滤色单元及采用该滤色单元的投影系统的制作方法

文档序号:7604619阅读:193来源:国知局
专利名称:滤色单元及采用该滤色单元的投影系统的制作方法
技术领域
本发明涉及一种滤色单元以及采用该滤色单元的投影系统,更具体地,涉及一种能够防止从白光光源发出的光分解之后,由于合成过程中的色彩混合而引起的图像质量下降的滤色单元,及采用该滤色单元的投影系统。
背景技术
投影系统根据所使用光阀的数量分类为三片式投影系统(3-panelprojection system)或单片式投影系统。光阀以像素/像素为基础控制光源(如高功率灯)发出的光的开关操作并形成图像。单片式投影系统具有较三片式投影系统更小的光学系统,但提供的光效率只及三片式投影系统的1/3,原因是白光分解出来的红(R),绿(G),蓝(B)三色被依次使用。因此,试图提高单片式投影系统的光效率。
通常,在单片式投影系统中,白光光源辐射出的光被用一滤色元件分成R,G,B三色,这三色被依次送入光阀。光阀根据所接收色彩的顺序进行适当操作生成图像。如上所述,单片式光学系统依次使用色彩,因此光效率减小到三片式光学系统的1/3。滚动法被提出来用于解决这个问题。在色彩滚动法中,白光被分成R,G,B三色,这三色被同时送到光阀的不同位置。由于直到每个像素的R,G,B三色都到达光阀后图像才能形成,用特定方法以恒定速度移动色带,从而实现滚动。
在常规的单片式滚动投影系统中,如图1A所示,光源100发出的白光通过第一和第二透镜阵列102和104以及偏振转换系统105,被第一到第四分色元件109,112,122和139分为R,G,B光束。具体地,例如红光R和绿光G被第一分色元件109透射并沿第一光路L1前进,而蓝光B则被第一分色元件109反射并沿第二光路L2传播。第一光路上的红光R和绿光G被第二分色元件112分离。第二分色元件112沿第一光路L1透射红光R并沿第三光路L3反射绿光G。
如上所述,光源100发出的光被分解成红光R,绿光G和蓝光B,这些光束在通过相应的第一到第三棱镜114,135和142时滚动。第一到第三棱镜114,135和142分别位于第一到第三光路L1、L2和L3上,并以一致的速度旋转,使得R,G,B三色滚动。在第一光路L1中设置反射镜133。分别沿第二和第三光路L2和L3传播的蓝光B和绿光G,被第三分色元件139分别透射和反射后合成。最后,R,G,B光束被第四分色元件122合成。合成的光束被偏振光分光元件127透射,并用光阀130形成图像。
由于第一到第三棱镜114,135和142旋转而产生的R,G,B色带的滚动如图1B所示。滚动表示与R,G,B三色相应的棱镜同时转动时,形成于光阀130表面上的色带的运动。光阀130上的色带循环一周时形成一帧。
光阀130根据每个像素的开关信号处理图像信息并形成图像。所形成的图像被投影透镜(未示出)放大并投影到屏幕上。
为生成彩色图像,该结构的投影系统必须进行把光源100发出的光分解成多束彩色光并将分解出来的光束重新合成的操作。
在该色彩分解和色彩合成过程中,由滤色元件获得的每种彩色光束的反射光谱随着彩色光束入射在滤色元件上的角度的变化而朝短波区域移动。因此会出现色彩混合,从而使得图像质量下降。
光源100发出的光被偏振转换系统105转换成S偏振光。S偏振光由第一、第二、第三和第四分色元件109、112、122和139分解成R、G、B光束。图2A、2B、2C示出S偏振R、G、B光束的光谱反射率根据波长的变化。图2A示出不同角度的R光束的光谱反射率,图2B示出不同角度的G光束的光谱反射率,图2C示出不同角度的B光束的光谱反射率。从图2A到2C中可以看出,随着光束入射角的变化半功率频率(half power frequency)向短波区域移动。
