一种光纤延时的测量方法及系统的制作方法

文档序号:7656198阅读:202来源:国知局
专利名称:一种光纤延时的测量方法及系统的制作方法
技术领域
本发明涉及移动通信技术领域,尤其涉及一种基于OBSAI (Open Base Station Architecture Initiative,开放式基站架构发起者组织)协议的光纤延时的 测量方法及系统。
背景技术
OBSAI (Open Base Station Architecture Initiative,开放式基站架构发起者 组织)协议是国际上广泛使用的基带射频接口标准之一,通过该OBSAI协议 可以实现基带单元和射频单元的有效互通。该协议定义了数字基带信号的传输 格式以及射频单元的维护等功能。OBSAI协议分为4层,如图1所示,该OBSAI协议由上往下依次是应用 层、传输层、链路层和物理层。所有的消息只能在应用层产生和处理,其他3 层只负责消息的交换和传递,不处理消息。在基于OBSAI协议的光网络系统中,光信号会随着光纤长度的变化产生 相应的传输延时,即为光纤延时。所述光纤延时必须精确测量,以减少系统定 时信号误差,保证网络的正常运行。现有技术是采用RTT (Round Trip Time,环路时间)消息测量光纤延时。 其测量过程如图1所示源端100生成一个RTT消息,将该RTT消息插入前 向数据链路发送给目的端IOI,并记录发送时刻,目的端101接收到所述RTT 消息后,马上将所述RTT消息插入反向数据链路回送至源端100,源端100 记录收到目的端返回RTT消息的时刻,并与发送时刻相比较,从而计算出该 RTT消息来回的时间即信号在两个方向的光纤上传输的总延时,将在两个方 向的光纤上传输的总延时除于2即得到源端100与目的端101之间的单向光纤 延时。该基于OBSAI协议的光纤延时的测量技术测量出来的光纤延时偏差较 大,无法提高测量精度,原因在于如下两点 1、 RTT消息经过的环节过多,源端和目的端内部处理延时过大,导致测 量光纤延时偏差较大。由图1可知,源端100产生RTT消息后,该RTT消息 要分别经过传输层、链路层以及物理层才能发送出去,同样的,在目的端101 的RTT消息需要分别经过物理层、链路层以及传输层才能到达应用层进行环 回处理,环回处理后还要经过相同的过程才能回到源端100的应用层,由此内 部处理延时增大。而光纤上传输的总延时包括源端100与目的端101两端的内 部信号处理延时和在两个方向的光纤延时,将在两个方向的光纤上传输的总延 时除于2,内部处理延时越大,此时得到的结果自然与单向光纤延时偏差越大。2、 缓冲区复位后前后数据的延时不固定的,导致测量光纤延时偏差。在 基于OBSAI协议的光网络系统中往往需要进行级联组网,而在级联组网的时 候,为了将数据、信令、控制开销混在一条链路上传播,通常会设计一定数量 的缓冲区,而每次缓冲区复位后,其前后数据的延时都是不固定的,也就是说 用该方法测量光纤延时,每次得到的结果都会不一致,由此导致测量光纤延时 偏差,大大影响测量的精度。综上可知,现有的光纤延时测量技术,在实际使用上显然存在不便与缺陷, 所以有必要加以改进。发明内容针对上述的缺陷,本发明的第一目的在于提供一种光纤延时测量方法,该 方法使用简单,并且可以提高光纤延时的测量精度。本发明的第二目的在于提供一种光纤延时测量系统,该系统使用简单,并 且可以提高光纤延时的测量精度。为了实现上述目的,本发明提供一种光纤延时的测量方法,应用于包括基 于OBSAI协议连接的源端和目的端的系统,所述方法包括如下歩骤A、 源端生成第一发送标号信号后,根据所述第一发送标号信号产生帧边 界与该第一发送标号信号对齐的第一 OBSAI协议数据帧,并将该第一 OBSAI 协议数据帧发送至目的端;B、 目的端接收所述第一OBSAI协议数据帧后,生成与该第一OBSAI协 议数据帧的帧边界对齐的第一接收标号信号,并将该第一接收标号信号切换为 第二发送标号信号; C、 目的端根据所述第.二发送标号信号产生帧边界与所述第二发送标号信号对齐的第二 OBSAI协议数据帧,并将该第二 OBSAI协议数据帧返回给源端;D、 源端根据所接收的第二 OBSAI协议数据帧生成与该第二 OBSAI协议 数据帧的帧边界对齐的第二接收标号信号,并将所述第二接收标号信号与第---发送标号信号进行比较,计算得出源端至目的端之间的光纤延时。根据本发明的方法,所述第一发送标号信号、第二发送标号信号、第一接 收标号信号以及第二接收标号信号为高脉冲信号,且所述高脉冲信号的脉冲宽 度与第一、第二 OBSAI协议数据帧的帧边界宽度相同。根据本发明的方法,所述歩骤B中进一步包括接收第一OBSAI协议数 据帧后,查找该第一 OBSAI协议数据帧的帧边界;所述步骤D中进一步包括接收第二 OBSAI协议数据帧后,査找该第二 OBSAI协议数据帧的帧边界。根据本发明的方法,所述步骤B中目的端通过检测第一 OBSAI协议数据 帧的特殊码以査找第一 OBSAI协议数据帧的帧边界;和/或所述步骤D中源端通过检测第二 OBSAI协议数据帧的特殊码以查找第二 OBSAI协议数据帧的帧边界。