光信号接收机、光信号接收装置以及光信号传送系统的制作方法

文档序号:7604504阅读:136来源:国知局
专利名称:光信号接收机、光信号接收装置以及光信号传送系统的制作方法
技术领域
本发明涉及一种用于传送将宽带信号频率调制(FMFrequency Modulation)后的光信号的光信号接收机、光信号接收装置以及利用了该光信号接收机或该光信号接收装置的光信号传送系统。更详细地,涉及用于传送被频分复用的被振幅调制(AMAmplitude Modulation)或正交振幅调制(QAMQuadrature Amplitude Modulation)后的多频道图像信号的光信号的光信号接收机、光信号接收装置以及利用了该光信号接收机或该光信号接收装置的光信号传送系统。
背景技术
目前,作为对被频分复用的被振幅调制或被正交振幅调制后的多频道图像信号进行光传送的光信号接收机、光信号接收装置以及光信号传送系统,已经知道有使用了FM成批转换方式的光信号接收机、光信号接收装置以及光信号传送系统,该FM成批转换方式对被频分复用的图像信号成批进行频率调制。
使用该FM成批转换方式的光信号发送机以及光信号传送系统,采用了国际标准ITU-T J.185“Transmission equipmentfor transferring multi-channel television signals overoptical access networks by FM conversion”(参照非专利文献1)。
图1中示出了使用现有的FM成批转换方式的光信号接收机以及光信号传送系统的结构。图2A、图2B以及图2C中示出了图1的A、B、C位置的信号频谱。图1中所示的光信号传送系统具备光信号发送机80,其具备FM成批转换电路81、光源82以及光放大电路83;光传送通路85;光信号接收机90,其具备光电转换电路91以及FM解调电路92;机顶盒93;电视接收机94。图2A、图2B以及图2C中分别示出了图1中A、B、C的信号频谱。以后的各图中的A、B、C也同样。
图1中,在光信号发送机80内,如图2A所示的被频分复用的图像信号由FM成批转换电路81转换为如图2B所示的1个宽带频率调制信号。频率调制信号被光源82进行强度调制,进而被光放大电路83光放大之后发送至光传送通路85。在光信号接收机90内,由光电转换电路91进行光电转换,变回到电信号。该电信号是宽带频率调制信号,由FM解调电路92进行频率解调,解调成为如图2C所示的被频分复用的图像信号。被解调后的图像信号,通过机顶盒93,由电视接收机94选择适当的图像频道。
图3中示出了可适用于该FM成批转换方式且使用了光频率调制部和光频率局部振荡部的FM成批转换电路的结构(例如,参照专利文献1、非专利文献2、非专利文献3)。图3中所示的FM成批转换电路81具备光频率调制部101、光合波部102、作为光检波部的光电二极管103、光频率局部振荡部104。
在FM成批转换电路81中,当光频率调制部101中使用光频率fo的载波光源,以频率fs进行频率调制时,设频率偏移为δf,光频率调制部101的输出中的光信号的光频率Ffmld为Ffmld=fo+δf·sin(2π·fs·t) (1)作为光频率调制部101的载波光源,使用了DFB-LD(Distributed Feed-Back Laser Diode、分布反馈型半导体激光器)。
光频率局部振荡部104中,使用光频率f1的振荡光源来使其振荡,由光合波部102使其与来自光频率调制部101的光信号合波。作为光频率局部振荡部104的振荡光源,使用了DFB-LD。被光合波部102合波的2个光信号由光检波部103进行检波。作为检波方式使用了光外差方式,作为检波元件使用了光电二极管。被检波的电信号频率f为f=fo-f1-δf·sin(2π·fs·t)(2)在此,使光频率调制部101的载波光源和光频率局部振荡部104的振荡光源的光频率接近时,可得到如图2B所示的中间频率fi=fo-f1为数GHz、频率偏移为δf的被频率调制后的电信号。
通常,DFB-LD通过注入电流进行调制,其光频率伴随注入电流在数GHz范围内变动,因此,作为频率偏移δf,可以得到数GHz的值。例如,将在约90MHz到约750MHz的频率范围中被频分复用的多频道的AM图像信号或QAM图像信号,使用FM成批转换电路可调制成图2B所示的中间频率fi=fo-f1约为3GHz、带宽约为6GHz的频率调制信号。
在图4中表示出作为适用于该FM成批转换方式的其他FM成批转换电路的、将2个频率调制部用在推挽结构中的FM成批转换电路的例子。图4所示的FM成批转换电路81,具备差动分配器105、光频率调制部106、光频率调制部107、光合波部102、作为光检波部103的光电二极管。
在FM成批转换电路81中,如图2A所示的被频分复用的图像信号,被差动分配部105分配为相位相反的2个电信号。将来自差动分配部105的2个电信号中的一个电信号作为调制输入,在光频率调制部106中使用光频率fo1的载波光源进行频率调制时,当频率偏移为δf/2时,光频率调制部106的输出中的光信号的光频率Ffmld1为Ffmld1=fo1+(δf/2)·sin(2π·fs·t) (3)
其中,在式(3)中,设调制信号为频率fs的信号。将来自差动分配部105的2个电信号中的另一个电信号作为调制输入,在光频率调制部106中使用光频率fo2的载波光源进行频率调制时,当频率偏移为δf/2时,光频率调制部107的输出中的光信号的光频率Ffmld2为Ffmld2=fo2-(δf/2)·sin(2π·fs·t) (4)其中,在式(4)中,设调制信号为频率fs的信号。作为光频率调制部106、107的载波光源,可使用DFB-LD(Distributed Feed-Back Laser Diode分布反馈型半导体激光器)。
来自光频率调制部106以及107的输出被光合波部102合波,被光合波部102合波后的2个光信号由光检波部103进行外差检波。作为光检波部,可使用发挥外差检波元件的功能的光电二极管。被光检波部103外差检波后的电信号,是频率f由上式(3)和上式(4)表示的值之差的电信号。即,f=fo1-fo2+(δf)·sin(2π·fs·t) (5)其中,在式(5)中,设调制信号为频率fs的信号。在此,使光频率调制部106的载波光源的光频率和光频率调制部107的载波光源的光频率接近时,可得到如图2B所示的中间频率fi=fo-f1为数GHz、频率偏移为δf的被频率调制后的电信号。