图2A到2C指的是这样一种情况,即空气中的光束不通过任何介质入射到分色元件上。图2D则示出了红光通过介质入射到滤色元件上时,不同角度的红光光线的光谱反射率的变化。光束通过介质入射到滤色元件上时,半功率频率随着入射光束入射角的变化而向短波区域移动的程度要比光束通过空气入射到滤色元件上时的移动的程度要大。

发明内容
每种彩色光束的光谱带随着入射角的变化向短波区域移动时,干扰光束与有用光束混合,从而使得图像质量下降。
本申请的大体发明构思提供一种滤色单元以及采用该滤色单元的投影系统,该滤色单元能够防止当滤色元件分解出来的光束合成而在光阀上形成彩色图像时,由于滤色元件之间光谱边界中发生的色彩混合而引起的图像质量下降。
本申请的大体发明构思的其它方面和优势将在以下描述中部分地阐明,并部分地从描述中显见,或通过对本申请的大体发明构思的实践而认识到。
本申请的大体发明构思的前述和/或其它方面和优势通过提供一个滤色单元实现,该滤色单元包括第一色彩选择偏振转换元件,其转换入射光的特定彩色光谱带(color band)的光束的偏振方向;滤色元件,其根据色彩分解通过第一色彩选择偏振转换元件的光。彩色光束之间光谱边界中的色彩混合得到了防止。
滤色单元可进一步包括一偏振转换系统,其将入射光转换成单偏振光,以及安装在滤色元件后的一第二色彩选择偏振转换元件,其转换特定彩色光谱带以外的其它彩色光谱带中的光束的偏振方向,使得由滤色元件分解出来的彩色光束的偏振方向一致。
滤色元件可能具有对应于不同色彩的不同偏振方向的反射波长区域。
所述滤色元件包括反射入射光的蓝光并透射其余光束的第一分色元件,反射红光并透射其余光束的第二分色元件,以及反射绿光并透射其余光束的第三分色元件。
本申请的大体发明构思的其它方面和/或优势还可通过提供一种投影系统实现,该投影系统中,滤色单元根据色彩分解光源发出的光,偏振转换系统将入射光转换成单偏振光,光阀利用由光源发出的光所分解成的光束形成彩色图像。该滤色单元包括第一色彩选择偏振转换元件,其转换入射光的特定彩色光谱带中的光束的偏振方向;滤色元件,其根据色彩分解通过第一色彩选择偏振转换元件的光。防止了彩色光束之间光谱边界中的色彩混合。
为防止滤色元件所分解的每种彩色光束与干扰彩色光束混合,滤色单元利用了这样的特性,即光的光谱分布根据通过滤色元件之后光的偏振方向和色彩而改变。
为利用这一特性,滤色单元包括一色彩选择偏振转换元件,其转换特定彩色光束的偏振方向,和一滤色元件,其光谱分布对应于具有由色彩选择偏振转换元件转换特定彩色光束的偏振方向而形成的偏振方向的光。因此,滤色单元把光分解成多束彩色光而避免在光束之间光谱边界中的色彩混合。
根据本发明的一个实施例的投影系统采用上述滤色单元,因而可以简单且容易地提高彩色图像的质量和纯度。
尽管显示和描述了本申请的大体发明构思的若干实施例,本领域的技术人员应理解可以对这些实施例进行不背离本申请的大体发明构思的原则和精神的变型,其范围在所附权利要求及其同等物中限定。


通过联系附图对实施例的如下描述,本申请的大体发明构思的这些和/或其它方面和优势将显见并更易于理解。
图1A示出常规的投影系统;图1B示出R,G,B色带以解释投影系统的色彩滚动操作;图2A是示出具有不同入射角的S偏振红光的光谱反射率与空气中的入射光波长的关系曲线图;图2B是示出具有不同入射角的S偏振绿光的光谱反射率与空气中的入射光波长的关系曲线图;图2C是示出具有不同入射角的S偏振蓝光的光谱反射率与空气中的入射光波长的关系曲线图;图2D是示出具有不同入射角的S偏振红光的光谱反射率与介质中的入射光波长的关系曲线图;图3是根据本申请的大体发明构思的一个示范实施例的滤色单元的示意图;图4示出光被图3中的滤色单元转换的过程;图5A示出通过图3的滤色单元中所包括的第一色彩选择偏振转换元件的光束的光谱分布;图5B示出图3的滤色单元中所包括的分色元件的光谱分布;图6示出由图3的滤色单元中所包括的第二色彩选择偏振转换元件透射的光束的光谱分布;图7是根据本申请的大体发明构思的一个示范实施例,采用滤色单元的投影系统的示意图;
