短脉冲雷达及其控制方法

文档序号:7674491阅读:365来源:国知局
专利名称:短脉冲雷达及其控制方法
技术领域
本发明涉及近程雷达及其控制方法,并且特别地涉及使用22至29GHz 的UWB (超宽波段)的近程雷达及其控制方法,而所述UWB采用精确地遵照 国际无线电通信条例(RR)的规定的技术。
背景技术
近来,使用UWB的近程雷达几乎已到达找到对于机动车上的使用的和对 于视觉障碍者的、实际的应用。
如在普通的雷达中一样,在使用UWB的、所述类型的近程雷达中,将短 脉冲波从发送单元的天线发射到空间中,并且接收单元接收从存在于空间中 的物体反射的波,由此分析物体。
图24为展示所述类型的、传统的近程雷达的发送单元的一般配置的框图。
明确地说,在所述近程雷达的发送单元中,将从载波信号发生器l连续 输出的、预定的冊B频率的载波信号S输入到开关电路2。
在预定的周期中,由从脉沖发生器3输出的脉沖信号Pa来间歇地导通/ 截止开关电路2,由此来产生短脉沖波(突发载波)Pb。
在由放大器4放大所述短脉沖波Pb之后,将所述短脉沖波(突发载波) Pb从天线5发射到空间中。
然而,其中通过间歇地导通/截止被插入到载波信号S的路径中的开关电 路2来产生短脉沖波Pb的、上述的配置引起如下问题虽然理想地在开关电 路2的截止状态期间完全停止载波信号输出,但是事实上归因于开关电路2 的泄漏,而不能完全停止所述载波信号输出。
与其导通周期(例如,l纟内秒)比较,开关电路2的截止周期(例如,1 微秒)通常为非常长的。为此, 一般地说,载波泄漏的功率为不可忽略的。
特别困难的是防止在高频的UWB中的载波信号的泄漏。
为此,例如,如图25中所示,短脉冲波Pb的频谱密度Sx为在载波频率fc的位置处大大地突出泄漏分量S'。
所述泄漏分量S,限制在有规律发送定时输出的短脉冲波Pb的反射波的、 真实的接收灵敏度。结果,使雷达搜索距离变窄,并且变得难于检测如存在 于空间中的物体这样的、低的反射率的障碍物。
关于上面描述的UWB雷达系统,在下面描述的非专利文档l中,FCC(美 国联邦通信委员会)提供如图26中所示的频镨屏蔽。
在2004年12月16日修订并发表的所述频镨屏蔽制定比在下面描述的非 专利文档2中的、在2002年2月14日公开的第一个更严格的标准。
在一方面,在所述修订的频错屏蔽中,将在22. 0至23. 12GHz的范围和 不低于29. OGHz的范围内的聽的功率密度指定在-61. 3 dBm/MHz或更少, 并且将在23. 12至23. 6GHz的范围和24. 0至29. OGHz的范围内的功率密度指 定在-41. 3 dBm/MHz或更少。
还有,在23. 6至24. OGHz的频率范围,或所谓的无线电发射禁止的波段 (RR禁止的波段)或无线电发射受限的波段(RR受限的波段)中,将发射功 率密度抑制到比过去低20分贝的-61.3 dBm/MHz,而其中在国际无线电通信 条例(RR)下,有意地禁止无线电波发射,来保护射电天文学或卫星地球探 测业务(EESS)的被动传感器。
在上面描述的频率屏蔽中,将在每一预定的波段中的总能量的量限定到 不大于指定值。为此,在如在上述的情况下,泄漏分量S'为大的情况下, 将要求用于有规律发送定时的短脉冲波Pb的输出设置在相对低的电平,而造 成雷达的搜索范围的、相当大的限制。
在所述观点中,已设想对泄漏分量S,的问题的解决方案,其中如图26 中所示,使短脉冲波Pb的载波频率与用于多普勒雷达(近程器件SRD)的、 24. 05至24. 25GHz的UWB频波段相符,而在多普勒雷达中允许比-41. 3 犯m/MHz更高电平的功率的发射。
然而,在所述SRD波段的邻域中,上述的RR禁止的波段存在。进一步地, 如上所述,构成如由脉沖信号间歇地导通/截止的载波信号这样的脉冲调制信 号的短脉沖波Pb具有几百兆赫至2GHz的频语宽度。
为此,在将载波频率设置在如上面描述的RR禁止的波段的邻域中的SRD 波段处的情况下,将短脉沖波Pb的频镨足够高的电平部分与RR禁止的波段 重叠。为此,事实上,非常困难的是将发射功率密度抑制到由最近的频谱屏
蔽指定的-61. 3 dBm或更少。
还有,允许在RR禁止的波段中的发射电平高到-41. 3 dBm/MHz的第一 FCC 标准规定,要求用于其他目的的、在从法向到地球表面的大于30度的发射方 向(仰角的方向)的角度处的无线电波的发射强度,比在O度到30度的发射 范围中的发射强度低-25分贝或更多(在2005年1月中和以后),以便不干 扰上面描述的EESS。对于每几年,后来所述标准已变得日益严格。
为此,在将载波频设置在如上面描述的SRD波段中的情况下,要求来抑 制天线的垂直面的旁瓣,以致不增加发送的无线电波的发射的方向。
然而,在天线的垂直面上的旁瓣的抑制要求许多的天线元件沿着高度成 为阵列的布置。其增加沿着高度的尺寸,并使如机动车上的雷达这样的应用 困难。
还有,已设想各种方法来改进开关电路2的隔离,以便避免泄漏分量S, 的问题。
然而,甚至在其中可以实现能够在上面描述的、非常高的频波段中取得 高的隔离的开关的情况下,所述开关也是非常昂贵的并非常难于为常人使用 的机动车上的雷达或视觉障碍者而采用。
非专利文档l: FCC 04-285, "SECOND REPORT AND ORDER AND SECOND MEMORANDUM OPINION AND ORDER"
非专利文档2: FCC 02-48, "FIRST REPORT AND ORDER"

发明内容
已在上面描述的情形的观点中取得本发明,并且其目标是将提供具有便 宜的配置的近程雷达及其控制方法,其中防止与RR禁止的波段和SRD波段的 干扰,而同时遵照规定的频i普屏蔽。
根据本发明的第一方面,提供近程雷达,以便取得上面的目标,其包含 发送单元(21 ),其将预定的短脉冲波(Pt )从发送天线(22 )发射到空 间(1)中;
接收单元(40),其执行接收从存在于空间(1)中的物体(la)反射的 波(Pr )的过程;和
信号处理单元(61),其执行基于来自接收单元(40)的输出信号来分析 目标(la)的过程,
其中发送单元(21)包括
第一脉冲产生单元(23),其在预定的周期(Tg)中输出具有比短脉沖波 (Pt)的宽度更长的宽度(Tc)的第一脉沖(PI);