通常,DFB-LD通过注入电流进行调制,其光频率伴随注入电流在数GHz范围内变动,因此,作为频率偏移δf,可得到数GHz的值。例如,能够将在约90MHz到约750MHz的频率范围中被频分复用的多频道的AM图像信号或QAM图像信号,使用FM成批转换电路调制成图2B所示的中间频率fi=fo-f1约为3GHz、带宽约为6GHz的频率调制信号。
在图5中示出了作为适用于该FM成批转换方式的其他FM成批转换电路的、使用了电压控制振荡元件的FM成批转换电路的例子。图5所示的FM成批转换电路81,具备使用了电压控制振荡元件的电压控制振荡部111。
在FM成批转换电路81中,当将如图2A所示的被频分复用的图像信号在电压控制振荡部111中以频率fo为中心频率进行频率调制时,当频率偏移为δf时,输出的电信号频率fv为fv=fo+(δf)·sin(2π·fs·t) (6)可得到中间频率fi=fo、频率偏移为δf的频率调制信号。其中,在式(6)中,设调制信号为频率fs的信号。
例如,能够将在约90MHz到约750MHz的频率范围中被频分复用的多频道的AM图像信号或QAM图像信号,使用FM成批转换电路调制成图2B所示的中间频率fi=fo-f1约为3GHz、带宽约为6GHz的频率调制信号。
在图6中示出了作为适用于该FM成批转换方式的其他FM成批转换电路的、将2个电压控制振荡元件用于推挽结构的FM成批转换电路的例子。图6所示的FM成批转换电路81具备差动分配部105、电压控制振荡部112、电压控制振荡部114、混频器115、低通滤波器117。
在FM成批转换电路81中,如图2A所示的被频分复用的图像信号,被差动分配部105分配为相位相反的2个电信号。将来自差动分配部105的2个电信号中的一个电信号作为调制输入,在电压控制振荡部112中以频率fo为中心频率进行频率调制时,当频率偏移为δf/2时,输出的电信号的频率fv1为fv1=fo1+(δf/2)·sin(2π·fs·t)(7)可得到中间频率fi=fo1、频率偏移δf/2的频率调制信号。其中,在式(7)中,设调制信号为频率fs的信号。将来自差动分配部105的2个电信号中的另一个电信号作为调制输入,在电压控制振荡部114中以频率fo1为中心频率进行频率调制时,当频率偏移为δf/2时,输出的电信号的频率fv2为fv2=fo2-(δf/2)·sin(2π·fs·t) (8)可得到中间频率fi=fo2、频率偏移为δf/2的频率调制信号。其中,在式(8)中,设调制信号为频率fs的信号。
来自电压控制振荡部112以及114的输出被混频器115混频,被混频器115混频后的2个电信号被低通滤波器进行平滑化。由使与中间频率fo1和中间频率fo2之差相等频率的电信号通过的低通滤波器117平滑化后的电信号,是频率f为上式(7)和上式(8)表示的值之差的电信号。即,f=fo1-fo2+δf·sin(2π·fs·t) (9)其中,在式(9)中,设调制信号为频率fs的信号。在此,可得到如图2B所示的中间频率fi=fo1-fo2为数GHz、频率偏移为δf的被频率调制后的电信号。
例如,能够将在约90MHz到约750MHz的频率范围中被频分复用的多频道的AM图像信号或QAM图像信号,调制成图2B所示的中间频率fi=fo1-fo2约为3GHz、带宽约为6GHz的频率调制信号。
以往,作为以降低失真为目的的技术,已经知道有预失真电路(例如,参照专利文献2)。图7中示出了使用了将预失真电路适用于FM成批转换电路的失真补偿的现有的FM成批转换方式的光信号传送系统的结构。图7所示的光信号传送系统,具备预失真电路86、FM成批转换电路81、具备作为发送电路的光源82以及光放大电路83的光信号发送机80、光传送通路85、具备光电转换电路91以及FM解调电路92的光信号接收机90、机顶盒93、电视接收机94。图7中的A、B、C的信号频谱,分别是图2A、图2B、图2C中所示的频谱。
当将多频道的AM图像信号或QAM图像信号输入至预失真电路86中时,在预失真电路86中,预先附加与所述FM成批转换电路81等所发生的失真相反的失真,对之后的由FM成批转换电路81等产生的失真进行补偿。预失真电路86的输出,被FM成批转换电路81进行频率调制,被光源82从电信号转换为光信号,在被光放大电路83光放大后发送到光传送通路85。被发送的光信号经过光传送通路85,光信号由光信号接收机90的光电转换电路91转换为电信号,在FM解调电路95中被频率解调为原来的AM 图像信号或QAM图像信号。
图8中示出了预失真电路的结构例。图8中所示的预失真电路86,具备同相分配部121、延迟线122、失真产生电路123、振幅调整部124、延迟调整部125、差动合成部126。输入到同相分配部121的多频道的AM图像信号或QAM图像信号,被分配为2个。被分配的信号中的一个由失真产生电路123添加由FM成批转换电路等产生的失真,并由振幅调整部124和延迟调整部125调整振幅和延迟。被分配的信号中的另一个被延迟线122延迟。从延迟调整部125以及延迟线122输出的信号被差动合成部126合成。其结果,从差动合成部126输出的信号,成为预先附加了与FM成批转换电路等产生的失真相反的失真的信号。
另一方面,作为频率解调电路方式,有延迟线检波方式。图9中示出了可适用于光信号接收机90的由延迟线检波的FM解调电路的结构。图9中所示的FM解调电路92,具备限幅放大部131、延迟线132、与门(AND门)133、低通滤波器134。
在FM解调电路92内,被输入的频率调制光信号由限幅放大部131整形为矩形波。限幅放大部131的输出被分为2路,一路输入到与门133的输入端子上,另一路在极性被翻转后由延迟线132延迟时间τ后,输入到与门133的输入端子上。该与门133的输出被低通滤波器134平滑后成为频率解调输出(例如参照非专利文献2)。另外,众所周知,也可以代替与门而使用或门(OR门)(例如参照专利文献3)。
在这样的多频道图像信号的传送中要求低失真。在非专利文献2中,在使用了FM成批转换方式的光信号发送机以及光信号传送系统中,CNR(Carrier-to-Noise Ratio载噪比)被设定为大于等于42dB、CSO(Composite Second-OrderDistortion复合二次失真)和CTB(Composite Triple Beat复合三次差拍)被设定为小于等于-54dB。