图8A是用于图7的投影系统中的滚动单元的正视图;图8B是根据图7的示范实施例的另一滚动单元的透视图;以及图9A到9C示出图7的投影系统中利用色彩滚动形成彩色图像的原理。
具体实施例方式
现将详细参照本申请的大体发明构思的实施例,附图中描绘了其实例,其中相似的参考标号始终指代相似的元件。为解释本申请的大体发明构思下面将参照附图描述实施例。
参照图3,根据本发明的示范实施例的滤色单元包括第一和第二色彩选择偏振转换元件17和25以及滤色元件20。第一色彩选择偏振转换元件17根据彩色光谱带改变光源10发出的光的偏振方向。第二色彩选择偏振转换元件25将滤色元件20产生的彩色光束转换成各自具有单偏振(singlepolarization)的彩色光束。
光源10发出白光,由发光的灯11和反射镜13组成,反射镜13反射灯11发出的光并引导反射光的光路。反射镜13可以是椭圆镜,它的第一焦点是灯11的位置而第二焦点是光聚焦的点。可选的,反射镜13可以是抛物面镜,用灯11作为焦点并准直从灯11发出的光束。图3中示出的反射镜13是椭圆镜。
滤色单元进一步包括一个偏振转换系统14,将光源10发出的非偏振白光转换成单偏振光。
第一色彩选择偏振转换元件17可以选择性地转换预定波长范围内的光的偏振方向。
通过包括互相平行并与入射光轴倾斜设置的至少两个分色元件,滤色元件20将光源10发出的光分解成至少两束彩色光。可选的,所述至少两个分色元件可以互相成一角度并与入射光轴倾斜设置。可选的,滤色元件20可以如现有技术那样包括至少两个位于不同光路内的分色元件。
优选的,滤色元件20具有与不同色彩的不同偏振方向相应的反射波长区域。
如图3所示,滤色元件20包括互相平行设置的第一、第二、第三分色元件20a,20b,20c。第一分色元件20a反射入射光的第一彩色光束,同时透射其余光束。第二分色元件20b反射第二彩色光束,同时透射其余光束。第三分色元件20c反射第三彩色光束,同时透射其余光束。
将偏振方向被第一色彩选择偏振转换元件17转换的光束反射的分色元件可位于光路上第一、第二、第三分色元件20a,20b,20c队列的尾端。
例如,如果第三彩色光束的偏振方向被第一色彩选择偏振转换元件17转换,反射第三彩色光束的第三分色元件20c可位于该队列的尾部。
第二色彩选择偏振转换元件25被用于一致化通过滤色元件20的光束的偏振方向。
现在将详细描述滤色单元的操作。参照图4,偏振转换系统14将光源10发出的非偏振光转换成,例如,S偏振光。例如,非偏振光包括P偏振和S偏振的红光Rp和Rs,P偏振和S偏振的绿光Gp和Gs,以及P偏振和S偏振的蓝光Bp和Bs。
偏振转换系统14将非偏振光转换成单偏振光,例如,S偏振光Rs,Gs和Bs。第一色彩选择偏振转换元件17将S偏振绿光Gs转换成P偏振绿光Gp,保持S偏振红光和蓝光Rs和Bs。因此,S偏振红光Rs,S偏振蓝光Bs,以及P偏振绿光Gp入射到滤色元件20上。通过第一色彩选择偏振转换元件17的光束的光谱分布如图5A所示。
第一分色元件20a被设计为反射入射光的蓝光,同时透射其余光束。第二分色元件20b被设计为反射红光,同时透射其余光束。第三分色元件20c被设计为反射绿光,同时透射其余光束。于是滤色元件20将白光分解成红光、绿光和蓝光。
图5B示出第一、第二和第三分色元件20a,20b和20c的光谱分布。该光谱分布具有与图5A中示出的第一色彩选择偏振转换元件17产生的不同波长范围内的光束的偏振相应的光谱反射率。该光谱分布设计为,与第一色彩选择偏振转换元件17相比,蓝光和红光的光谱反射率分别向长波和短波区域移动。