根据本发明的方法,所述步骤D中源端通过比较第二接收标号信号与第 一发送标号信号的生成时间差计算出源端至目的端之间的双向光纤延时;或 者,将该生成时间差除于2计算出源端至目的端之间的单向光纤延时。根据本发明的方法,若源端和目的端之间存在N个中转站,且N的数值 至少为l,则引用所述步骤A 步骤D的测量流程,分别测量源端与第一中转 站之间的光纤延时T1,第一中转站与第二中转站之间的光纤延时T2,...,第 N-l中转站与第N中转站之间的光纤延时T (N)、第N中转站与目的端之间 的光纤延时T (N+l),并将所有光纤延时Tl至T (N+l)上报给源端,源端 根据所上报的光纤延时Tl至T (N+l)计算出源端和目的端之间的光纤延时。根据本发明的方法,所述N个中转站将其内部数据处理延时分别上报给 源端,该源端根据所上报的光纤延时T1至T (N+l)以及N个中转站的内部 数据处理延时计算出源端和目的端之间的光纤延时。为了实现上述第二目的,本发明提供一种光纤延时的测量系统,包括基于 OBSAI协议连接的源端和目的端,所述源端进一步包括
源端发送标号信号产生模块,用于生成第一发送标号信号; 源端数据帧产生模块,用于根据所述第一发送标号信号产生帧边界与该第一发送标号信号对齐的第一 OBSAI协议数据帧,并将该第- -OBSAI协议数据 帧发送至目的端;源端接收标号信号产生模块,用于根据所接收的第二 OBSAI协议数据帧, 生成与该第二 OBSAI协议数据帧的帧边界对齐的第二接收标号信号;标号信号比较模块,用于将所述第二接收标号信号与第一发送标号信号进 行比较,计算得出源端至目的端之间的光纤延时;所述目的端进一步包括目的端接收标号信号产生模块,用于在接收所述第一 OBSAI协议数据帧 后,生成与该第一 OBSAI协议数据帧的帧边界对齐的第一接收标号信号;目的端发送标号信号产生模块,用于将该第一接收标号信号切换为第二发 送标号信号;目的端数据帧产生模块,用于根据所述第二发送标号信号,产生帧边界与 所述第二发送标号信号对齐的第二 OBSAI协议数据帧,并将该第二 OBSAI 协议数据帧返回给源端。根据本发明的系统,所述源端进一步包括源端帧边界搜索模块,用于在接收到第二OBSAI协议数据帧后,查找该 第二 OBSAI协议数据帧的帧边界;所述目的端进一步包括目的端帧边界搜索模块,用于在接收到第一 OBSAI协议数据帧后,查找 该第一 OBSAI协议数据帧的帧边界。根据本发明的系统,所述源端帧边界搜索模块查找到该第二 OBSAI协议 数据帧的帧边界后,向该源端接收标号信号产生模块输出高电平有效脉冲信 号,并将该高电平有效脉冲信号展宽;所述源端接收标号信号产生模块通过主工作时钟检测所述高电平有效脉 冲信号,且在检测到所述高电平有效脉冲信号的上升沿时,生成与该第二 OBSAI协议数据帧的帧边界对齐的第二接收标号信号;所述目的端帧边界搜索模块查找到第一 OBSAI协议数据帧的帧边界后, 向该目的端接收标号信号产生模块输出高电平有效脉冲信号,并将该高电平有效脉冲信号展宽;所述0的端接收标号信号产生模块通过主工作时钟检测所述高电平有效 脉冲信号,且在检测到所述高电平有效脉冲信号的上升沿时,生成与第一OBSAI协议数据帧的帧边界对齐的第一接收标号信号。根据本发明的系统,所述源端帧边界搜索模块进-一步包括源端串行解串器,用于向该源端帧边界搜索模块提供恢复时钟;该源端帧边界搜索模块通过该源端串行解串器所提供的恢复时钟检测第二 OBSAI协议数据帧的特殊码,以查找该第二 OBSAI协议数据帧的帧边界;所述目的端帧边界搜索模块进一步包括目的端串行解串器,用于向该目的端帧边界搜索模块提供恢复时钟; 该目的端帧边界搜索模块通过该目的端串行解串器所提供的恢复时钟检 测第一 OBSAI协议数据帧的特殊码,以查找该第一 OBSAI协议数据帧的帧边界。根据本发明的系统,所述源端和目的端之间还包括若干中转站,每个中转站中具有所述源端发送标号信号产生模块、源端数据帧产生模块、源端接收标号信号产生模块、标号信号比较模块、目的端接收标号信号产生模块、目的端发送标号信号产生模块、目的端数据帧产生模块。本发明利用OBSAI协议标号信号的高脉冲宽度与OBSAI协议数据帧的帧边界宽度相同,源端生成第一发送标号信号后通过前向链路上向目的端发送第 一OBSAI协议数据帧,该数据帧的帧边界与第一发送标号信号对齐,目的端 接收第一OBSAI协议数据帧后,生成第二发送标号信号,并在反向链路上向 源端返回第二 OBSAI协议数据帧,该数据帧的帧边界与第二发送标号信号对 齐,源端接收返回的第二OBSAI协议数据帧后,生成第二接收标号信号,并 将所述第二接收标号信号与第一发送标号信号进行比较,计算出源端至目的端 之间的光纤延时,方法和系统简单可靠,大大减少了测量信号的经过环节,提 高了光纤延时的测量精度。