但是,在现有的FM解调电路中,由于在延迟线检波中使用的延迟线132的两端阻抗不匹配等,延迟线在低频和高频中具有不同的延迟时间特性。
即,在低频和高频中产生相位失真。其结果,由于低频和高频的相位失真,CSO、CTB将劣化。
在使用现有的FM成批转换方式的光信号接收机中,CSO和C TB在稍稍超过-54dB的值时饱和。若能够以更低失真构成光信号接收机的FM解调电路时,可期望提高传送特性。
专利文献1日本国专利2700622号公报专利文献2日本国专利3371355号公报专利文献3日本国特开2002-141750号公报非专利文献1ITU-T标准J.185“TransmissionEquipment for transferring multi-channel televisonsignals over optical access networks by FM conversion”,ITU-T非专利文献2柴田宣他著「FM一括変换方式を用ぃた光映像分配システム」電子情報通信学会論文誌B、Vol.J83-B、No.7、pp.948-959、2000年7月非专利文献3铃木他著「パルス化FM一括変换変調アナログ光CATV分配方式」電子情報通信学会秋季大会、B-603、1991发明内容改善现有的FM解调电路中使用的延迟线的高频相位失真是困难的,也难以实现低失真特性。因此,在本发明的目的在于,实现使用了低失真的FM解调电路的光信号接收机、光信号接收装置以及利用了该光信号接收机或该光信号接收装置的光信号传送系统。
为达到上述目的,本申请的发明是接收光信号来进行频率解调的光信号接收机,其特征在于,具备光分支电路,将输入的光信号分为2路;光延迟线,使被分为2路的光信号中的一个延迟;第一光电转换电路,将来自所述光延迟线的光信号转换为第一电信号;第二光电转换电路,将被分为2路的光信号的另一个光信号转换为第二电信号;矩形波形成装置,输入来自第一光电转换电路的第一电信号和来自第二光电转换电路的第二电信号,输出单一的矩形波信号;平滑电路,对来自所述矩形波形成装置的矩形波信号进行平滑化。
本申请的其他发明,是接收光信号来进行频率解调的光信号接收装置,其特征在于,具备光分支器、N个光信号接收机和同相合成器,其中,光分支器使输入的光信号分支为N路(N为大于等于2的整数),N个光信号接收机具备光分支电路,使来自所述光分支器的光信号分为2路;光延迟线,使被分为2路的光信号中的一个延迟;第一光电转换电路,将来自所述光延迟线的光信号转换为第一电信号;第二光电转换电路,将被分为2路的光信号的另一个光信号转换为第二电信号;矩形波形成装置,将来自第一光电转换电路的第一电信号和来自第二光电转换电路的第二电信号作为输入,输出单一的矩形波信号;以及平滑电路,对来自所述矩形波形成装置的矩形波信号进行平滑化,同相合成器将分别从所述N个光信号接收机输出的N个所述被平滑化后的所述矩形波信号,使相位一致来合成。
本申请的其他发明,是使用了FM成批转换方式的光信号传送系统,其特征在于,具备光信号发送机,具备FM成批转换电路;光信号接收机,具备光分支电路,将来自所述光信号发送机的光信号分为2路,其通过光传送通路与所述光信号接收机连接;光延迟线,使被分为2路的光信号中的一个延迟;第一光电转换电路,将来自所述光延迟线的光信号转换为第一电信号;第二光电转换电路,将被分为2路的光信号的另一个光信号转换为第二电信号;矩形波形成装置,将来自第一光电转换电路的第一电信号和来自第二光电转换电路的第二电信号作为输入,输出单一的矩形波信号;以及平滑电路,对来自所述矩形波形成装置的矩形波信号进行平滑化。
本发明的光信号接收机、光信号接收装置以及光信号传送系统,通过使用在延迟线中利用了光纤或平面型光波导等的光延迟线,延迟线的高频相位失真得到了改善,可得到良好的传送特性。
还有,如果能够得到低失真特性,就可以提高图像信号的接收质量。


图1为说明使用了FM成批转换方式的现有的光信号接收机以及光信号传送系统的结构的图。
图2A为说明光信号接收机以及光信号传送系统中的信号频谱的图。
图2B为说明光信号接收机以及光信号传送系统中的信号频谱的图。
图2C为说明光信号接收机以及光信号传送系统中的信号频谱的图。
图3为使用了光频率调制部和光频率局部振荡部的FM成批转换电路的结构图。
图4为将2个光频率调制部使用在推挽结构中的FM成批转换电路的结构图。
图5为使用了电压控制振荡元件的FM成批转换电路的结构图。
图6为将2个电压控制振荡元件使用在推挽结构中的FM成批转换电路的结构图。
图7为使用了将预失真电路应用于FM成批转换电路的失真补偿的现有的FM成批转换方式的光信号传送系统的结构图。
图8为例示的预失真电路的结构图。
图9为可用在光信号接收机中的FM解调电路的结构图。
图10为实施方式1的光信号接收机的结构图。
图11为说明实施方式1的光信号接收机的各点处的信号波形的图。
图12为说明实施方式1的光信号接收机的频率解调特性的图。
图13为实施方式2的光信号接收机的结构图。
图14为说明实施方式2的光信号接收机的各点处的信号波形的图。
图15为说明实施方式2的光信号接收机的频率解调特性的图。
图16为实施方式3的光信号接收机的结构图。
图17为说明实施方式3的光信号接收机的各点处的信号波形的图。
图18为实施方式4的光信号接收机的结构图。
图19为说明实施方式4的光信号接收机的各点处的信号波形的图。
图20为实施方式5的光信号接收装置的结构图。
图21为在实施方式6的光信号传送系统中,在脉冲化后进行强度调制的光发送机的结构图。
图22为说明在实施方式6的光信号传送系统中,在脉冲化后进行强度调制的光发送机的各点处的信号波形的图。
具体实施例方式
下面,参照附图对本发明的实施方式进行说明。
实施方式1本实施方式是利用光延迟线来延迟检波的光信号接收机。图10中示出了本实施方式所涉及的光信号接收机的结构。图10中所示的光信号接收机10,具备光放大电路11、光分支电路13、光延迟线15、第一光电转换电路17、第一识别电路21、第二光电转换电路19、第二识别电路23、逻辑与电路25、以及平滑电路12。