第二脉冲产生单元(24),其在从当第一脉沖产生单元(23)开始输出第 一脉冲(Pl)时的时间点的输出周期期间,在就预定的时间(Ts)的推移而 言的定时,输出具有相应于短脉冲波(Pt)的宽度的宽度的第二脉冲(P2);
振荡器(25),其只在当第一脉冲产生单元(23)输出第一脉冲(PI)时 的周期期间振荡,并输出在短脉沖波(Pt )的频波段中的信号;和
开关(26),其接收来自振荡器(25)的输出信号(U),并且导通所述开 关来只在当由第二脉沖产生单元(24)输出第二脉冲(P2)时的周期期间, 传递来自振荡器(25)的输出信号(U),而将来自开关(26)的输出信号(V) 作为预定的短脉冲波(Pt)发射到空间(1)中。
根据本发明的第二方面,提供根据第一方面的近程雷达,以便取得上面 的目标,其中将第一脉冲(pi)的宽度Tc,第二脉沖(P2)的宽度Tp和开
关(26)的隔离I设置来满足下列的关系 (Tc/Tp) 2《I
根据本发明的第三方面,提供根据第一方面的近程雷达,以便取得上面 的目标,其中在实质上将发射到空间(1)中的短脉冲波(Pt)的频语的、整 个的主瓣包括在24. 0至29. OGHz的范围内的方式中,设置振荡器(25 )的振
甘^s":玄< jf—哲一 n丄v4t , "p 人 皆译Tr >刃7Ja;卞jif7tw、'-i 、 J日"见乂足丄P。
根据本发明的第四方面,提供根据第三方面的近程雷达,以便取得上面
的目标,其中发送单元(21)的发送天线(22)具有以空腔(130)围绕天线 元件(123 )的结构,并且将空腔(130 )的谐振频率设置在23. 6至24. OGHz 的波段中,由此减少特定的波段的增益。
根据本发明的第五方面,提供根据第一方面的近程雷达,以便取得上面 的目标,其中接收单元(40)包括
接收天线(41 ),其接收从存在于空间(1 )中的物体(la )反射的波(Pr );
检测电路(44 ),其检测由接收天线(41 )接收的反射波(Pr )的接收信 号(R');和
采样保持电路(48),其求由检测电路(44)检测的信号(W=I, Q)的 积分,并保持积分结果,并且
检测电路(44 )包括
发散电路(45 ),其将由接收天线(41 )接收的反射波(Pr )的接收信号 (R,)分成相同的相位的信号的对,并输出信号的对(V1, V2);
线性乘法器(46),其将来自发散电路(45)的信号的对(Vl, V2)线性 地相乘;和
低通滤波器(47),其从由线性乘法器(46)线性地相乘的输出信号,提 取基波分量U, Q)。
根据本发明的第六方面,提供根据第一方面的近程雷达,以便取得上面 的目标,其中接收单元(40)包括
接收天线(41 ),其接收从存在于空间(1 )中的物体(la )反射的波(Pr );
检测电路(44 ),其检测由接收天线(41 )接收的反射波(Pr )的接收信 号U');和
采样保持电路(48),其求由检测电路(44)检测的信号(W= I, Q)的 积分,并保持积分结果,并且 检测电路(44)包括
正交解调器(51 ),其以来自振荡器(25 )的输出信号作为本地信号(U ), 来正交检测接收信号(R,);和
低通滤波器(47),其从由正交解调器(51)来正交检测的输出信号,提 取基波分量U, Q)。
根据本发明的第七方面,提供根据第一方面的近程雷达,以便取得上面 的目标,其中接收单元(40)包括
接收天线(41 ),其接收从存在于空间(1 )中的物体(la )反射的波(Pr );
检测电路(44 ),其检测由接收天线(41 )接收的反射波(Pr )的接收信 号U');和
采样保持电路(48),其求由检测电路(44)检测的信号(W-I, Q)的 积分,并保持积分结果,并且
检测电路(44)包括
可变延迟单元(50),其延迟来自振荡器(25)的输出信号(U); 征缴调谐器(51),其以来自可变延迟单元(50)的输出信号作为本地信 号(Ur),来正交检测接收信号(R,);和
低通滤波器(47),其从由正交解调器(51)来正交检测的输出信号,提
取基波分量(I, Q)。
根据本发明的第八方面,提供根据第一方面的近程雷达,以便取得上面
的目标,其中接收单元(40)包括
接收天线(41 ),其接收从存在于空间(1 )中的物体(la )反射的波(Pr );
检测电路(44 ),其检测由接收天线(41 )接收的反射波(Pr )的接收信 号U');和
采样保持电路(48),其求由检测电路(44)检测的信号(W-I, Q)的 积分,并保持积分结果,并且 检测电路(44)包括
锁相环电路(54、 55、 56、 57和58),其具有在当参考信号的频率为稳 定时的周期期间,从振荡器(25)接收作为参考信号的输出信号并输出在频 率中与参考信号同步的信号(Vvco)的电压控制振荡器(56),并就在当参考
信号的频率为稳定时的周期的推移而言,将电压控制振荡器(56)保持在即 将在当参考信号的频率为稳定的时的周期的结束之前的状态中;
正交解调器(51),其以锁相环电路(54、 55、 56、 57和58)的电压控 制振荡器(56)的输出信号作为本地信号(Vvco),来正交检测接收信号(R,); 和
低通滤波器(47 ),其从由正交解调器(51 )来正交检测的输出信号,提 取基波分量(1, Q)。
根据本发明的第九方面,提供根据第五方面的近程雷达,以便取得上面 的目标,其中线性乘法器(46)包括
第一差分放大器(46a),将信号(V1和V2)的对的第一信号(VI)差分 地输入到所述第一差分放大器;
第二和第三差分放大器(46b和46c ),将其连接到第一差分放大器(4") 的负载侧,并将信号(VI和V2 )的对的第二信号(V2 )差分地输入到所述第 二和第三差分放大器;和
Gilbert混频器,将其连接到第二和第三差分放大器(46b和46c )的负 载侧,并且其包括具有第一和第二负载电阻器(R3和RO的单片微波集成电 路,而所述第一和第二负载电阻器只输出等于第一信号(V1 )和第二信号(V2 ) 的乘积的信号分量(VI x V2 )或-(VI x V2 )。
根据本发明的第十方面,提供根据第一方面的近程雷达,以便取得上面
的目标,进一步包含模/数转换器(60),其将来自接收单元(40)的输出信 号(H)转换为数字信号,并将数字信号输入到信号处理单元(61)。
根据本发明的第十一方面,提供根据第一方面的近程雷达,以便取得上 面的目标,进一步包含控制单元(62),其与预定的进度表或来自信号处理单 元(61)的处理结果相一致,来控制发送单元(21)和接收单元(40)中的 至少一个。