图1是现有技术提供的光纤延时测量方法示意图;图2是OBSAI协议提供的标号信号与OBSAI协议数据帧的相位关系示意图;图3是本发明提供的光纤延时测量方法流程图; 图4是本发明第一实施例提供的光纤延时测量方法流程图; 图5是本发明第一实施例提供的光纤延时测量系统网络示意; 图6是本发明第一实施例提供的光纤延时测量过程中标号信号间的相位 关系示意图;图7是本发明第二实施例提供的光纤延时测量系统网络示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 仅用以解释本发明,并不用于限定本发明。本发明的基本思想是利用OBSAI协议标号信号的高脉冲宽度与OBSAI 协议数据帧的帧边界宽度相同,源端生成第一发送标号信号后通过前向链路上 向目的端发送第一 OBSAI协议数据帧,该数据帧的帧边界与第一发送标号信 号对齐,目的端接收第一OBSAI协议数据帧后,生成第二发送标号信号,并 在反向链路上向源端返回第二 OBSAI协议数据帧,该数据帧的帧边界与第二 发送标号信号对齐,源端接收返回的第二OBSAI协议数据帧后,生成第二接 收标号信号,并将所述第二接收标号信号与第一发送标号信号进行比较,计算 出源端至目的端之间的光纤延时。OBSAI协议定义了一种专用的数据帧结构,该数据帧的帧长为10ms,其 数据帧之间通过一个特殊码进行隔开,所述特殊码有k个字节,所述k的数值 范围位于1 31之间,可以根据不同的应用环境设置不同的k数值。为了描述 方便,OBSAI协议又定义了一个Tick (标号)信号,该Tick信号为高脉冲信 号,其高脉冲与数据帧的帧边界完全对应,如图2所示,高脉冲宽度等于帧边 界的高度,该Tick信号的周期与数据帧的帧长一样,均为10ms。在基于OBSAI 协议连接的源端和目的端中,其前向链路与反向链路中都有一个Tick信号, 其发端Tick信号和收端Tick信号之间的时间差即为源端和目的端的单向延 时,本发明是通过使用Tick信号实现光纤延时的精确测量的。本发明提供的光纤延时系统,包括基于OBSAI协议连接的源端201和目 的端202,该系统可参见图5和图7,所述源端20i包括源端发送Tick(标 号)信号产生模块210、源端数据帧产生模块211、源端帧边界搜索模块212、 源端接收Tkk (标号)信号产生模块213以及源端Tick (标号)信号比较模 块214。其中,源端发送Tick信号产生模块210,用于根据源端201和目的端202系统提 供的定时信号(通常为偶秒信号)生成第一发送Tick信号。该源端发送标号 信号产生模块210与源端标号信号比较模块214和源端数据帧产生模块211 相连。源端数据帧产生模块211,与源端发送Tick信号产生模块210相连,用于 根据源端发送Tick信号产生模块210生成的第一发送Tick信号产生帧边界与 该第一发送Tick信号对齐的第一 OBSAI协议数据帧。源端帧边界搜索模块212,用于在接收到第二 OBSAI协议数据帧查找第 二 OBSAI协议数据帧的帧边界。所述源端帧边界搜索模块212进一步包括 源端201SERDES (SERializer/DESerializer,串行解串器),用于向源端帧边 界搜索模块212提供恢复时钟。源端帧边界搜索模块212通过该源端201串行 解串器提供的恢复时钟检测第一 OBSAI协议数据帧的特殊码k以查找到第二 OBSAI协议数据帧的帧边界。所述源端帧边界搜索模块212查找到第二 OBSAI 协议数据帧的帧边界后向源端接收Tick信号产生模块213输出高电平有效脉 冲信号,并将其高电平有效脉冲信号展宽,这样主工作时钟才能可靠的检测到 该信号的上跳沿。所述源端接收Tick信号产生模块213通过主工作时钟检测 所述高电平有效脉冲信号,且在检测到所述高电平有效脉冲信号的上升沿时, 生成与第二 OBSAI协议数据帧的帧边界对齐的第二接收Tick信号。源端接收Tick信号产生模块213,与源端帧边界搜索模块212和源端发送 Tick信号产生模块210相连,用于生成与第二 OBSAI协议数据帧的帧边界对 齐的第二接收Tick信号。源端Tick信号比较模块214,与源端接收Tick信号产生模块213与源端 发送Tick信号产生模块210相连,用于将源端接收Tick信号产生模块213所 生成的第二接收Tick信号与源端发送Tick信号产生模块210所生成的第一发 送Tick信号进行比较,计算得到源端201至目的端202之间的光纤延时。所述目的端202包括目的端发送Tick (标号)信号产生模块220、目的