当S偏振蓝光Bs被第一分色元件20a反射,蓝光Bs的光谱反射率随着蓝光束Bs入射角的增加而向短波区域移动。因此,绿光或红光Gp或Bs不会与蓝光混合。即使当蓝光Bs的光谱反射率随着蓝光Bs入射角的减小而向长波区域移动,绿光Gp也不会与蓝光混合,因为绿光Gp只有P偏振,所以不会被第一分色元件20a反射。
当S偏振红光Rs被第二分色元件20b反射,红光Rs的光谱反射率随着红光Rs入射角的增加而向短波区域移动。然而,即使当反射红光的第二分色元件20b光谱反射率向短波区域移动时,绿光Gp也不会与红光Rs混合,因为通过第一色彩选择偏振转换元件17的绿光Gp只有P偏振,所以不会被第二分色元件20b反射。当然,第二分色元件20b的光谱反射率随着红光Rs入射角的减小而向长波区域移动时,绿光Gp也不会与红光Rs混合。
当P偏振绿光被第三分色元件20c反射,绿光Gp的光谱反射率随着绿光束Gp入射角的增加而向短波区域移动。然而蓝光Bs不会与绿光Gp混合,因为通过第一色彩选择偏振转换元件17的蓝光Bs只有S偏振。即使绿光Gp的光谱反射率随着绿光Gp入射角的减小而向长波区域移动,红光Rs也不会和绿光Gp混合,因为通过第一色彩选择偏振转换元件17的红光Rs也只有S偏振。
在根据本申请的大体发明构思的一个实施例的滤色单元中,通过分色元件的光的光谱分布根据光的偏振方向和色彩而变化的特性被用于防止滤色元件分解出来的彩色光束与干扰光束混合。
如图6所示,第二色彩选择偏振转换元件25将S偏振蓝光和红光Bs和Rs转换成P偏振蓝光和红光,于是产生P偏振红、绿、蓝光束Rp,Gp和Bp。
如上所述,滤色单元将光源发出的光分解成多束彩色光,并防止光谱色彩边界中的色彩混合。
参照图7,根据本发明的一个实施例的投影系统包括光源10,滤色单元,滚动单元30和光阀40。滤色单元将光源10发出的光分解成彩色光束。滚动单元30滚动彩色光束。光阀40根据图像信号操作通过滤色单元和滚动单元30的彩色光束并形成图像。
上述滤色单元与图3中的滤色单元相同。投影系统可应用于任何通过调节图3中滤色单元产生的光束的偏振而形成彩色图像的彩色成像系统。
特别地,图7中的投影系统利用色彩滚动形成彩色图像。在图7的投影系统中,滤色单元将光源10发出的非偏振白光分解成多束彩色光。
滤色单元包括第一色彩选择偏振转换元件17,转换入射光的特定彩色光谱带光束的偏振方向,以及滤色元件20,将通过第一色彩选择偏振转换元件17的光分解成多束彩色光。
例如,滤色元件20可由多个分色元件构成,每个分色元件反射入射光的一个特定色彩的光束并透射其余彩色光。图7中,滤色元件20包括第一、第二、第三分色元件20a,20b和20c。
在光源10和滤色元件20之间的光路上安装准直入射光的准直透镜54。P表示光源10和焦点(f)之间的距离,焦点为光源10发出的光聚焦之处。优选,但不是必须,在距离焦点(f)为P/5处安装准直透镜54。这样安装投影系统,光学系统的结构会更紧凑。
在光源10和准直透镜54之间安装具有狭缝的空间滤光元件5。空间滤光元件5控制光学系统的集光率,并且优选的但不是必须的,安装在反射镜13的焦点(f)上。
准直透镜54产生的平行光被偏振转换系统14转换成单偏振光,该单偏振光入射在第一色彩选择偏振转换元件17上。例如,偏振转换系统14将光源10发出的光转换成S偏振光,第一色彩选择偏振转换元件17将特定波长的S偏振光,例如S偏振绿光,转换成P偏振绿光,并保持S偏振红光和蓝光。
P偏振绿光和S偏振红光和蓝光入射到滚动单元30上。
参照图8A,滚动单元30是可旋转的,并优选包括至少一个透镜元30a,其设置使得透镜元的旋转被转换成光线所通过的透镜元区域的直线运动。例如,透镜元30a螺旋形地设置于滚动单元30上。每个透镜元30a将入射光分解成多个光束。透镜元30a可以是柱面的。