参照图10来说明本实施方式的光信号接收机的结构。图10中所示的光信号接收机10,具有接收被频率调制后的光信号并进行频率解调的功能。对光信号接收机的各电路及其动作进行说明。光放大电路11,对输入的光信号进行光放大。作为光放大电路,可以使用半导体光放大电路或光纤型放大电路。当向后述的第一光电转换电路17或第二光电转换电路19输入的光信号的光强度充足时,也可以省略光放大电路11,而直接将光信号输入到光分支电路13中。
被光放大电路11放大后的光信号,被光分支电路13分为2路。作为光分支电路13,可使用光纤结合型光分支电路或平面型光分支电路。分支比,最好调整为使向后述的第一光电转换电路17输入的光信号的光强度和向后述的第二光电转换电路19输入的光信号的光强度相等。
被分为2路的光信号的一个被光延迟线15延迟后,输入到第一光电转换电路17。被分为2路的光信号的另一个,输入到第二光电转换电路19。作为光延迟线15,可以使用光纤或平面型光波导。另外,可以使光延迟线15和光分支电路13构成为一个整体。第一光电转换电路17以及第二光电转换电路19,将光信号转换为电信号,并根据需要放大电信号,分别输入到第一识别电路21以及第二识别电路23。作为第一光电转换电路17以及第二光电转换电路19,可以使用例如光电二极管、雪崩二极管、或光电晶体管等光电转换元件。在本实施方式的光延迟线中,由于没有如电气电路中的延迟线那样在高频下的相位失真,因此,直到高频都可得到良好的频率解调特性。
第一识别电路21以及第二识别电路23,通过将被频率调制后的电信号分别与阈值进行大小比较来在振幅轴方向识别该电信号,作为矩形波的2值信号。如果输入的光信号的占空比为50%,则第一识别电路21以及第二识别电路23也分别可以是限幅放大电路。
来自第一识别电路21以及第二识别电路23的电信号,被逻辑与电路25进行逻辑与处理,进而,被平滑电路12进行平滑,从而被频率解调。
图11中示出了图10中的(M)、(N)、(P)、(Q)、(R)各点处的信号波形。图11的(M)、(N)、(P)、(Q)、(R)是图10的(M)、(N)、(P)、(Q)、(R)各点处的信号波形。下面,设被输入到光放大电路11的光信号的瞬时频率f=1/T、光延迟线15的延迟时间为τ来说明频率解调动作。
输入到第一光电转换电路17的光信号(图11(M)),与输入到第二光电转换电路19的光信号(图11(N))比较,由光延迟线15延迟时间τ。图11(M)、(N)中的单点划线,相当于被光电转换后由第一识别电路21和第二识别电路23识别时的阈值。被光电转换后的电信号,分别由第一识别电路21和第二识别电路23识别其电平,维持时间τ的延迟而成为矩形波(图11(P)、(Q))。2个矩形波电信号,由逻辑与电路25进行逻辑与运算,作为脉冲宽度仅变窄τ(图11(R))。在此,由正逻辑进行逻辑与运算。该逻辑与运算得到的电信号,被平滑电路12进行平滑化。
平滑电路12的输出电压Vout表示为下式。
Vout=Vo×(T/2-τ)/T=Vo×(1/2-τ/T)=Vo×(1/2-τ·f)(10)由式10,可得到如图12所示的频率解调特性。图12的横轴为频率f、纵轴为平滑电路输出电压Vout。这样,相对于输入的光信号频率,平滑电路输出电压线性衰减,因而在本光信号接收机中可实现频率解调功能,此外,τ越大,输出电压的频率敏感度越高,但根据式(10),不会大于1/(2f)。
如上所说明的那样,本实施方式的光信号接收机对被频率调制后的光信号进行光接收,可实现频率解调功能。另外,光延迟线不存在高频中的相位失真,因此,直到高频也可实现良好的频率解调特性。此外,虽然利用图10说明了本实施方式,但是当光信号接收机以充足的光强度接收光信号时,可省略图10中的光放大电路11。
实施方式2本实施方式是利用光延迟线来延迟检波的光信号接收机。图13中示出了本实施方式所涉及的光信号接收机的结构。图13中所示的光信号接收机10,具备光放大电路11、光分支电路13、光延迟线15、第一光电转换电路17、第一识别电路21、第二光电转换电路19、第二识别电路23、逻辑或电路27、以及平滑电路12。
参照图13来说明本实施方式的光信号接收机的结构。图13中所示的光信号接收机10,具有接收被频率调制后的光信号并进行频率解调的功能。对光信号接收机的各电路及其动作进行说明。光放大电路11对输入的光信号进行光放大。作为光放大电路,可以使用半导体光放大电路或光纤型放大电路。当向后述的第一光电转换电路17或第二光电转换电路19输入的光信号的光强度充足时,可省略光放大电路11,而直接将光信号输入到光分支电路13。
被光放大电路11放大后的光信号,被光分支电路13分为2路。作为光分支电路13,可使用光纤结合型光分支电路或平面型光分支电路。分支比,最好调整为使向后述的第一光电转换电路17输入的光信号的光强度和向后述的第二光电转换电路19输入的光信号的光强度相等。
被分为2路的光信号的一个被光延迟线15延迟后,输入到第一光电转换电路17。被分为2路的光信号的另一个,输入到第二光电转换电路19。作为光延迟线15,可以使用光纤或平面型光波导。另外,可以使光延迟线15和光分支电路13构成为一个整体。第一光电转换电路17以及第二光电转换电路19,将光信号转换为电信号,并根据需要放大电信号,分别输入到第一识别电路21以及第二识别电路23。作为第一光电转换电路17以及第二光电转换电路19,可以使用例如光电二极管、雪崩二极管、或光电晶体管等光电转换元件。在本实施方式的光延迟线中,由于没有如电气电路中的延迟线那样的在高频下的相位失真,因此,直到高频都可得到良好的频率解调特性。
第一识别电路21以及第二识别电路23,通过将被频率调制后的电信号分别与阈值进行大小比较来在振幅轴方向识别该电信号,作为矩形波的2值信号。如果输入的光信号的占空比为50%,则第一识别电路21以及第二识别电路23也分别可以是限幅放大电路。
来自第一识别电路21以及第二识别电路23的电信号,被逻辑或电路27进行逻辑或处理,进而,被平滑电路12进行平滑,从而被频率解调。
图14中示出了图13中(M)、(N)、(P)、(Q)、(S)各点处的信号波形。图14的(M)、(N)、(P)、(Q)、(S)是图13的(M)、(N)、(P)、(Q)、(S)各点处的信号波形。下面,设输入到光放大电路11的光信号的瞬时频率f=1/T、光延迟线15的延迟时间为τ来说明频率解调动作。