端数据帧产生模块221、 H的端帧边界搜索模块222、目的端接收Tick(标号) 信号产生模块223。其中,目的端帧边界搜索模块222,用于在接收到源端201的源端数据帧产生模 块221产生的第一 OBSAI协议数据帧后,查找该第一 OBSAI协议数据帧的帧 边界。该目的端帧边界搜索模块222进一步包括目的端SERDES (串行解串 器),用于向该目的端帧边界搜索模块222提供恢复时钟;该目的端帧边界搜 索模块222通过该目的端串行解串器所提供的恢复时钟检测第一 OBSAI协议 数据帧的特殊码,以查找该第一 OBSAI协议数据帧的帧边界。所述目的端帧边界搜索模块222查找到第一 OBSAI协议数据帧的帧边界 后,向目的端接收Tick信号产生模块223输出高电平有效脉冲信号,并将该 高电平有效脉冲信号展宽;所述目的端接收Tick信号产生模块223通过主工 作时钟检测所述高电平有效脉冲信号,且在检测到所述高电平有效脉冲信号的 上升沿时,生成与第一 OBSAI协议数据帧的帧边界对齐的第一接收Tick信号。目的端接收Tick信号产生模块223,与目的端帧边界搜索模块222相连, 用于在接收所述第一 OBSAI协议数据帧后,生成与该第一 OBSAI协议数据帧 的帧边界对齐的第一接收Tick信号。目的端发送Tick信号产生模块220,与目的端接收Tick信号产生模块223 和目的端数据帧产生模块221相连,用于将目的端接收Tick信号产生模块223 生成的所述第一接收Tick信号切换为第二发送Tick信号。目的端数据帧产生模块221 ,用于根据目的端发送Tick信号产生模块220 产生的所述第二发送Tick信号,产生帧边界与所述第二发送Tick信号对齐的 第二 OBSAI协议数据帧,并将该第二 OBSAI协议数据帧返回给源端201 。本发明中,若源端201和目的端202之间存在N个中转站203,且N的 数值至少为l,则该中转站203如图7所示,包括源端发送Tick (标号)信 号产生模块210、源端数据帧产生模块211、源端帧边界搜索模块212、源端 接收Tick (标号)信号产生模块213源端Tick (标号)信号比较模块214、目 的端发送Tick (标号)信号产生模块220、目的端数据帧产生模块221、目的 端帧边界搜索模块222、目的端接收Tick (标号)信号产生模块223。图3是本发明提供的光纤延时测量方法流程图,该方法应用于包括基于 OBSAI协议连接的源端和目的端的系统,所述测量方法具体包括如下 步骤S3(U,源端生成第--发送标号信号后,根据所述第一发送标号信号产生帧边界与该第-发送标号信号对齐的第一 OBSAI协议数据帧,并将该第 …--OBSAI协议数据帧发送至目的端。 本步骤中具体可包括如下步骤源端根据系统定时信号(通常为偶秒信号)生成稳定的第一发送标号信号, 所述周期为10ms,其为高脉冲信号,且其高脉冲宽度与OBSAI协议定义的数 据帧的帧边界宽度相等。源端根据所述第一发送标号信号产生第一 OBSAI协议数据帧,并将第一 OBSAI协议数据帧的帧边界与所述第一发送标号信号对齐。源端通过前向链路向目的端发送所述第一 OBSAI协议数据帧。步骤S302,目的端接收所述第一 OBSAI协议数据帧后,生成与该第一OBSAI协议数据帧的帧边界对齐的第一接收标号信号,并将该第一接收标号信号切换为第二发送标号信号。 本步骤中具体可包括如下目的端接收第一 OBSAI协议数据帧。目的端查找该第一 OBSAI协议数据帧的帧边界。本发明是通过检测第一 OBSAI协议数据帧的特殊码来查找第一 OBSAI协议数据帧的帧边界。目的端生成与该第一 OBSAI协议数据帧的帧边界对齐的第一接收标号信号目的端该第一接收标号信号切换为第二发送标号信号。所述第二发送标号 信号为高脉冲信号,且所述脉冲信号的脉冲宽度与第一 OBSAI协议数据帧的 帧边界宽度相同。歩骤S303,目的端根据所述第二发送标号信号产生帧边界与所述第二发送标号信号对齐的第二 OBSAI协议数据帧,并将该第二 OBSAI协议数据帧返回给源端。本步骤中具体可包括如下目的端根据所述第二发送标号信号产生第二 OBSAI协议数据帧,并将其 帧边界与第二发送标号信号对齐。目的端通过反向链路该第二 OBSAI协议数据帧返回给源端。步骤S304,源端根据所接收的第二 OBSAI协议数据帧生成与该第二 OBSAI协议数据帧帧边界对齐的第二接收标号信号,并将所述第二接收标号信号与第一发送标号信号进行比较,计算得出源端至目的端之间的光纤延时。本步骤中具体可包括如下源端接收目的端返回的第二 OBSAI协议数据帧。源端查找该第二 OBSAI协议数据帧的帧边界。本发明是通过检测第二 OBSAI协议数据帧的特殊码来查找第二 OBSAI协议数据帧的帧边界。源端生成第二接收标号信号,并将其与第二 OBSAI协议数据帧的帧边界 对齐。所述第二接收标号信号为高脉冲信号,且所述脉冲信号的脉冲宽度与第 二 OBSAI协议数据帧的帧边界宽度相同。比较第二接收标号信号与第一发送标号信号的生成时间差,得到源端至目 的端之间的双向光纤延时;或者,将该生成时间差除于2计算出源端至目的端 之间的单向光纤延时。由上述步骤可知,测量数据在两个前向链路方向和反向链路方向上的处理 过程完全相同,所以两个方向上的延时也几乎相同,惟一的误差在于时钟域切 换时引入的少量误差,但是目的端的时钟锁定源端后,这个误差可以控制在l 个主工作时钟周期内。图4是本发明提供的基于OBSAI协议的光纤延时测量方法的第一实施树 流程图。