如图8A所示,通过将滚动单元30的旋转(在J方向)转换成光线所通过的透镜元阵列区的直线运动(在Q方向)而实现滚动。图8A的滚动单元30是一个单螺旋透镜盘。
如图8B所示,滚动单元30可由彼此之间有一预定距离的第一和第二螺旋透镜盘26和27,以及插入在第一和第二螺旋透镜盘26和27之间的玻璃棒或导光板28构成。该玻璃棒或导光板28控制通过第一螺旋透镜盘26的光的发散角。
光阀40根据图像信号操作由滚动单元30滚动的光并形成彩色图像。投影透镜单元45放大光阀40产生的彩色图像并将放大的图像投影到屏幕48上。
入射到滚动单元30上的光束中所包括的光线根据光线入射其上的每个柱面透镜元30a的不同的位置而以不同角度会聚。光线被第一、第二或第三分色元件20a、20b或20c反射,使得根据色彩分解光束。图7的投影系统进一步包括一个位于滚动单元30和滤色元件20之间的棱镜56,使得入射光在光路中无变化地传送到滤色元件20。
第一柱面镜18设置于滚动单元30之前,并且第二柱面镜19、第一和第二蝇眼透镜阵列34和35以及中继透镜38依次设置在滤色元件20和光阀40之间的光路上。第一和第二蝇眼透镜阵列34和35分别由二维排列的透镜元34a和34b形成。
第一柱面镜18减小入射到滚动单元30上的光的宽度,从而减少光的损耗。第二柱面镜19将被第一柱面镜18变窄的光束加宽到为具有原有的宽度的光束。第二柱面镜19可选地位于第一和第二蝇眼透镜阵列34和35之间。
在中继透镜38和光阀40之间安装偏振分光元件39,其根据入射光束的偏振而反射或透射入射光束。图7的光阀40是反射式液晶显示元件。然而光阀40也可以是透射式液晶显示元件。
在具有上述结构的图7的投影系统的操作中,首先,光源10发出的白光通过空间滤光元件5和准直透镜54入射到偏振转换系统14上并转换成单偏振光。接着,只有某一特定色彩的光束的偏振方向被第一色彩选择偏振转换元件17改变,所得到的光入射到滚动单元30上。在入射到滚动单元30上之前,所得到的光的宽度被第一柱面镜18减小。
入射到滚动单元30上的光被每个透镜元30a分解成多束光束,这些光束入射到滤色元件20上。这些光束被第一、第二、第三分色元件20a、20b和20c分解成多束彩色光束,例如第一、第二、第三彩色光束。第一、第二、第三彩色光束不会在彩色光束的边界发生色彩混合。
彩色光束的偏振方向被第二色彩选择偏振转换元件25一致化。被第一柱面镜18减小宽度的光通过被第二柱面镜19准直恢复为原有宽度。因此,当原有宽度的光落在光阀40上时,光的宽度与光阀40的宽度匹配。
接下来,第二柱面镜19透射的第一、第二、第三彩色光束聚焦在第一蝇眼透镜阵列34上,使得在每个透镜元34a上形成彩色阵列。在通过第二蝇眼透镜阵列35和中继透镜38后,第一、第二和第三彩色光束入射在光阀40相应的色彩区域。这样,形成第一、第二和第三色带。
第一、第二和第三色带随滚动单元30的旋转而周期性滚动,从而形成彩色图像。第一、第二和第三色带是R,G,B光束。
参照图9A到9C,随着滚动单元30,R,G,B条以首先是R,G,B的顺序,然后是G,B,R的顺序,最后是B,R,G的顺序滚动。这一滚动周期性重复。在图9A到9C中,滚动单元30是单螺旋透镜盘。为便于解释,在滚动单元30和光阀38之间只示出第一和第二蝇眼透镜阵列34和35以及中继透镜38。
如图9A所示,R,G,B光束通过滚动单元30、第一和第二蝇眼透镜阵列34和35以及中继透镜38,在光阀40上以预定顺序例如R,G,B的顺序形成色带。接着,滚动单元30旋转,滚动单元30的透镜表面逐渐向上移动,同时彩色光束L从滚动单元30通过。因此,通过滚动单元30的彩色光束的焦点随着滚动单元30的移动而改变,形成G,B,R顺序的色带,如图9B所示。然后,滚动单元30旋转,入射彩色光束滚动,形成B,R,G顺序的色带,如图9C所示。这样的滚动周期性地重复。