输入到第一光电转换电路17的光信号(图14(M)),与输入到第二光电转换电路19的光信号(图14(N))比较,由光延迟线15仅延迟时间τ。图14(M)、(N)中的单点划线,相当于被光电转换后由第一识别电路21和第二识别电路23识别时的阈值。被光电转换的电信号,分别由第一识别电路21和第二识别电路23识别其电平,维持时间τ的延迟而成为矩形波(图14(P)、(Q))。2个矩形波电信号,由逻辑或电路25进行逻辑或运算,作为脉冲宽度仅变宽τ(图14(S))。在此,由正逻辑进行逻辑或运算。该逻辑或运算得到的电信号,被平滑电路12进行平滑化。
平滑电路12的输出电压Vout表示为下式。
Vout=Vo×(T/2+τ)/T=Vo×(1/2+τ/T)=Vo×(1/2+τ·f)(11)由式11,可得到如图15所示的频率解调特性。图15的横轴为频率f、纵轴为平滑电路输出电压Vout。这样,相对于输入的光信号的频率,平滑电路输出电压线性增加,因此,在本光信号接收机中可实现频率解调功能。
如上所说明,本实施方式的光信号接收机,对被频率调制后的光信号进行光接收,可实现频率解调功能。另外,光延迟线不存在高频下的相位失真,因此,直到高频也可实现良好的频率解调特性。此外,虽然利用图13说明了本实施方式,但是当光信号接收机以充足的光强度接收光信号时,可省略图13中的光放大电路11。
实施方式3本实施方式是利用光延迟线来延迟检波的光信号接收机。图16中示出了本实施方式所涉及的光信号接收机的结构。图16中所示的光信号接收机10,具备光放大电路11、光分支电路13、光延迟线15、第一光电转换电路17、第一限幅放大电路41、第二光电转换电路19、第二限幅放大电路42、加法电路43、高电平识别器44、以及平滑电路12。
参照图16说明本实施方式的光信号接收机的结构。图16中所示的光信号接收机10,具有接收被频率调制后的光信号并进行频率解调的功能。对光信号接收机的各电路及其动作进行说明。光放大电路11,对输入的光信号进行光放大。作为光放大电路,可以使用半导体光放大电路或光纤型放大电路。当向后述的第一光电转换电路17或第二光电转换电路19输入的光信号的光强度充足时,可省略光放大电路11,而直接将光信号输入到光分支电路13。
被光放大电路11放大后的光信号,被光分支电路13分为2路。作为光分支电路13,可使用光纤结合型光分支电路或平面型光分支电路。分支比,最好调整为使向后述的第一光电转换电路17输入的光信号的光强度和向后述的第二光电转换电路19输入的光信号的光强度相等。
被分为2路的光信号的一个被光延迟线15延迟后,输入到第一光电转换电路17。被分为2路的光信号的另一个,输入到第二光电转换电路19。作为光延迟线15,可以使用光纤或平面型光波导。另外,可以使光延迟线15和光分支电路13构成为一个整体。第一光电转换电路17以及第二光电转换电路19,将光信号转换为电信号,并根据需要放大电信号,分别输入到第一限幅放大电路41以及第二限幅放大电路42。作为第一光电转换电路17以及第二光电转换电路19,可以使用例如光电二极管、雪崩二极管、或光电晶体管等光电转换元件。在本实施方式的光延迟线中,由于没有如电气电路中的延迟线那样在高频下的相位失真,因此,直到高频都可得到良好的频率解调特性。
第一限幅放大电路41以及第二限幅放大电路42,将被频率调制后的电信号分别向振幅轴方向限幅放大,作为矩形波的2值信号。代替第一限幅放大电路41以及第二限幅放大电路42,可以使用将其分别放大到规定振幅的自动增益控制放大电路。
来自第一限幅放大电路41以及第二限幅放大电路42的电信号,由加法电路43进行加法运算,成为3值信号。成为3值信号的电信号是由高电平识别器44利用如下的阈值进行大小比较,在振幅轴方向上来识别出的,该阈值是向第一光电转换电路17以及第二光电转换电路19输入光信号时的电平、和向第一光电转换电路17或第二光电转换电路19中任何一个输入光信号时的电平之间的阈值。在高电平识别器44中再次成为2值信号的电信号,通过由平滑电路12进行平滑,被频率解调。
图17中示出了图16中(M)、(N)、(P)、(Q)、(T)、(U)各点处的信号波形。图17的(M)、(N)、(P)、(Q)、(T)、(U)是图16的(M)、(N)、(P)、(Q)、(T)、(U)各点处的信号波形。
下面,设输入到光放大电路11的光信号的瞬时频率f=1/T、光延迟线15的延迟时间为τ来说明频率解调动作。
输入到第一光电转换电路17的光信号(图17(M)),与输入到第二光电转换电路19的光信号(图17(N))比较,由光延迟线15仅延迟时间τ。图17(M)、(N)中的单点划线,相当于被光电转换后由第一限幅放大电路41和第二限幅放大电路42限幅放大时的阈值。被光电转换后的电信号,分别由第一限幅放大电路41和第二限幅放大电路42限幅放大,维持时间τ的延迟而成为矩形波(图17(P)、(Q))。2个矩形波电信号,由加法电路43进行加法运算,成为3值信号(图17(T))。由高电平识别器在振幅轴方向上通过与阈值的大小比较来识别3值信号(图17(U))。识别的阈值在向第一光电转换电路17以及第二光电转换电路19输入光信号时的电平、和向第一光电转换电路17或第二光电转换电路19中任何一个输入光信号时的电平之间。图17(T)中的单点划线表示阈值。在高电平识别器中成为2值信号的电信号(图17(U)),被平滑电路12进行平滑。
平滑电路12的输出电压Vout表示为下式。
Vout=Vo×(T/2-τ)/T=Vo×(1/2-τ/T)=Vo×(1/2-τ·f)(12)由式(12),可得到如图12所示的频率解调特性。这样,相对于输入的光信号的频率,平滑电路输出电压线性衰减,因而,在本光信号接收机中可实现频率解调功能。此外,τ越大,输出电压的频率敏感度越高,但根据式(12),不会大于1/(2f)。
如上所说明的那样,本实施方式的光信号接收机,对被频率调制后的光信号进行光接收,可实现频率解调功能。另外,光延迟线不存在高频下的相位失真,因此,直到高频也可实现良好的频率解调特性。此外,虽然利用图16说明了本实施方式,但是当光信号接收机以充足的光强度接收光信号时,可省略图16中的光放大电路11。