在该第一实施例中,其应用基于OBSAI协议连接的源端和目的端的 系统,且该系统不存在中转站,如图5所示。结合图4和5描述本实施例的测 量方法,该方法具体包括如下步骤S401,源端201的源端发送Tick信号产生模块210根据系统定时信 号(通常为偶秒信号)生成稳定的第一发送标号信号。所述周期为10ms,其 为高脉冲信号,且其高脉冲宽度与OBSAI协议定义的数据帧的帧边界宽度相 等。步骤S402,源端201的源端数据帧产生模块211根据所述第一发送标号 信号产生符合OBSAI协议要求的第一 OBSAI协议数据帧,并将第一 OBSAI 协议数据帧的帧边界与所述第一发送标号信号对齐。步骤S403,源端201的源端201通过前向链路向目的端202发送所述第 一 OBSAI协议数据帧。步骤S404,目的端202接收第一 OBSAI协议数据帧。
歩骤S405,目的端202的目的端帧边界搜索模块222查找该第一 OBSAI 协议数据帧的帧边界。具体而言,目的端帧边界搜索模块222通过串行解串器提供的恢复时钟检 测第一 OBSAI协议数据帧的特殊码k来查找第一 OBSAI协议数据帧的帧边界。步骤S406,目的端202的目的端帧边界搜索模块222查找到第一 OBSAI 协议数据帧的帧边界后,向目的端202的目的端接收Tick信号产生模块223 输出高电平有效脉冲信号,并将其高电平有效脉冲信号展宽。步骤S407,目的端202的目的端接收Tick信号产生模块223通过主工作 时钟检测到所述高电平有效脉冲信号,且在检测到所述高电平有效脉冲信号的 上升沿时,生成第一接收Tick信号,并且将所述第一接收Tick信号与第一 OBSAI协议数据帧的帧边界对齐。步骤S408 ,目的端202的目的端发送Tick信号产生模块220将所述第一 接收Tick信号切换为第二发送Tick信号。所述第二发送Tick信号为高脉冲信 号,且所述脉冲信号的脉冲宽度与第一 OBSAI协议数据帧的帧边界宽度相同。步骤S409,目的端202的目的端数据帧产生模块221根据所述第二发送 标号信号产生第二 OBSAI协议数据帧,并将其帧边界与第二发送标号信号对 齐。步骤S410,目的端202通过反向链路该第二 OBSAI协议数据帧返回给源 端201。步骤S411 ,源端201接收目的端202返回的第二 OBSAI协议数据帧。 歩骤S412,源端201的源端帧边界搜索模块212查找该第二 OBSAI协议 数据帧的帧边界。具体而言,源端201的源端帧边界搜索模块212通过串行解串器提供的恢 复时钟检测第二 OBSAI协议数据帧的特殊码k来查找第二 OBSAI协议数据帧 的帧边界。步骤S413,源端201的源端帧边界搜索模块212查找到第一 OBSAI协议 数据帧的帧边界后,向源端201的源端接收Tick信号产生模块213输出高电 平有效脉冲信号,并将其高电平有效脉冲信号展宽。步骤S414,源端201的源端接收Tick信号产生模块213通过主工作时钟 检测到所述高电平有效脉冲信号,且在检测到所述高电平有效脉冲信号的上升沿时,生成第二接收Twk信号,并将其与第二OBSAI协议数据帧的帧边界对 齐。所述第二接收Tick信号为高脉冲信号,且所述脉冲信号的脉冲宽度与第 二 OBSAI协议数据帧的帧边界宽度相同。步骤S415,源端201的源端Tick比较模块214比较第二接收Tick信号与 第一发送Tick信号,将第二接收Tick信号与第一发送Tick信号的生成时间差 除于2得到源端201至目的端202之间的单向光纤延时。在基于OBSAI协议的光纤延时测量过程中各Tick信号间的相位关系如图 6所示,由于数据帧在前向链路和反向链路方向上的处理过程完全相同,从第 一发送Tick信号的生成时间至第一接收Tick信号的生成时间和第二发送Tick 信号的生成时间至第二接收Tick信号的生成时间是相同,而第一发送Tick信 号的生成时间至第二接收Tick信号的生成时间间隔为T,因而第一发送Tick 信号的生成时间至第一接收Tick信号的生成时间和第二发送Tick信号的生成 时间至第二接收Tick信号的生成时间为T/2。在基于OBSAI协议连接的源端和目的端的系统往往存在若干中转站,假 设所述中转站为N个,且N的数值至少为1,则引用步骤S301 S304的测量 流程,分别测量源端与第一中转站之间的光纤延时Tl,第一中转站与第二中 转站T2,…,第N-1中转站与第N中转站之间的光纤延时T (N)、第N中 转站与目的端之间的光纤延时T (N+l),并将所有光纤延时T1至T (N+l) 上报给源端,源端根据所上报的光纤延时Tl至T (N+l)计算出源端和目的 端之间的光纤延时。所述N个中转站将其内部数据处理延时分别上报给源端,该源端根据所 上报的光纤延时Tl至T(N+1)以及N个中转站的内部数据处理延时T(N)' 计算出源端和目的端之间的光纤延时。本发明第二实施例,在基于OBSAI协议连接的源端201和目的端201的 系统存在一个中转站203,其光纤延时的测量方法与第一实施例类似,故省略 其方法流程图。现结合图7的网络示意图进行描述所述测量方法具体包括步骤S701,源端201的源端发送Tick信号产生模块210根据系统定时信 号(通常为偶秒信号)生成稳定的第一发送标号信号。步骤S702,源端201的源端数据帧产生模块211根据所述第一发送标号