参照图8A,当滚动单元在箭头J所示方向转动时,入射光L在箭头Q所示方向直线运动。换句话说,入射光L以接近或远离滚动单元30的旋转轴的方向直线运动。在图8A中,当滚动单元在箭头J所示方向旋转时,入射光L以接近和远离滚动单元30的旋转轴的方向直线运动。
在图7的投影系统中,防止了滤色单元分解的彩色光束在彩色光束的光谱边界中混合,因此形成于光阀40上的色带之间的边缘是清晰的。这样,提高了色彩纯度和图像的质量。
尽管在此作为例子描述了使用色彩滚动形成彩色图像的投影系统,本申请的大体发明构思不限于此。本申请的大体发明构思的上述特征适用于使用色彩分解和偏振调节而形成彩色图像的系统。
权利要求
1.一种滤色单元,包括一第一色彩选择偏振转换元件,其转换入射光的特定彩色光谱带中的光束的偏振方向;以及一滤色元件,其根据色彩分解通过所述第一色彩选择偏振转换元件的光,从而防止光束之间光谱边界中色彩混合。
2.根据权利要求1所述的滤色单元,其中,进一步包括一偏振转换系统,其将入射光转换成单偏振光。
3.根据权利要求1所述的滤色单元,其中,进一步包括相对于彩色光束方向在所述滤色元件之后安装的一第二色彩选择偏振转换元件,该第二色彩选择偏振转换元件转换在特定彩色光谱带以外的彩色光谱带中的光束的偏振方向,以使一致化所述滤色元件分解出的彩色光束的偏振方向。
4.根据权利要求1所述的滤色单元,其中,所述滤色元件具有对应于不同色彩的不同偏振方向的反射波长区域。
5.根据权利要求1所述的滤色单元,其中,所述滤色元件包括多个分色元件,所述分色元件将入射光分解成多束彩色光束。
6.根据权利要求5所述的滤色单元,其中,所述滤色元件包括反射入射光的蓝光并透射其余光束的一第一分色元件,反射红光并透射其余光束的一第二分色元件,以及反射绿光并透射其余光束的一第三分色元件。
7.根据权利要求6所述的滤色单元,其中,所述绿光的偏振方向不同于所述蓝光和红光的偏振方向。
8.根据权利要求7所述的滤色单元,其中,所述第三分色元件设置于入射光传播光路上所述第一、第二和第三分色元件的排列的尾端。
9.根据权利要求1所述的滤色单元,其中,所述滤色元件包括多个分色元件;以及一分色元件,其反射由于第一色彩选择偏振转换元件的偏振转换而具有与其它彩色光束的偏振方向不同的偏振方向的彩色光束,并设置于入射光的传播光路上多个分色元件排列的尾端。
10.根据权利要求2所述的滤色单元,其中,所述偏振转换系统沿光束光路位于第一色彩选择偏振转换元件之前。
11.一种投影系统,其中,一滤色单元根据色彩分解光源发出的光,一偏振转换系统将光转换成单偏振光,一光阀用光源发出的光所分解出来的光束形成彩色图像,所述滤色单元包括一第一色彩选择偏振转换元件,其转换入射光的特定彩色光谱带中的光束的偏振方向;以及一滤色元件,其根据色彩分解通过所述第一色彩选择偏振转换元件的光,从而防止光束之间光谱边界中的色彩混合。
12.根据权利要求11所述的投影系统,其中,所述滤色单元进一步包括一偏振转换系统,其将入射光转换为单偏振光。
13.根据权利要求11所述的投影系统,其中,所述滤色单元进一步包括在所述滤色元件之后安装的第二色彩选择偏振转换元件,该第二色彩选择偏振转换元件转换在特定彩色光谱带以外的彩色光谱带中的光束的偏振方向,使得所述滤色元件分解出来的彩色光束的偏振方向一致。
14.根据权利要求11所述的投影系统,其中,所述滤色元件具有对应于不同色彩的不同偏振方向的反射波长区域。
15.根据权利要求11所述的投影系统,其中,所述滤色元件包括多个分色元件,所述分色元件将入射光分解成多束彩色光束。