根据本发明的第十二方面,提供控制近程雷达的方法,以便取得上面的 目标,包含
准备具有发送天线(22 )的发送单元(21 )、接收单元(40 )和信号处理 单元(61)的步骤;
使用发送单元(21 ),来将预定的短脉冲波(Pt )从发送天线(22 )发射 到空间(1)中的步骤;
执行使用接收单元(40)来接收来自存在于空间(1)中的物体(la)的 反射波(Pr)的过程的步骤;以及
执行使用信号处理单元(61),基于来自接收单元(40)的输出信号来分 析物体(la)的过程的步骤,
其中将预定的短脉沖波(Pt)发射到空间(1)中的步骤包括
准备第一脉沖产生单元(23)、第二脉冲产生单元(24)、振荡器U5)
和开关(26)的步骤;
在预定的周期(Tg)中使用脉沖产生单元U3),来输出具有比短脉沖波 (Pt)的宽度更长的宽度(Tc)的第一脉冲(Pl)的步骤;
在就预定的时间(Tc )的推移而言的定时,使用第二脉冲产生单元(24 ), 来输出具有相应于短脉沖波(Pt)的宽度的宽度的第二脉冲(P2)的步骤, 而所述预定的时间(Tc)是从当第一脉沖产生单元(23)开始输出第一脉冲 (Pl)时的时间点,并在当第一脉冲产生单元(23)输出第一脉冲(Pl)时 的周期期间;
只在当第一脉沖产生单元(23)输出第一脉冲(Pl)时的周期期间,导 致振荡器(25)被振荡并输出在短脉冲波(Pt)的频波段中的信号的步骤;
只在当第二脉冲产生单元(24)输出第二脉沖(P2)时的周期期间,导 通开关(26)由此接收并传递来自振荡器(25)的输出信号(U)的步骤;以 及
将来自开关(26)的输出信号(V)作为预定的短脉沖波(Pt)发射到空 间(1 )中的步骤。
根据本发明的第十三方面,提供根据第十二方面的控制近程雷达的方法,
以便取得上面的目标,其中将第一脉沖(Pl)的宽度Tc、第二脉沖(P2)的 宽度Tp和开关(26)的隔离I设置来满足下列的关系 (Tc/Tp) 2《I
根据本发明的第十四方面,提供根据第十二方面的控制近程雷达的方法, 以便取得上面的目标,其中在实质上将把其发射到空间(1 )中的短脉沖波(Pt ) 的频谱的、整个的主瓣包括在24. 0至29. OGHz的范围中的方式中,来设置振 荡器(25)的振荡频率和第二脉沖(P2)的宽度Tp。
根据本发明的第十五方面,提供根据第十四方面的控制近程雷达的方法, 以便取得上面的目标,其中发送天线(22)具有以空腔(130)围绕天线元件 (123)的结构,并且将空腔(130)的谐振频率设置在23. 6至24. OGHz的波 段中,以由此减少特定的波段的增益。
根据本发明的第十六方面,提供根据第十二方面的控制近程雷达的方法, 以便取得上面的目标,其中执行接收反射波(Pr)的过程的步骤包括
准备接收天线(41)、检测电路(44)和采样保持电路(48)的步骤;
使用接收天线(41),来接收从存在于空间(1)中的物体(la)反射的 波(Pr )的步骤;
使用检测电路(44 ),来检测由接收天线(41 )接收的反射波(Pr )的接 收信号(R,)的步骤;以及
使用采样保持电路(48 )来求由检测电路(44 )检测的信号(W)的积分 并保持积分结果的步骤,并且
检测接收信号(R,)的步骤包括
准备发散电路(45)、线性乘法器(46)和低通滤波器(47)的步骤;
使用发散电路(45)来将由接收天线(41)接收的反射波(Pr)的接收 信号(R,)发散为相同相位的信号的对,并输出信号(VI和V2)的对的步骤;
使用线性乘法器(46),来将来自发散电路(45)的信号(Vl和V"的 对线性地相乘的步骤;以及
使用低通滤波器(47 ),来从由线性乘法器(46 )线性地相乘的输出信号 提取基波分量的步骤。
根据本发明的第十七方面,提供根据第十二方面的控制近程雷达的方法,
以便取得上面的目标,其中执行接收反射波(Pr)的过程的步骤包括 准备接收天线(")、检测电路(44)和采样保持电路(48)的步骤; 使用接收天线(41),来接收从存在于空间(1)中的物体(la)反射的
波(Pr)的步骤;
使用检测电路(44 ),来检测由接收天线(41 )接收的反射波(Pr )的接 收信号(R,)的步骤;以及
使用采样保持电路,来求由检测电路(44)检测的信号(W)的积分,并 保持积分结果的步骤,并且
检测接收信号(R')的步骤包括
准备正交解调器(51)和低通滤波器(47)的步骤;
使用正交解调器(51 ),以来自振荡器(2 5 )的输出信号作为本地信号(U )
来正交检测接收信号(R,);以及
使用低通滤波器(47 ),来从由正交解调器(51)正交检测的输出信号提 取基波分量的步骤。
根据本发明的第十八方面,提供根据第十二方面的控制近程雷达的方法' 以便取得上面的目标,其中执行接收反射波(Pr )的过程的步骤包括
准备接收天线(41)、检测电路(44)和采样保持电路(48)的步骤;
使用接收天线(41),来接收从存在于空间(1)中的物体(la)反射的 波(Pr )的步骤;
使用检测电路(44 ),来检测由接收天线(41 )接收的反射波(Pr )的接 收信号(R,)的步骤;以及
使用采样保持电路(48),来求由检测电路(44)检测的信号(W)的积 分,并保持积分结果的步骤,并且
检测接收信号(R,)的步骤包括
准备可变延迟单元(50 )、正交解调器(51 )和低通滤波器(47 )的步骤; 使用可变延迟单元(50),来延迟来自振荡器U5)的输出信号(U)的 步骤;
使用正交解调器(51),以来自可变延迟单元(50)的输出信号作为本地 信号(Ur)来正交检测接收信号U,);以及
使用低通滤波器(47 ),来从由正交解调器(51 )正交检测的输出信号提取基波分量。
根据本发明的第十九方面,提供根据第十二方面的控制近程雷达的方法,
以便取得上面的目标,其中执行接收反射波(Pr)的过程的步骤包括 准备接收天线(41)、检测电路(44)和采样保持电路(48)的步骤; 使用接收天线(41),来接收从存在于空间(1)中的物体(la)反射的
波(Pr)的步骤;
使用检测电路(44 ),来检测由接收天线(41 )接收的反射波的接收信号 (R,)的步骤;以及
使用采样保持电路(48),来求由检测电路(44)检测的信号(W)积分 并保持积分结果,并且
检测接收信号U')的步骤包括