实施方式4本实施方式是利用光延迟线来延迟检波的光信号接收机。图18中示出了本实施方式所涉及的光信号接收机的结构。图18中所示的光信号接收机10,具备光放大电路11、光分支电路13、光延迟线15、第一光电转换电路17、第一限幅放大电路41、第二光电转换电路19、第二限幅放大电路42、加法电路43、低电平识别器45、以及平滑电路12。与实施方式3中说明的图16的差别在于,用低电平识别器45替代了图16的高电平识别器44。
与实施方式3的结构差别在于,高电平识别器44和低电平识别器45的差别,因此对该差别进行说明。高电平识别器44的阈值是向第一光电转换电路17以及第二光电转换电路19输入光信号时的电平、和向第一光电转换电路17或第二光电转换电路19中任何一个输入光信号时的电平之间的阈值,与此相对,低电平识别器45的阈值是向第一光电转换电路17或第二光电转换电路19任何一个输入光信号时的电平、和未向第一光电转换电路17以及第二光电转换电路19中输入光信号时的电平之间的阈值。
图19中示出了图18中(M)、(N)、(P)、(Q)、(T)、(U)各点处的信号波形。图19的(M)、(N)、(P)、(Q)、(T)、(U)是图18的(M)、(N)、(P)、(Q)、(T)、(U)各点处的信号波形。
下面,设输入到光放大电路11的光信号的瞬时频率f=1/T、光延迟线15的延迟时间为τ来说明频率解调动作。
与实施方式3的动作上差别在于,识别的阈值。图19(T)中的单点划线表示阈值。该阈值是向第一光电转换电路17或第二光电转换电路19任何一个输入光信号时的电平、和未向第一光电转换电路17以及第二光电转换电路19中输入光信号时的电平之间的阈值。其结果,被平滑电路12进行平滑后的输出电压Vout表示为下式。
Vout=Vo×(T/2+τ)/T=Vo×(1/2+τ/T)=Vo×(1/2+τ·f)(13)由式(13),可得到如图15所示的频率解调特性。这样,由于相对于输入的光信号频率,平滑电路输出电压线性增加,因而,在本光信号接收机中可实现频率解调功能。
如上所说明,本实施方式的光信号接收机,对被频率调制后的光信号进行光接收,可实现频率解调功能。另外,光延迟线不存在高频下的相位失真,因此,直到高频也可实现良好的频率解调特性。此外,虽然利用图18说明了本实施方式,但是当光信号接收机以充足的光强度接收光信号时,可省略图18中的光放大电路11。
实施方式5本实施方式是利用信号和噪声的相加法则的差别来提高噪声特性的光信号接收装置。图20中示出了本实施方式所涉及的光信号接收装置。图20中所示的光信号接收装置20,具备光放大器61;光分支器63;分别为实施方式1至4中任意一个的光信号接收机10-1、10-2、10-3;同相合成器65。
参照图20说明本实施方式的光信号接收装置的结构。图20中所示的光信号接收装置20,具有接收被频率调制后的光信号并进行频率解调的功能。对光信号接收装置20的各电路及其动作进行说明。光放大器61,将输入的光信号放大后输出。当向后述的光信号接收机输入的光信号的光强度充足时,可省略光放大器61,而直接将光信号输入到光分支器63。
光分支器63,将输入的光信号分成3路。在图20中,虽然示出了分成3路的例子,但也可以将输入的光信号分成N路(N为大于等于2的整数)。此时,被分成N路的光信号被输入到光信号接收机中。输入到光信号接收机10-1、10-2、10-3的光信号,分别被频率解调。
同相合成器65,对被光信号接收机10-1、10-2、10-3频率解调后的电信号以同相进行合成。如果将来自光信号接收机10-1、10-2、10-3的电信号的相位设定为一致,则由同相合成器65合成的电信号中,信号成分为电压加法运算,而噪声成分为功率加法运算。
设来自3个光信号接收机的电信号的信号成分分别为Vs1、Vs2、Vs3,设它们相等、Vs1=Vs2=Vs3=Vs时,同相合成器65输出的电信号的信号成分的电压总和Vst为Vst=Vs1+Vs2+Vs3=3×Vs(14)如果设同相合成器65的输出阻抗为R,当仅从3个光信号接收机中的一个向同相合成器65输入时,此时,同相合成器65输出的电信号的信号成分的功率Ps1为Ps1=(Vs)2/R (15)从3个光信号接收机向同相合成器65输入时,同相合成器65输出的电信号的信号成分的功率Pst为Pst=(Vst)2/R=(3×Vs)2/R=9×(Vs)2/R (16)另一方面,设来自3个光信号接收机的输出的噪声成分的功率分别为Pn1、Pn2、Pn3,设它们相等,Pn1=Pn2=Pn3=Pn时,同相合成器65输出的电信号的噪声成分总和Pnt为Pnt=Pn1+Pn2+Pn3=3×Pn(17)仅从3个光信号接收机中的一个向同相合成器65输入时,同相合成器65输出的电信号的噪声成分Pn1的功率为Pn1=Pn(18)由此,通过将来自3个光信号接收机的电信号进行同相合成,与来自1个光信号接收机的电信号时相比较,信号成分的功率比为20×log(3)[dB],而是噪声成分的功率比为10×log(3)[dB],由此可知,同相合成器65的输出中的信号功率对噪声功率比被改善了10×log(3)[dB]。
此外,在本实施方式中,虽然对N=3时,即从3个光信号接收机输出的电信号进行了说明,但从光信号接收机输出的电信号为N个(N为大于等于2的整数)时,与从1个光信号接收机输出的电信号的情况相比,其信号功率对噪声功率比可改善10×log(N)[dB]。
另外,对于失真,如果从N个光信号接收机输出的电信号的失真特性是反向失真,则通过同相合成就被相互抵消,因此,与1个光信号接收机时相比,可达到低失真化。
实施方式6本实施方式是利用了实施方式1至5所述的光信号接收机或光信号接收机装置中任意一个的光信号传送系统。参照图1说明本实施方式的光信号传送系统。在本实施方式中,具备图1所示的光信号发送机80、通过光纤传送通路85连接至光信号发送机80的实施方式1至5所述的光信号接收机或光信号接收装置。
向光信号发送机80的FM成批转换电路81输入被频分复用的多频道AM图像信号或QAM图像信号,进行频率调制。被频率调制后的电信号被光源82进行强度调制,并转换为光信号。该光信号在光放大电路83中进行光放大,输出到光传送通路85。来自光信号发送机80的光信号,通过光传送通路85,被实施方式1至5所述的光信号接收机或光信号接收装置中的任意一个接收并被频率解调。