信号产生符合OBSAI协议要求的第一 OBSAI协议数据帧,并将第一OBSAI 协议数据帧的帧边界与所述第'发送标号信号对齐。歩骤S703,源端201通过前向链路向中转站203发送第一 OBSAI协议数 据帧。步骤S704,中转站203接收第一 OBSAI协议数据帧。歩骤S705,中转站203的目的端帧边界搜索模块222査找该第一 OBSAI 协议数据帧的帧边界。步骤S706,中转站203的目的端帧边界搜索模块222查找到第一 OBSAI 协议数据帧的帧边界后,向203的目的端接收Tick信号产生模块223输出高 电平有效脉冲信号,并将其高电平有效脉冲信号展宽。步骤S707,中转站203的目的端接收Tick信号产生模块223通过主工作 时钟检测到所述高电平有效脉冲信号,且在检测到所述高电平有效脉冲信号的 上升沿时,生成第一接收Tick信号,并且将所述第一接收Tick信号与第一 OBSAI协议数据帧的帧边界对齐。步骤S70S,中转站203的目的端发送Tick信号产生模块330将所述第一 接收Tick信号切换为第二发送Tick信号。步骤S709,中转站203的目的端数据帧产生模块231根据所述第二发送 标号信号产生第二 OBSAI协议数据帧,并将其帧边界与第二发送标号信号对 齐。步骤S710,中转站203通过反向链路该第二 OBSAI协议数据帧返回给源 端201。步骤S711,源端201接收中转站203返回的第二 OBSAI协议数据帧。 歩骤S712,源端201的源端帧边界搜索模块212查找该第二 OBSAI协议 数据帧的帧边界。步骤S713,源端201的源端帧边界搜索模块212査找到第一 OBSAI协议 数据帧的帧边界后,向源端201的源端接收Tick信号产生模块213输出高电 平有效脉冲信号,并将其高电平有效脉冲信号展宽。歩骤S714,源端201的源端接收Tick信号产生模块213通过主工作时钟 检测到所述高电平有效脉冲信号,且在检测到所述高电平有效脉冲信号的上升 沿时,生成第二接收Tick信号,并将其与第二 OBSAI协议数据帧的帧边界对齐。所述第二接收Tick信号为高脉冲信号,且所述高脉冲信号的脉冲宽度与第二 OBSAI协议数据帧的帧边界宽度相同。步骤S715,源端201的源端Tick比较模块214比较第二接收Tick信号与 第一发送Tick信号的生成时间差,将所述生成时间差除于2得到源端201至 中转站203之间的单向光纤延时Tl。所述步骤S701 步骤S715中,将中转站203作为目的端,使用本发明提 供的光纤延时方法测量源端201和中转站203之间的光纤延时。步骤S716,中转站203的源端发送Tick信号产生模块210根据系统定时 信号(通常为偶秒信号)生成稳定的第一发送标号信号。所述周期为10ms, 其为高脉冲信号,且其高脉冲宽度与OBSAI协议定义的数据帧的帧边界宽度 相等。步骤S717,中转站203的源端数据帧产生模块211根据所述第一发送标 号信号产生符合OBSAI协议要求的第一 OBSAI协议数据帧,并将第一 OBSAI 协议数据帧的帧边界与所述第一发送标号信号对齐。步骤S718,中转站203通过前向链路向目的端202发送所述第一 OBSAI 协议数据帧。步骤S719,目的端202接收第一 OBSAI协议数据帧。歩骤S720,目的端202的目的端帧边界搜索模块222查找该第一 OBSAI 协议数据帧的帧边界。步骤S721,目的端202的目的端帧边界搜索模块222查找到第一 OBSAI 协议数据帧的帧边界后,向目的端202的目的端接收Tick信号产生模块223 输出高电平有效脉冲信号,并将其高电平有效脉冲信号展宽。步骤S722,目的端202的目的端接收Tick信号产生模块223通过主工作 时钟检测到所述高电平有效脉冲信号,且在检测到所述高电平有效脉冲信号的 上升沿时,生成第一接收Tick信号,并且将所述第一接收Tick信号与第一 OBSAI协议数据帧的帧边界对齐。步骤S723 ,目的端202的目的端发送Tick信号产生模块220将所述第一 接收Tick信号切换为第二发送Tick信号。所述第二发送Tick信号为高脉冲信 号,且所述脉冲信号的脉冲宽度与第一 OBSAI协议数据帧的帧边界宽度相同。步骤S724,目的端202的目的端数据帧产生模块221根据所述第二发送 标号信号产生第二 OBSAI协议数据帧,并将其帧边界与第二发送标号信号对齐。歩骤S725,目的端202通过反向链路该第二 OBSAI协议数据帧返回给中 转站03。步骤S726,中转站203接收目的端202返回的第二 OBSAI协议数据帧。步骤S727,中转站203的源端帧边界搜索模块212查找该第二 OBSAI协 议数据帧的帧边界。