准备包括电压控制振荡器(56)、正交解调器(51)和低通滤波器(47) 的锁相环电路(54、 55、 56、 57和58)的步骤;
在当参考信号的频率为稳定的时的周期期间,使用电压控制振荡器(56 ) 来接收来自振荡器(25)的、作为参考信号的输出信号(U),并输出在频率 中与参考信号同步的信号(Lvco)的步骤;
在当参考信号的频率为稳定时的周期的推移之后,使用锁相环电路(5 4 、 55、 56、 57和58),将电压控制振荡器(56 )保持在即将在当参考信号的频 率为稳定时的周期的结束之前的状态中的步骤;
使用正交解调器(51),以锁相环电路(54、 55、 56、 57和58)的电压 控制振荡器(56)的输出信号作为本地信号(Lvco),来正交检测由接收天线 Ul)接收的反射波(Pr)的接收信号(R,)的步骤;以及
使用低通滤波器(47 ),来从由正交解调器(51 )正交检测的输出信号提 取基波分量(1, Q)的步骤。
根据本发明的第二十方面,控制根据第十六方面的近程雷达的方法,以 便取得上面的目标,其中使用线性乘法器(46)来将来自发散电路(45)的 信号(V1和V2)的对线性地相乘的步骤包括
准备由包括第一差分放大器(46a)、第二与第三差分放大器(46b与46c) 和第一与第二负载电阻器(R3与R4)的单片微波集成电路来配置的Gilbert 混频器的步骤;
使用第一差分放大器H6a),来差分地输入信号(VI和V2)的对的第一 信号(VI )的步骤;
使用被连接到第 一差分放大器(46a )的负载侧的第二和第三差分放大器 (46b和46c ),来差分地输入信号(VI和V2 )的对的第二信号(V2 )的步骤; 以及
使用被连接到第二和第三差分放大器(46b和46c )的负载侧的第一和第 二负载电阻器(R3和R4),来只输出等于第一信号(VI)与第二信号(V2) 的乘积的信号分量(VI x V2)或-(VI x V2)的步骤。
根据本发明的第二十 一 方面,提供根据第二十方面的控制近程雷达的方 法,以便取得上面的目标,进一步包含
准备模/数转换器(60);以及
使用模/数转换器(60)来将来自接收单元(40)的输出信号(H)转换 为数字信号,并将数字信号输入到信号处理单元(61)的步骤。
根据本发明的第二十二方面,提供根据第二十方面的控制近程雷达的方 法,以便取得上面的目标,进一步包含
准备控制单元(62)的步骤;以及
与预定的进度表或来自信号处理单元(61)的处理结果相一致,使用控 制单元(62)来控制发送单元(21)和接收单元(40)中的至少一个的步骤。
如上所述,修改根据本发明的近程雷达的发送单元,来在由第一脉冲开 始振荡之后,在就预定的时间的推移而言的稳态中响应于第二脉冲,通过短 时间地截止开关来输出短脉冲波。
结果,以不输出的第一脉沖,可以将来自开关的泄漏减少到零。只要与 短脉沖波的周期比较,第一脉沖的输出周期为充分地短的,为此甚至就可以 通过便宜的、隔离作用不太高的开关的使用来减少平均泄漏量。因而,总体 上可以将近程雷达的发射功率密度抑制在频谱屏蔽的、指定的范围内。
还有,在设置以满足在第一脉冲的宽度Tc、第二脉沖的宽度Tp和开关 隔离I之间的关系(Tc/Tp) 2 < I的近程雷达的情况下,可以将平均泄漏量 抑制到不多于在与第二脉冲的同步中输出的短脉冲波的功率。
在近程雷达(其以在诸如将被发射到空间中的短脉冲波的频谱的、整个 的主瓣包括在24. 0至29. OGHz的范围内的方式中设置的振荡器的振荡频率和 第二脉冲的宽度)的情况下,可以更加肯定地防止到RR禁止的波段和SRD波 段的无线电波的发射。
还有,可以由空腔围绕天线元件并具有在23. 6至24. OGHz的范围中的、 空腔的谐振频率,来构成发送天线。因而,可以通过减少在所述波段中的增 益,来实现对UWB的近程雷达及其控制方法,其可以更加肯定地防止到RR禁 止的波段和SRD波段的无线电波的发射。


图1为根据本发明的第一实施例,展示近程雷达的一般配置及其控制方 法的框图。
图2为根据本发明的第一实施例,用于解释近程雷达的、固有的部分及 其控制方法的搡作的时序图。
图3A为根据本发明的第一实施例,展示近程雷达的、固有的部分的一般 配置及其控制方法的电路图。
图3B为根据本发明的第一实施例,展示近程雷达的、固有的部分的一般 配置及其控制方法的电路图。
图4A为根据本发明的第一实施例,展示脉冲调制波的信号波形,用于解 释近程雷达的、固有的部分及其控制方法的操作的图。
图4B为根据本发明的第一实施例,展示脉冲调制波的频谱,用于解释近 程雷达的、固有的部分及其控制方法的操作的图。
图5A为根据本发明的第一实施例,展示脉冲调制波的功率波形,用于解 释近程雷达的、固有的部分及其控制方法的操作的图。
图5B为根据本发明的第一实施例,展示脉冲调制波的功率语,用于解释 近程雷达的、固有的部分及其控制方法的操作的图。
图6A为根据本发明的第一实施例,展示短脉冲波的功率波形,用于解释 近程雷达的、固有的部分及其控制方法的操作的图。
图6B为根据本发明的第一实施例,展示短脉沖波的功率谗,用于解释近 程雷达的、固有的部分及其控制方法的操作的图。
图7为根据本发明的第一实施例,展示在开关隔离、第一脉冲的时间宽 度和载波泄漏的增加之中的关系,用于解释近程雷达的、固有的部分及其控 制方法的操作的图。
图8为根据本发明的第一实施例,展示在短脉沖波的频谱和可应用于UWB 的、指定的频谱屏蔽之间的关系,用于解释近程雷达的、固有的部分及其控
制方法的操作的图。
图9为根据本发明的第一实施例,用于解释近程雷达的、固有的部分及
其控制方法的操作的波段调节滤波器(BRF)的特性图。
图10为根据本发明的第一实施例,用于解释近程雷达的、固有的部分的 配置及其控制方法的发送天线的透视图。
图11为根据本发明的第一实施例,用于解释近程雷达的、固有的部分的 配置及其控制方法的发送天线的正视图。
图12为根据本发明的第一实施例,用于解释近程雷达的、固有的部分的 配置及其控制方法的发送天线的后视图。
图13为根据本发明的第一实施例,用于解释近程雷达的、固有的部分的 配置及其控制方法的在图11内的线13-13中取的截面图。
图14为根据本发明的第一实施例,用于解释近程雷达的、固有的部分的 配置及其控制方法的在图11内的线14-14中取的截面图。
图15为根据本发明的第一实施例,用于解释近程雷达的、固有的部分的 配置及其控制方法的阵列式发送天线的俯视图。