16.根据权利要求15所述的投影系统,其中,所述滤色元件包括反射入射光的蓝光并透射其余光束的第一分色元件,反射红光并透射其余光束的第二分色元件,以及反射绿光并透射其余光束的第三分色元件。
17.根据权利要求16所述的投影系统,其中,所述绿光的偏振方向不同于所述蓝光和红光的偏振方向。
18.根据权利要求11所述的投影系统,其中所述滤色元件包括多个分色元件;并且反射由所述第一色彩选择偏振转换元件的偏振转换而具有与其它彩色光束的偏振方向不同的偏振方向的彩色光束的一分色元件,设置于入射光传播光路上所述分色元件排列的尾端。
19.一种投影系统,包括一光源,其具有反射镜并发光;一偏振转换系统,其将来自发出的光的入射光分解成单偏振光;一滤色单元,包括一第一色彩选择偏振转换元件,其转换入射光中特定彩色光谱带中的光束的偏振方向,以及一滤色元件,其根据色彩分解通过所述第一色彩选择偏振转换元件的光,从而防止彩色光束之间光谱边界中的色彩混合;以及一光阀,利用所述滤色元件分解出来的光束形成彩色图像。
20.根据权利要求19所述的投影系统,其中,进一步包括位于所述光源和所述滤色元件之间光路上的准直透镜。
21.根据权利要求20所述的投影系统,其中,所述准直透镜位于与所发出的光聚焦的焦点相距P/5的位置,其中,P表示所述光源与光源所发出的光被反射镜聚焦的焦点之间的距离。
22.根据权利要求20所述的投影系统,其中,进一步包括一具有狭缝的空间滤光元件,其位于所述光源与所述准直透镜之间。
23.根据权利要求22所述的投影系统,其中,所述空间滤光元件位于所发出的光的焦点上。
24.根据权利要求19所述的投影系统,其中,所述滤色单元进一步包括在滤色元件之后安装的第二色彩选择偏振转换元件,所述第二色彩选择偏振转换元件转换在特定彩色光谱带以外的彩色光谱带中的光束的偏振方向,使得所述滤色元件分解出来的彩色光束的偏振方向一致。
25.根据权利要求19所述的投影系统,其中,所述滤色元件具有与不同色彩的不同偏振方向对应的反射波长区域。
26.根据权利要求19所述的投影系统,其中,所述滤色元件包括多个分色元件,所述分色元件将入射光分解成多个彩色光束。
27.根据权利要求26所述的投影系统,其中,所述滤色元件包括反射入射光的蓝光并透射其余光束的第一分色元件,反射红光并透射其余光束的第二分色元件,以及反射绿光并透射其余光束的第三分色元件。
28.根据权利要求27所述的投影系统,其中,所述绿光的偏振方向不同于所述蓝光和红光的偏振方向。
29.根据权利要求19所述的投影系统,其中所述滤色元件包括多个分色元件;以及反射由于所述第一色彩选择偏振转换元件的偏振转换而具有与其它彩色光束的偏振方向不同的偏振方向的彩色光束的一分色元件,位于在入射光传播光路上所述分色元件的排列的尾端。
30.根据权利要求19所述的投影系统,其中,进一步包括位于所述滤色元件之前的一滚动单元,其滚动彩色光束。
31.根据权利要求30所述的投影系统,其中,所述滚动单元由互相之间以一预定距离设置的第一和第二螺旋盘,以及插在所述第一和第二螺旋盘之间的玻璃棒或导光板构成。
全文摘要
一种滤色单元及采用该滤色单元的投影系统。该滤色单元包括一第一色彩选择偏振转换元件,其转换入射光的特定彩色光谱带中的光束的偏振方向;和一滤色元件,其根据色彩分解通过上述第一色彩选择偏振转换元件的光,从而防止光束之间光谱边界中的色彩混合。由于防止了由光源发出的光所分解出来的光束合成时的色彩混合,提高图像质量。
文档编号H04N9/31GK1735833SQ200480001948
公开日2006年2月15日 申请日期2004年9月17日 优先权日2003年9月24日
发明者金成河, 金东河, 河昊振 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1