光源82,可以直接将FM成批转换电路81的输出进行强度调制,或者在将FM成批转换电路81的输出进行脉冲化后进行强度调制。图21中示出在脉冲化后进行强度调制时的光发送机的结构。图21所示的光信号发送机80,具备FM成批转换电路81、限幅电路88、光源82、光放大电路83,并向光传送通路85输出光信号。
被频分复用的多频道的AM图像信号或QAM图像信号在光信号发送机80的FM成批转换电路81中进行频率调制。将频率调制得到的电信号,在限幅电路88中,通过识别输入电平是阈值以上还是以下来使其进行限幅动作,可将该电信号波形整形为矩形波而进行脉冲化。图21所示的光信号发送机的各点处的信号波形表示在图22中。图22的(D)、(E)是图21的(D)、(E)各点处的信号波形。图22(D)的单点划线是限幅电路的阈值。
图22(D)的被频率调制后的电信号,用限幅电路的阈值进行限幅动作时,被波形整形为矩形波。即使该脉冲化后的FM信号被光源82进行强度调制,在光信号接收机或光信号接收装置中也可以进行频率解调。
另外,如图7所示,利用具备预失真电路86的光信号发送机80时,可降低由光信号发送机、光信号接收机、光信号接收装置中产生的失真。即,通过光传送通路连接图7的光信号接收机80和实施方式1至5所述的光信号接收机或光信号接收装置中任意一个时,传送低失真的图像信号成为可能。
工业上的可利用性本发明的光信号接收机或光信号接收装置,可适用于将不限于图像信号的各种信号进行频率调制后发送接收的光信号传送系统。本光信号传送系统中,光传送通路的网络形态不限于单星(SSSingle Star)形式的拓扑的情况,也可以适用于无源双星(PDSPassive Double Star)形式的拓扑的情况。
权利要求
1.一种光信号接收机,是接收光信号来进行频率解调的光信号接收机,其特征在于,具备光分支电路,将输入的光信号分为2路;光延迟线,使被分为2路的光信号中的一个延迟;第一光电转换电路,将来自所述光延迟线的光信号转换为第一电信号;第二光电转换电路,将被分为2路的光信号的另一个光信号转换为第二电信号;矩形波形成装置,将来自第一光电转换电路的第一电信号和来自第二光电转换电路的第二电信号作为输入,输出单一的矩形波信号;平滑电路,对来自所述矩形波形成装置的矩形波信号进行平滑化。
2.根据权利要求1所述的光信号接收机,其特征在于,所述矩形波形成装置,具备第一识别电路,通过与阈值进行大小比较来识别来自所述第一光电转换电路的所述第一电信号的电平,输出第一2值信号;第二识别电路,通过与阈值进行大小比较来识别来自所述第二光电转换电路的所述第二电信号的电平,输出第二2值信号;逻辑与电路,运算来自所述第一识别电路的所述第一2值信号和来自所述第二识别电路的所述第二2值信号的逻辑与,输出所述单一的矩形波信号。
3.根据权利要求1所述的光信号接收机,其特征在于,所述矩形波形成装置,具备第一识别电路,通过与阈值进行大小比较来识别来自所述第一光电转换电路的所述第一电信号的电平,输出第一2值信号;第二识别电路,通过与阈值进行大小比较来识别来自所述第二光电转换电路的所述第二电信号的电平,输出第二2值信号;逻辑或电路,运算来自所述第一识别电路的所述第一2值信号和来自所述第二识别电路的所述第二2值信号的逻辑或,输出所述单一的矩形波信号。
4.根据权利要求1所述的光信号接收机,其特征在于,所述矩形波形成装置,具备第一限幅放大电路,将来自所述第一光电转换电路的所述第一电信号限幅放大,输出第一2值信号;第二限幅放大电路,将来自所述第二光电转换电路的所述第二电信号限幅放大,输出第二2值信号;加法电路,对来自所述第一限幅放大电路的所述第一2值信号和来自所述第二限幅放大电路的所述第二2值信号进行加法运算,输出3值信号;高电平识别器,利用在所述第一光电转换电路以及所述第二光电转换电路中输入光信号时的电平、和在所述第一光电转换电路或所述第二光电转换电路的某一个中输入光信号时的电平之间的阈值,通过进行大小比较来识别来自所述加法电路的所述3值信号,输出所述单一的矩形波信号。
5.根据权利要求1所述的光信号接收机,其特征在于,所述矩形波形成装置,具备第一限幅放大电路,将来自所述第一光电转换电路的所述第一电信号限幅放大,输出第一2值信号;第二限幅放大电路,将来自所述第二光电转换电路的所述第二电信号限幅放大,输出第二2值信号;加法电路,对来自所述第一限幅放大电路的所述第一2值信号和来自所述第二限幅放大电路的所述第二2值信号进行加法运算,输出3值信号;低电平识别器,利用在所述第一光电转换电路以及所述第二光电转换电路中任意一方中输入光信号时的电平、和在所述第一光电转换电路和所述第二光电转换电路中未输入光信号时的电平之间的阈值,通过进行大小比较来识别来自所述加法电路的所述3值信号,输出所述单一的矩形波信号。
6.一种光信号接收装置,是接收光信号来进行频率解调的光信号接收装置,其特征在于,具备光分支器,将输入的光信号分为N路(N为大于等于2的整数);N个光信号接收机,具备光分支电路,将来自所述光分支器的光信号分为2路;光延迟线,使被分为2路的光信号中的一个延迟;第一光电转换电路,将来自所述光延迟线的光信号转换为第一电信号;第二光电转换电路,将被分为2路的光信号的另一个光信号转换为第二电信号;矩形波形成装置,将来自第一光电转换电路的第一电信号和来自第二光电转换电路的第二电信号作为输入,输出单一的矩形波信号;以及平滑电路,对来自所述矩形波形成装置的所述矩形波信号进行平滑化;同相合成器,将分别从所述N个光信号接收机输出的N个所述被平滑化后的所述矩形波信号,使相位一致进行合成。
7.根据权利要求6所述的光信号接收装置,其特征在于,所述光信号接收机的所述矩形波形成装置,具备第一识别电路,通过与阈值进行大小比较来识别来自所述第一光电转换电路的所述第一电信号的电平,输出第一2值信号;第二识别电路,通过与阈值进行大小比较来识别来自所述第二光电转换电路的所述第二电信号的电平,输出第二2值信号;逻辑与电路,运算来自所述第一识别电路的所述第一2值信号和来自所述第二识别电路的所述第二2值信号的逻辑与,输出所述单一的矩形波信号。
8.根据权利要求6所述的光信号接收装置,其特征在于,所述光信号接收机的所述矩形波形成装置,具备第一识别电路,通过与阈值进行大小比较来识别来自所述第一光电转换电路的所述第一电信号的电平,输出第一2值信号;第二识别电路,通过与阈值进行大小比较来识别来自所述第二光电转换电路的所述第二电信号的电平,输出第二2值信号;逻辑或电路,运算来自所述第一识别电路的所述第一2值信号和来自所述第二识别电路的所述第二2值信号的逻辑或,输出所述单一的矩形波信号。