图16为根据本发明的第一实施例,以即便有也归因于在发送天线上形成 的空腔的谐振的增益减少区,用于解释近程雷达的、固有的部分的配置及其 控制方法的特性图。
图17为根据本发明的第一实施例,用于解释近程雷达的、固有的部分的 配置及其控制方法的电路图。
图18为根据本发明的第一实施例,用于解释近程雷达的、固有的部分的 配置及其控制方法的波形图。
图19为根据本发明的第一实施例,用于解释近程雷达的、固有的部分的 配置及其控制方法的电路图。
图20A为根据本发明的第二实施例,展示近程雷达的一般配置及其控制 方法的框图。
图20B为根据本发明的第三实施例,展示近程雷达的一般配置及其控制 方法的框图。
图20C为根据本发明的第三实施例,展示近程雷达的、固有的部分的配 置及其控制方法的框图。
图21为根据本发明的第三实施例,用于解释近程雷达的、固有的部分及
其控制方法的操作的时序图。
图22为根据本发明的第四实施例,展示近程雷达的一般配置及其控制方 法的框图。
图23为根据本发明的第四实施例,用于解释近程雷达的、固有的部分及
其控制方法的操作的时序图。
图24为根据现有的技术领域,展示近程雷达的一般配置的框图。 图25为根据现有的技术领域,用于解释近程雷达的操作的、短脉冲波的 频谙图。
图26为根据现有的技术领域,用于解释近程雷达的操作的、根据FCC 建议用于UWB近程雷达的频语屏蔽图。
具体实施例方式
下面将参考图来解释本发明的实施例。 (第一实施例)
图1为根据本发明的第一实施例,展示近程雷达的一般配置及其控制方 法的框图。
根据本发明的近程雷达20主要包括发送单元21,其将预定的短脉冲 波Pt从发送天线22发射到空间1中;接收单元40,其执行接收来自存在于 空间1中的物体la的反射波Pr的过程;和信号处理单元61,其执行基于来 自接收单元40的输出信号来分析物体la的过程,其中发送单元21包括第 一脉沖产生单元23,其在预定的周期Tg中,输出具有比短脉沖波Pt的宽度 更长的宽度Tc的第一脉冲Pl;第二脉沖产生单元24,其在从当第一脉冲产 生单元23开始输出第一脉沖P1时的时间点经过预定的时间Ts的时刻并在其 输出周期期间,输出具有相应于短脉沖波Pt的宽度的宽度的第二脉冲P2; 振荡器25 ,其只在当第 一脉冲产生单元2 3输出第 一脉沖Pl时的周期期间, 振荡并输出在短脉冲波Pt的频波段中的信号;和开关26,其只在当第二脉 冲产生单元24输出第二脉沖P2时的周期期间,其接收来自振荡器25的输出 信号U,并导通所述开关来传递来自振荡器25的输出信号U,并且将来自开 关26的输出信号V (包括U,)作为预定的短脉沖波Pt发射到空间中。
还有,根据本发明来控制近程雷达的方法主要包括准备具有发送天线 22的发送单元21、接收单元40和信号处理单元61的步骤;使用发送单元
21,来将预定的短脉冲波Pt从天线22发射到空间1中的步骤;执行使用接 收单元40,来接收来自存在于空间1中的物体la的反射波Pr的过程的步骤; 以及执行基于来自接收单元40的输出信号,使用信号处理单元61,来分析 物体la的过程的步骤,其中将预定的短脉冲波Pt发射到空间1中的步骤包 括准备第一脉沖产生单元23、第二脉冲产生单元24、振荡器25和开关26 的步骤;在预定的周期Tg中,使用第一脉冲产生单元23来输出具有比短脉 沖Pt的宽度更长的宽度Tc的第一脉沖Pl;在从当第一脉沖产生单元23开 始输出第一脉沖Pl时的时间点经过预定的时间Ts的时刻并在其输出周期期 间,使用第二脉冲产生单元24,来输出具有相应于短脉冲波Pt的宽度的宽 度的第二脉冲P2的步骤;只在当第一脉冲产生单元23输出第一脉沖Pl时的 周期期间,导致振荡器25被振荡并输出在短脉沖波Pt的频波段中的信号的 步骤;就来自振荡器25的输出信号U的接收而言,来导通第二脉冲产生单元 24,并只在第二脉冲P2的输出周期期间使用开关26,来传递来自振荡器25 的输出信号U的步骤;以及将来自开关26的输出信号V (包括U,)作为预定 的短脉沖波Pt发射到空间1中的步骤。
明确地说,如图1中所示,由发送单元21、接收单元40、 4莫/数(A/D) 转换器60、信号处理单元61和控制单元62来配置近程雷达20。
如图2的(a)中所示,每次(上升定时)发送单元21接收在预定的周 期Tg (例如,l微妙)中从稍后描述的控制单元62输出的发送触发信号G, 所述发送单元21产生具有预定的频率fc (例如,26GHz)的、以预定的宽度 Tp的短脉冲波(突发波)Pt,并将其从发送天线22发射到空间1中。
如图l中所示,除了发送天线22,所述发送单元21还具有第一脉沖产 生单元23、第二脉冲产生单元24、振荡器25、开关26、功率放大器30和起 带阻滤波器作用的波段调节滤波器(BRF) 31。
如图2的(b)中所示,第一脉沖产生单元23在周期Tg中产生并输出具 有比将被发射到空间1的短脉沖波Pt的宽度Tp更长的宽度Tc (假设其为高 电平的时间宽度)的第一脉冲P1。
将所述时间宽度Tc设置到不小于时间Ts和要求来稳定振荡器25的输出 信号的振幅和频率的宽度Tp的和,并充分地短于周期Tg的值(例如,几纳 秒至几十纳秒)。
还有,如图2中所示,在当从第一脉沖产生单元23输出第一脉冲P1时
的周期期间并就从当第一脉沖Pl开始输出时的时间点经过预定的时间(振荡
稳定时间)Ts的时刻,第二脉冲产生单元24产生并输出具有宽度Tp (假设 其为高电平时间宽度)的第二脉沖P2。
附带地,此处将参考其中脉冲Pl和P2为高电平脉冲的情况来做解释。 不过,脉沖中的每一个可以为低电平的脉冲。
如图2的(d)中所示,振荡器25只在当第一脉冲产生单元23输出第一 脉冲Pl时的周期期间,振荡并输出在将被发射到空间1中的短脉沖波Pt的 频率fc处的突发载波信号U。
虽然将振荡器25修改来将其各种地配置,但是考虑到上面描述的UWB 频率分配,振荡器25要求高频稳定性,并且为此,要求振荡器25具有高Q 的谐振器。
例如,由放大器25a、谐振器25b、反馈电路25c和振荡控制开关25d 来配置在图3A中展示的振荡器25,其中对第一脉冲Pl的输入周期,将插入 在信号线和地之间的开关25d截止,由此来取得振荡态。
还有,如在图3B中展示的振荡器25中这样,对第一脉沖Pl的输入周期, 可以通过导通插入在放大器25a的电源线中的开关25d,来实现振荡态。
