求1或2所述的发送器,还包括延迟量转换和控制单元,用于转换和控制延迟单元的延迟量,其中,当具有不同信号带宽的发送数据作为发送数据输入时,延迟量转换和控制单元将延迟量转换为对应于该信号带宽的延迟量。
4.根据权利要求1或2所述的发送器,还包括延迟量表,用于存储按照发送器状态而预置的延迟量;以及延迟量转换和控制单元,用于根据延迟量表的延迟量数据来转换和控制延迟单元的延迟量。
5.根据权利要求1至4中任一项所述的发送器,还包括高频输出测量单元,用于测量高频放大单元的输出信号特性;以及延迟量计算单元,用于根据高频输出测量单元的测量结果计算规定延迟量,以设置延迟单元的延迟量。
6.一种用于调整发送器的方法,该发送器包括延迟单元,用于延迟从输入发送数据中提取的振幅数据和相位数据中的至少一种;和高频放大单元,采用通过调制振幅数据和相位数据获得的振幅调制信号和相位调制信号来放大高频信号的功率;所述用于调整发送器的方法包括高频输出信号测量步骤,用于测量在发送器中的高频放大单元的输出信号特性;以及延迟量计算步骤,用于根据测量结果计算适当的延迟量,以设置延迟单元中的延迟量。
全文摘要
本发明可以通过调整振幅信号路径和相位信号路径的延迟时间输出具有最少失真的稳定输出信号。振幅相位提取部件(2)从发送数据信号中提取振幅数据和相位数据并输出该数据。振幅调制部件(3)对振幅数据进行振幅调制,并将该振幅调制的信号作为源电压值输入非线性放大部件(5)。此外,相位调制部件(4)对相位数据进行相位调制,并将该相位调制的信号作为输入信号提供给非线性放大部件(5)。在非线性放大部件(5)中,相位调制信号乘以振幅调制信号,并输出放大了预定增益的RF信号。在此,延迟部件(12)设置在振幅调制部件(3)的预置级,而延迟部件(13)设置在相位调制部件(4)的预置级。调整振幅信号路径的延迟时间和相位信号路径的延迟时间,使得延迟量匹配,由此减小由于两个路径的延迟时间差引起的失真。
文档编号H04B1/04GK1701521SQ20048000110
公开日2005年11月23日 申请日期2004年2月3日 优先权日2003年2月6日
发明者荒屋敷护 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1