步骤S728,中转站203的源端帧边界搜索模块212查找到第一 OBSAI协 议数据帧的帧边界后,向中转站203的源端接收Tick信号产生模块213输出 高电平有效脉冲信号,并将其高电平有效脉冲信号展宽。步骤S729,中转站203的源端接收Tick信号产生模块213通过主工作时 钟检测到所述高电平有效脉冲信号,且在检测到所述高电平有效脉冲信号的上 升沿时,生成第二接收Tick信号,并将其与第二 OBSAI协议数据帧的帧边界对齐。歩骤S730,中转站203的源端Tick比较模块214比较第二接收Tick信号 与第一发送Tick信号的生成时间差,将生成时间差除于2得到中转站203至 目的端202之间的单向光纤延时T2。所述步骤S716 步骤S730中,将中转站203作为源端,使用本发明提供 的光纤延时方法测量中转站203和目的端202之间的光纤延时。步骤S731,测量中转站203的内部数据处理延时T2'。本步骤中,所述内部数据处理延时T2'由逻辑设计决定的,只要设计固 定下来,该延时就是固定的,可以使用简单的示波器就可以测出中转站03的 内部数据处理延时T2'。步骤S732,将中转站203至目的端202之间的单向光纤延时T2以及中转 站203的内部数据处理延时T2'上报给源端201。歩骤S733,源端201根据源端201至中转站203之间的单向光纤延时Tl、 中转站203至目的端202之间的单向光纤延时T2以及中转站203的内部数据 处理延时T2'计算出源端201至目的端202之间的单向总光纤延时T。所述单向总光纤延时T-T1+T2+T2,。须说明,本发明所述的源端适用于任何发起测量数据的终端,目的端适用
于任何接收测量数据的终端。综上可知,利用OBSAI协议标号信号的高脉冲宽度与OBSAI协议数据帧 的帧边界宽度相同以及完全对应,源端生成第一发送标号信号通过前向链路上 向目的端发送第一 OBSAI协议数据帧,该数据帧的帧边界与第一发送标号信 号对齐,目的端接收第一OBSAI协议数据帧后,生成第二发送标号信号,并 在反向链路上向源端返回第二 OBSAI协议数据帧,该数据帧的帧边界与第二 发送标号信号对齐,源端接收返回的第二OBSAI协议数据帧后,生成第二接 收标号信号,并将所述第二接收标号信号与第一发送标号信号进行比较,将比 较出来的生成时间差除于2,计算出源端至目的端之间的单向光纤延时,方法 和系统简单可靠,大大减少测量信号的经过环节,提高了光纤延时的测量精度。当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情 况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
权利要求
1、一种光纤延时的测量方法,应用于包括基于OBSAI协议连接的源端和目的端的系统,其特征在于,所述方法包括如下步骤A、源端生成第发送标号信号后,根据所述第一发送标号信号产生帧边界与该第一发送标号信号对齐的第一OBSAI协议数据帧,并将该第一OBSAI协议数据帧发送至目的端;B、目的端接收所述第一OBSAI协议数据帧后,生成与该第一OBSAI协议数据帧的帧边界对齐的第一接收标号信号,并将该第一接收标号信号切换为第二发送标号信号;C、目的端根据所述第二发送标号信号产生帧边界与所述第二发送标号信号对齐的第二OBSAI协议数据帧,并将该第二OBSAI协议数据帧返回给源端;D、源端根据所接收的第二OBSAI协议数据帧生成与该第二OBSAI协议数据帧的帧边界对齐的第二接收标号信号,并将所述第二接收标号信号与第一发送标号信号进行比较,计算得出源端至目的端之间的光纤延时。
2、 根据权利要求1所述的方法,其特征在于,所述第一发送标号信号、 第二发送标号信号、第一接收标号信号以及第二接收标号信号为高脉冲信号, 且所述高脉冲信号的脉冲宽度与第一、第二 OBSAI协议数据帧的帧边界宽度 相同。
3、 根据权利要求2所述的方法,其特征在于,所述步骤B中进一歩包括 接收第一 OBSAI协议数据帧后,査找该第一 OBSAI协议数据帧的帧边界;所述步骤D中进一步包括接收第二OBSAI协议数据帧后,査找该第二 OBSAI协议数据帧的帧边界。
4、 根据权利要求3所述的方法,其特征在于,所述步骤B中目的端通过 检测第一 OBSAI协议数据帧的特殊码以查找第一 OBSAI协议数据帧的帧边 界;和/或所述步骤D中源端通过检测第二 OBSAI协议数据帧的特殊码以査找第二 BSAI协议数据帧的帧边界。
5、 根据权利要求2所述的方法,其特征在于,所述步骤D中源端通过比 较第二接收标号信号与第一发送标号信号的生成时间差计算出源端至目的端之间的双向光纤延时;或者,将该生成时间差除于2计算出源端全:目的端之间的单向光纤延时。