由谐振器25b的Q的大小来确定具有上述的配置的振荡器25的频率稳定 性,并且谐振器25b的值Q越大,上升时间,即,在开始如图2的(d)中所 示的振荡操作之后直到将信号U的振幅和频率稳定的时间Ts就越长。
只要时间Tc充分地短于周期Tg,甚至当如上所述使用隔离作用不特别 强的开关26时,仍可以忽略泄漏的效应,并且为此,可以将具有对上面描述 的UWB近程雷达要求的规格的频语屏蔽与便宜的电路配置接合。
在当接收从振荡器25输出的突发载波信号U,并从第二脉沖产生单元24 输出第二脉沖信号P2时的周期期间,将开关26维持在信号传递模式(导通 状态)中,并且在剩余的周期期间,将开关26维持在信号阻塞模式(截止状 态)中。
为此,如图2的(e)中所示,对照在当振荡器25振荡时的周期Tc期间 输出的突发载波信号U,从开关26输出的信号V容纳在开关26的截止状态 期间产生的泄漏分量Lc和在开关26的导通状态期间传递的信号U'。因而, 在当振荡器2 5不在振荡操作中时的周期期间,输出信号分量理论上为零。
由功率放大器30来放大来自开关26的输出信号V,并且由BRF 31移除
其不必要的波段分量,将所述输出信号V供应到发送天线22,而将短脉冲波
Pt从所述发送天线22发射到空间1中。
如上所述,所述发送单元21以第一脉沖Pl来使振荡器25振荡,并且在 输出信号U的振幅和频率的稳定之后,将开关26导通时间Tp并输出短脉冲 波Pt。
为此,根据使用根据本发明的近程雷达及其控制方法的第一实施例,与 其中通过以开关来导通/截止连续波以输出短脉沖波Pt的、传统的近程雷达 的配置比较,可以将泄漏分量的平均功率等效地减少到Tc/Tg,以致于可以 不使用隔离作用特别强的任何开关,来满足对UWB近程雷达的、指定的频谱 屏蔽的要求。
其次,将讨论在第一脉沖的时间宽度Tc、第二脉冲的时间宽度Tp和开 关26的隔离之中的关系。
如图4A中所示,使由具有频率fc的、以时间宽度T的连续波的脉冲调 制获得的信号波形s ( t )经历傅立叶变换。然后,如图4B中所示,获得sine 函数(sin x/x)的频镨S (f )。
由下列的方程表达所述频谱S (f ):
S (f ) " (Sp) -(sin[兀T (f-fc) ]}/ [兀T (f-fc)] 其中Sp表明频语的泄漏功率。
还有,图5A展示在时域中的功率波形p(t),并且图SB展示其功率谱。
根据Parseval定理,在时域中的总功率等于在频域中的总功率,并且为 此,下列的方程保持
Jls(t) |2dt = Jls(f) |2df 其中符号J表明对-oQ至+oo的时间t或频率f的积分。
上述的方程的左侧表示电压的平方的积分,并且从图5A将功率给定为 Pp.T。因而,
"s(t) lMt = Pp-T
还有,将在右侧上的sine函数的平方的常数积分表达为 Jls(f) |2df = Sp/T 通过使用公式_[[sin2x/x2]dx =兀
从前面的表述,获得下列的关系 Sp = Pp-T2
从此,理解的是与脉沖宽度T的平方成比例地增加频镨泄漏。
其次,如图6A中所示,考虑将其中具有时间宽度Tp的、功率Pp的载波 信号U,的信号V重叠在只在时间宽度Tc期间存在的功率Pc的载波泄漏上。
在所述情况下,功率比Pp/Pc表示开关26的隔离I。
载波信号U,的总功率和载波泄漏Lc分别为Pp.Tp和Pc.Tc。为此,使用 上述的方程,可以将等效的频语泄漏Sp和Sc表达如下
Sp = Pp-Tp2
Sc = Pc-Tc2
在上面做的讨论中,彼此分离地确定等效的频傳泄漏Sp和Sc。
然而,事实上如图6B中所示,来自表示等效的频语泄漏Sp和Sc的总数 的、整个的频率泄漏Sp的增量AS为重要的。
图7为展示以被改变1纳秒的脉冲宽度Tp的载波泄漏时间Tc和开关26 的隔离I,来确定增量AS的结果的图形。
假设增量AS的上限为3分贝。在其中使用具有20分贝(在功率比中为 IOO倍)的隔离I的开关的情况下,从图7理解的是可以对不大于IO纳秒的 Tc将增量AS减少到3分贝或更小。
还有,与其中开始振荡操作并以i纳秒的脉冲宽度Tp来稳定振荡操作的
情况比较,通过在脉冲宽度中大10倍的IO纳秒开始震荡操作的、不小于l 纳秒的稳定时间的提供,技术上为更加容易的,并且为此,可以由便宜的配 置来实现振荡器25。
将增量AS的上限3分贝与等效的傳峰Sp和Sc彼此相等的情况关联。
为此,通过确定第二脉沖P2的时间宽度Tc来保持关系
Pc.Tc2 ^ Pp'Tp2
(Tc/Tp)2 ^ Pp/Pc = I 可以将归因于泄漏分量的增量AS抑制到3分贝或更小。
附带地,在同时达到在第一脉冲Pl的下降定时(结束振荡操作的定时) 和第二脉沖P2的下降定时(截止开关26的定时)之间的符合的时候,可以 通过设置第一脉冲P1的时间宽度Tc等于要求的最小值Ts + Tp来最小化泄 漏分量。
如上所述,在从由第一脉冲Pl使其振荡的振荡器25输出在振幅和频率 中稳定的信号的情况下,通过对时间长度Tp响应于第二脉沖P2以导通开关
26,来修改根据第一实施例的近程雷达的发送单元21以输出短脉冲波。
为此,以根据第一实施例的近程雷达的发送单元21,在第一脉冲P1的、 不输出的周期期间,可以将来自开关26的载波泄漏完全地维持在零处。结果, 只要相对于第一脉冲Pl的输出周期Tc来说短脉冲波Pt的周期Tg为充分地 短的,甚至通过使用隔离作用低的、便宜的开关26就可以减少载波泄漏的平 均功率。
因而,例如,如图8中所示,根据本发明的第一实施例,可以将来自开 关26的输出信号V的频语Sx抑制在要求上面描述的UWB近程雷达的、指定 的频语屏蔽的范围之内。为此,在遵照指定的频谱屏蔽的时候,可以实现近 程雷达及其控制方法,而其防止与RR禁止的波段和SRD波段的干扰。
结果j艮据第一实施例的近程雷达的发送单元21可以最有效地在指定的 功率范围之内,使用因而由泄漏频率来大大地限制的、短脉冲波Pt的发射功 率电平。
还有,在使用根据本发明的近程雷达及其控制方法的第一实施例中,可 以减少载波泄漏的平均功率,并且可以将短脉冲波Pt的主瓣布置在任意的 UWB波段中,并且为此,防止实质上整个的主瓣被与RR禁止的波段重叠作为一个标准,可以将短脉冲波Pt的实质上整个的主瓣基于从频谱Sx 的峰到-20分贝的范围。
在过程中峰为-41. 3 dBm/Mhz的情况下,短脉冲波Pt的主瓣的、更低的 侧的电平总是等于在RR禁止的波段中指定的电平-61. 3分贝/兆赫或更小, 并且满足指定的频语屏蔽。