9.根据权利要求6所述的光信号接收装置,其特征在于,所述光信号接收机的所述矩形波形成装置,具备第一限幅放大电路,将来自所述第一光电转换电路的所述第一电信号限幅放大,输出第一2值信号;第二限幅放大电路,将来自所述第二光电转换电路的所述第二电信号限幅放大,输出第二2值信号;加法电路,对来自所述第一限幅放大电路的所述第一2值信号和来自所述第二限幅放大电路的所述第二2值信号进行加法运算,输出3值信号;高电平识别器,利用在所述第一光电转换电路以及所述第二光电转换电路中输入光信号时的电平、和在所述第一光电转换电路或所述第二光电转换电路的某一个中输入光信号时的电平之间的阈值,通过进行大小比较来识别来自所述加法电路的所述3值信号,输出所述单一的矩形波信号。
10.根据权利要求6所述的光信号接收装置,其特征在于,所述光信号接收机的所述矩形波形成装置,具备第一限幅放大电路,将来自所述第一光电转换电路的所述第一电信号限幅放大,输出第一2值信号;第二限幅放大电路,将来自所述第二光电转换电路的所述第二电信号限幅放大,输出第二2值信号;加法电路,对来自所述第一限幅放大电路的所述第一2值信号和来自所述第二限幅放大电路的所述第二2值信号进行加法运算,输出3值信号;低电平识别器,利用在所述第一光电转换电路以及所述第二光电转换电路的某一个中输入光信号时的电平、和在所述第一光电转换电路和所述第二光电转换电路中未输入光信号时的电平之间的阈值,通过进行大小比较来识别来自所述加法电路的所述3值信号,输出所述单一的矩形波信号。
11.一种光信号传送系统,是使用了FM成批转换方式的光信号传送系统,其特征在于,具备光信号发送机,具备FM成批转换电路;光信号接收机,具备光分支电路,使来自所述光信号发送机的光信号分为2路,其通过光传送通路与所述光信号发送机连接;光延迟线,使被分为2路的光信号中的一个延迟;第一光电转换电路,将来自所述光延迟线的光信号转换为第一电信号;第二光电转换电路,将被分为2路的光信号的另一个光信号转换为第二电信号;矩形波形成装置,将来自第一光电转换电路的第一电信号和来自第二光电转换电路的第二电信号作为输入,输出单一的矩形波信号;以及平滑电路,对来自所述矩形波形成装置的矩形波信号进行平滑化。
12.根据权利要11所述的光信号传送系统,其特征在于,所述光信号接收机的所述矩形波形成装置,具备第一识别电路,通过与阈值进行大小比较来识别来自所述第一光电转换电路的所述第一电信号的电平,输出第一2值信号;第二识别电路,通过与阈值进行大小比较来识别来自所述第二光电转换电路的所述第二电信号的电平,输出第二2值信号;逻辑与电路,运算来自所述第一识别电路的所述第一2值信号和来自所述第二识别电路的所述第二2值信号的逻辑与,输出所述单一的矩形波信号。
13.根据权利要11所述的光信号传送系统,其特征在于,所述光信号接收机的所述矩形波形成装置,具备第一识别电路,通过与阈值进行大小比较来识别来自所述第一光电转换电路的所述第一电信号的电平,输出第一2值信号;第二识别电路,通过与阈值进行大小比较来识别来自所述第二光电转换电路的所述第二电信号的电平,输出第二2值信号;逻辑或电路,运算来自所述第一识别电路的所述第一2值信号和来自所述第二识别电路的所述第二2值信号的逻辑或,输出所述单一的矩形波信号。
14.根据权利要11所述的光信号传送系统,其特征在于,所述光信号接收机的所述矩形波形成装置,具备第一限幅放大电路,将来自所述第一光电转换电路的所述第一电信号限幅放大,输出第一2值信号;第二限幅放大电路,将来自所述第二光电转换电路的所述第二电信号限幅放大,输出第二2值信号;加法电路,对来自所述第一限幅放大电路的所述第一2值信号和来自所述第二限幅放大电路的所述第二2值信号进行加法运算,输出3值信号;高电平识别器,用在所述第一光电转换电路以及所述第二光电转换电路中输入光信号时的电平、和在所述第一光电转换电路或所述第二光电转换电路的某一个中输入光信号时的电平之间的阈值,通过进行大小比较来识别来自所述加法电路的所述3值信号,输出所述单一的矩形波信号。
15.根据权利要11所述的光信号传送系统,其特征在于,所述光信号接收机的所述矩形波形成装置,具备第一限幅放大电路,将来自所述第一光电转换电路的所述第一电信号限幅放大,输出第一2值信号;第二限幅放大电路,将来自所述第二光电转换电路的所述第二电信号限幅放大,输出第二2值信号;加法电路,对来自所述第一限幅放大电路的所述第一2值信号和来自所述第二限幅放大电路的所述第二2值信号进行加法运算,输出3值信号;低电平识别器,利用在所述第一光电转换电路以及所述第二光电转换电路中的某一个中输入光信号时的电平、和在所述第一光电转换电路和所述第二光电转换电路中未输入光信号时的电平之间的阈值,通过进行大小比较来识别来自所述加法电路的所述3值信号,输出所述单一的矩形波信号。
16.根据权利要求11至15中任意一项所述的光信号传送系统,其特征在于,所述光信号发送机还具备预失真电路,该预失真电路预先附加与所述FM成批转换电路所发生的失真相反的失真。
全文摘要
本发明的目的是实现使用了低失真的FM解调电路的光信号接收机、光信号接收装置以及使用该光信号接收机的光信号传送系统。本发明的光信号接收机是接收光信号来进行频率解调的光信号接收机,具备光分支电路(13),将输入的光信号分为2路;光延迟线(15),使被分为2路的光信号中的一个延迟;第一光电转换电路(17),将来自所述光延迟线的光信号转换为第一电信号;第二光电转换电路(19),将被分为2路的光信号的另一个光信号转换为第二电信号;矩形波形成装置(21、23、25),将来自第一光电转换电路的第一电信号和来自第二光电转换电路的第二电信号作为输入,输出单一的矩形波信号;平滑电路(12),对来自所述矩形波形成装置的矩形波信号进行平滑化。
文档编号H04B10/148GK1706128SQ20048000130
公开日2005年12月7日 申请日期2004年9月3日 优先权日2003年9月8日
发明者菊岛浩二 申请人:日本电信电话株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1