6、 根据权利要求1所述的方法,其特征在于,若源端和目的端之间存在 N个中转站,且N的数值至少为1,则引用所述歩骤A 步骤D的测量流程, 分别测量源端与第一中转站之间的光纤延时Tl,第一中转站与第二中转站之 间的光纤延时T2,…,第N-1中转站与第N中转站之间的光纤延时T (N)、 第N中转站与目的端之间的光纤延时T (N+l),并将所有光纤延时Tl至T(N+l)上报给源端,源端根据所上报的光纤延时T1至T (N+l)计算出源端 和目的端之间的光纤延时。
7、 根据权利要求6所述的方法,其特征在于,所述N个中转站将其内部 数据处理延时分别上报给源端,该源端根据所上报的光纤延时T1至T (N+l) 以及N个中转站的内部数据处理延时计算出源端和目的端之间的光纤延时。
8、 一种实现权利要求1 7任一项所述方法的系统,包括基于OBSAI协议 连接的源端和目的端,其特征在于,所述源端进一步包括源端发送标号信号产生模块,用于生成第一发送标号信号; 源端数据帧产生模块,用于根据所述第一发送标号信号产生帧边界与该第一发送标号信号对齐的第一 OBSA1协议数据帧,并将该第一 OBSAI协议数据帧发送至目的端;源端接收标号信号产生模块,用于根据所接收的第二 OBSAI协议数据帧, 生成与该第二 OBSAI协议数据帧的帧边界对齐的第二接收标号信号;标号信号比较模块,用于将所述第二接收标号信号与第一发送标号信号进 行比较,计算得出源端至目的端之间的光纤延时;所述目的端进一步包括目的端接收标号信号产生模块,用于在接收所述第一 OBSAI协议数据帧 后,生成与该第一 OBSAI协议数据帧的帧边界对齐的第一接收标号信号;目的端发送标号信号产生模块,用于将该第一接收标号信号切换为第二发 送标号信号;目的端数据帧产生模块,用于根据所述第二发送标号信号,产生帧边界与 所述第二发送标号信号对齐的第二 OBSAI协议数据帧,并将该第二 OBSAI 协议数据帧返回给源端。
9、 根据权利要求8所述的系统,其特征在于,所述源端进一步包括 源端帧边界搜索模块,用于在接收到第—OBSAI协议数据帧后,查找该第二 OBSAI协议数据帧的帧边界;所述目的端进一歩包括目的端帧边界搜索模块,用于在接收到第一OBSAI协议数据帧后,查找 该第一 OBSAI协议数据帧的帧边界。
10、 根据权利要求9所述的系统,其特征在于,所述源端帧边界搜索模块 查找到该第二 OBSAI协议数据帧的帧边界后,向该源端接收标号信号产生模 块输出高电平有效脉冲信号,并将该高电平有效脉冲信号展宽;所述源端接收标号信号产生模块通过主工作时钟检测所述高电平有效脉 冲信号,且在检测到所述高电平有效脉冲信号的上升沿时,生成与该第二 OBSAI协议数据帧的帧边界对齐的第二接收标号信号;所述目的端帧边界搜索模块查找到第一 OBSAI协议数据帧的帧边界后, 向该目的端接收标号信号产生模块输出高电平有效脉冲信号,并将该高电平有 效脉冲信号展宽;所述目的端接收标号信号产生模块通过主工作时钟检测所述高电平有效 脉冲信号,且在检测到所述高电平有效脉冲信号的上升沿时,生成与第--OBSAI协议数据帧的帧边界对齐的第一接收标号信号。
11、 根据权利要求9所述的系统,其特征在于,所述源端帧边界搜索模块 进一歩包括源端串行解串器,用于向该源端帧边界搜索模块提供恢复时钟; 该源端帧边界搜索模块通过该源端串行解串器所提供的恢复时钟检测第 二 OBSAI协议数据帧的特殊码,以査找该第二 OBSAI协议数据帧的帧边界; 所述目的端帧边界搜索模块进一步包括目的端串行解串器,用于向该目的端帧边界搜索模块提供恢复时钟;该目的端帧边界搜索模块通过该目的端串行解串器所提供的恢复时钟检测第一 OBSAI协议数据帧的特殊码,以查找该第一 OBSAI协议数据帧的帧边界。
12、 根据权利要求8所述的系统,其特征在于,所述源端和目的端之间还 包括若干中转站,每个中转站中具有所述源端发送标号信号产生模块、源端数 据帧产生模块、源端接收标号信号产生模块、标号信号比较模块、目的端接收 标号信号产生模块、目的端发送标号信号产生模块、目的端数据帧产生模块。
全文摘要
本发明公开了一种光纤延时的测量方法,基于OBSAI协议,包括源端生成第一发送标号信号后,根据第一发送标号信号产生帧边界与第一发送标号信号对齐的第一数据帧,并将第一数据帧发送至目的端;目的端生成与第一数据帧的帧边界对齐的第一接收标号信号,并将第一接收标号信号切换为第二发送标号信号;目的端根据第二发送标号信号产生帧边界与第二发送标号信号对齐的第二数据帧,并将第二数据帧返回给源端;源端生成与第二数据帧的帧边界对齐的第二接收标号信号,并将第二接收标号信号与第一发送标号信号进行比较,计算得出源端至目的端之间的光纤延时。本发明还提供一种光纤延时的测量系统。本发明不仅使用简单,并可提高光纤延时的测量精度。
文档编号H04L29/06GK101119157SQ200710121959
公开日2008年2月6日 申请日期2007年9月18日 优先权日2007年9月18日
发明者明 毛, 王仰锋, 郭丹旦 申请人:中兴通讯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1