然而,在于RR禁止的波段内短脉沖波Pt的旁瓣电平比-61. 3分贝/兆赫 更高的情况下,要求短脉沖波Pt的旁瓣电平由稍后描述的发送天线22或BRF 31的凹槽函数,来将其衰减到在RR禁止的波段中不超过-61. 3分贝/兆赫。
在由功率放大器30将来自开关26的输出信号V放大到指定的功率之后, 将来自开关26的输出信号V经由BRF 31供应到发送天线22,并将其作为短 脉冲波Pt从发送天线22发射到空间1中以被探测。
例如,如图9中所示,对照23, 6至24GHz的RR禁止的波段,BRF 31为 具有大的衰减特性的凹槽滤波器,由此进一步地减少到RR禁止的波段的发射 电平。
附带地,修改功率放大器30的增益来由稍后描述的控制单元62将其改
变。
要求将短脉冲波Pt发射到空间1中的发送天线22具有宽波段特性,以 将UWB短脉沖波Pt有效地发射到空间中。
根据第一实施例的近程雷达使用作为在冊B宽波段中可用的天线的、具 有螺旋元件的圆极化天线。
当然,可以使用有蝶形天线等作为元件的线性极化天线,来代替使用螺 旋元件的圓极化天线。
图10至14展示发送天线22的基本结构。
例如,发送天线22包括电介质基片,其具有1. 2毫米的厚度和低的介 电常数(大约3. 5);地平面导体122,将其布置在电介质基片121的一个表 面(在图10和11中的后表面)上;非平衡天线元件123,其采用形成为在 电介质基片121的相反的表面(在图lO和ll中的正表面)上的图案的顺时 针矩形螺旋的形式;和馈电引脚125,将其端连接到在螺旋的中心附近的天 线元件123的端(馈电点),并将其经由地平面导体122的孔122a、沿着电 介质基片121的厚度传递。
通过从功率馈电引脚125的另一端,经由诸如同轴电缆、作为接地线的 地平面导体122的共面线或稍后描述的微波段线这样的非平衡馈电线馈送, 可以从天线元件123发射左手圓极化无线电波。
然而,在具有所述结构的天线中,可以激发沿着电介质基片121的表面 的表面波,并且归因于表面波的效应而不能获得期望的特性。
在所述》见点中,如图13和14中所示,以将所述金属柱130的一端连接 到地平面导体122,并将另一端经由电介质基片121延伸到电介质基片121 的另一表面的引脚的形式,以根据第一实施例的发送天线22,将多个金属柱 130布置在所述位置以便围绕天线元件123的、预定的间隔处,由此组成空 腔结构。进一步地,从而将金属柱130的另一端沿着将其布置在电介质表面 121的另一表面上的方向短路,而同时布置传导边缘132来从以每一金属柱 130的连接点向天线元件123延伸预定的距离,由此抑制表面波。
假设传导边缘132从空腔的内壁向内延伸的距离指定为U。
边缘宽度U相应于在空腔中的无线电波的传播波长的几部分中的一个。
在所述情况下,例如,通过在经由电介质基片121形成的多个孔的内壁 上电镀(通孔电镀),来实现多个的金属柱130。
由螺旋来激发具有所述传导边缘132的空腔,以至于抑制表面波,并且 可以荻得具有在宽波段上的对称性中为高的方向性的圆极化天线。
还可以通过以诸如蝶形天线这样的线性极化天线元件来激发空腔,以获 得具有相似于圆极化天线的宽波段特性并抑制表面波的线性极化天线。
对各种UWB通信系统,可以独立地使用在图10中展示的发送天线22。 在就UWB近程雷达所要求的增益而言在图10中展示的发送天线22为自
身不足的情况下,或者要求减少波束的情况下,可以将发送天线22形成为阵列。
还有,在其中将圓极化天线形成为阵列的情况下,可以采用连续的旋转 阵列,而可以由其来抑制交叉极化波,并且总体上可以改进天线的极化特性。
如在下面描述的非专利文档3中公开的这样,连续的旋转阵列为以布置 在相同的平面上的、相同的N个天线元件的阵列天线,其中在发射的方向中 的轴的周围被旋转p'兀/N弧度的位置处,连续地布置每一天线元件,而同时 与其布置的角度相一致,将到每一天线元件的功率馈电的相位移动P'兀/N弧 度,其中P为不小于1但不大于N-1的整数。
通过采用在非专利文档3: T. Teshirogi等,"Wideband Circularly Polarized Array Antenna with Sequential Rotation and Phase Shift of Elements", ISAP-85, 024-3, 117至120页,1985年中公开的结构,抵销交 叉极化分量,并且甚至在其中每一天线元件具有圓极化波的、不完全的极化 特性(即是,椭圆极化波)的情况下,总体上对于天线可以获得实质上完全 的圆极化特性。
图15展示基于上面描述的原理、在阵列中形成的发送天线22的配置。 所述发送天线22包括在纵向矩形的共电介质基片121'和未展示的地平 面导体上形成的、两列和四级的阵列中的天线元件123。
还有,在天线22的地平面导体侧上形成将激发信号分布地馈送到多个天 线元件的馈电单元(未展示)。
以如在图10的情况下这样的右手矩形螺旋的形式,以在两列和四级中的 八个天线元件123 ( 1 )至123 ( 8 )来形成电介质基片121'的表面。
还有, 一方面天线元件123 (1)至123 (8)每一个都由多个金属柱130 (以被连接到地平面导体的其每一端来布置金属柱130 )形成的空腔来围绕, 而另一方面由传导边缘132'(将所述传导边缘132,从每一金属柱130的连
接点向每一天线元件123延伸预定的距离(相应于上面描述的边缘宽度LJ) 来沿着其布置的方向连接金属柱130的另一端。这样,抑制每一天线元件的
表面波的产生。
可以考虑上面描述的发送天线22由配备有传导边缘132,和归因于在电 介质基片121'上的金属柱130的空腔阵列的谐振器来配置,而由圓极化天 线元件来激发所述谐振器。
谐振器具有谐振频率,而在所述谐振频率处天线的输入阻抗为大的,以 致于发送天线22未能发射任何信号。
在所述情况下,由圆极化天线元件和谐振器的结构参数来确定谐振频率。
结果,具有上述的配置的发送天线22的天线增益的频率特性发展急剧下 降到谐振频率的附近中的深槽。
例如,通过设置与RR禁止的波段(23. 6至24. OGHz )相符的所述谐振频 率,可以通过使用发送天线22,显著地减少近程雷达发射的短脉冲波Pt与 卫星地球探测业务(EESS)的干扰。
在所述点的考虑中,图16展示试验生产具有在图l5中展示的配置的发 送天线22,并测量发送天线22的主极化波的右手圓极化(RHCP )分量和交 叉极化波的左手圓极化(LHCP)分量的增益的频率特性的结果。
从在图16中展示的实例,理解的是主极化波分量具有在24. 5至31GHz 的范围之上的、不小于13分贝的增益,并且在RR禁止的波段中产生以从峰 值电平的大约20分贝的下降的、急剧的凹槽。
可以容易地交付产生所述凹槽的频率,通过适当地选^r谐振器和/或螺旋 天线的结构参数来与RR禁止的波段相符。
为此,通过设置与RR禁止的波段相符的凹槽频率,与上面描述的载波泄 漏减少技术协作,可以将对RR禁止的波段的无线电波发射的电平容易地减少 至少20分贝。因而,可以满足与上面描述的FCC的建议相一致的、新的频谱 屏蔽。
可以不用BRF 31来将其实现,并且为此,不要求安装BRF 31的空间, 由此不产生由BRF 31所导致的插入损失这样的优势。
在空间1中,从物体2反射从具有所述配置的发送天线22发射到空间1 中的短脉冲波Pt,并由接收单元40的接收天线41来接收由此造成的发射波 Pr。
所述接收天线41可以具有与发送天线22这样相同的配置。 所述性质,并且为此,通过设置在与发送天线的圓形旋转相反的方向中的、
接收天线41的圓形旋转,对于初级反射分量(更加严格地,奇数的反射分量) 的、改进的选择性,可以抑制在接收天线41处的次级反射分量(或更加严格 地,偶数的反射分量)。因而,可以减少在接收天线41处由次级反射产生的、
错误的回波。
在由低噪声放大器(LNA) 42放大之后,由具有大概2GHz的波段宽度的 波段通滤波器(BPF) 43,来将从接收天线41 (其已接收反射波Pr)输出的 接收信号R限制在波段中。
附带地,可以由控制单元62来改变LNA 42的增益。
将被限制在波段中的接收信号R,输入到检测电路44,并由检测电路44 来检测所述接收信号R'。
虽然各种类型的检测电路包括正交解调器类型,但是假设检测电路44
为平方检测类型,而下面解释所述平方检测类型的实例。
明确地说,平方检测类型的检测电路44包括发散电路45,其将从BPF 43输出的接收信号R'发散为在相同的相位(0度)中的信号V1和V2的对; 线性乘法器46,其将已将接收信号R'发散为的、相同相位的信号V1和V2 的对相乘;和低通滤波器(LPF) 47,其从线性乘法器46的输出信号提取基 波分量W (=1, Q)。
虽然几种类型的线性乘法器包括使用双平衡混频器的 一种,但是假设线 性乘法器46为使用高速操作的Gilbert混频器来配置的类型。
如图17中所示,Gilbert混频器具有三个差分放大器46a、 46b和46c。
为包括晶体管Q1、 Q2、发射器电阻R1、 R2和恒流源I的第一差分放大 器46a,差分地供应信号VI和V2的对的第一信号VI。
还有,为包括被连接到第一差分放大器46a的负载侧的晶体管Q3、 Q4 和晶体管Q5和Q6的第二和第三差分放大器46b和46c,供应信号VI和V2 的对的第二信号V2。
结果,只从被连接到第二和第三差分放大器46b和46c的每一负载侧的 负载电阻器R3和R4,输出等于第一信号VI和第二信号V2的乘积VlxV2或-(VlxV2)的信号分量。
附带地,在图17中,Vbl、 Vb2和Vb3分别指定为第一、第二和第三差 分放大器46a、 46b和46c供应的偏置电源。
当将如在图18的(a)中所示的突发形式中的、如相同的相位中的信号 VI和V2的对这样的正弦信号R' ( t )施加到所述线性乘法器46时,如图18 的(b)中所示,其输出信号将波形R, (t)2假设为输入信号R, (t)的平方, 并且其包络(基波)W成比例于输入信号R, (t)的功率。
可以在单片微波集成电路(固IC)的非常紧凑的形式中,配置补充以上 面描述的多个差分放大器形成的Gilbert混频器的线性乘法器46。进一步地, 不要求供应本地信号,并且为此,功率消耗为有利地小的。
将从检测电路44获得的基波信号W输入到采样保持电路48。
以在图19中展示的其原理,这样配置采样保持电路48,以致于将基波 信号W经由开关48c输入到包括电阻器48a和电容器48b的集成电路。只要 将来自脉冲发生器49的脉冲信号P3维持在高电平(或低电平)处,就闭合 开关48c并且求基波信号W的积分,而当脉冲信号P3下降到低电平时断开开 关48c并且保持积分结果。
每次在从控制单元62接收发送触发信号G之后,接收触发信号G'输出 至少时间Ts,脉冲发生器49产生预定的宽度Td的脉沖信号P3,并将其输出 到采样保持电路48。
为此,所述接收单元40执行包括检测在从接收触发信号G'的接收的时 间经过预定的时间T3之前接收的反射波Pr的过程的接收过程。
附带地,虽然未展示,但是可以由控制单元62来改变脉冲信号P3的宽度。
在立即跟随其保持,由A/D转换器60将由采样保持电路48积分并保持 的信号H转换为数字信号之后,将由采样保持电路48积分并保持的信号H输 入到信号处理单元61。
基于由接收单元40获得的信号H,信号处理单元61分析存在于空间1 中的物体la,并将分析结果通知到未展示的输出器件(诸如显示器或声音发 生器这样的),而同时通知控制操作所需的信息的控制单元62。
与对近程雷达20的、预定的进度表或信号处理单元61的处理结果相一 致,控制单元62在发送单元21和接收单元40中的至少一个上,实行各种控 制操作(在触发信号G、 G,等之间的延迟时间的、可变的控制),并且因而
导致近程雷达调查在期望的范围中的区域。
附带地,如图3中所示,在发送单元21的振荡器25中,在放大器25a 的输入侧和接地线之间闭合开关电路25d,来防止正反馈(停止振荡)。
如可替换的方法这样,将开关电路25d修改来将其在放大器25a的输出 侧和接地线,即是,谐振器25b的两端之间闭合,以由此停止振荡。
还有,虽然用于振荡器25的谐振器25b不必要为LC类型,但是可以由 发送路径类型(诸如A /4类型这样的)来配置谐振器25b。 (第二实施例)
图20A为展示使用根据本发明的近程雷达及其控制方法的第二实施例的 一般配置的框图。
附带地,在图20A中,由相同的参考数字来分别指定与根据上面描述的、 在图1中展示的第一实施例的近程雷达的部分相似地配置的部分,并不再描 述。
根据上面描述的第 一 实施例,采用不要求本地信号的平方检测类型的线 性乘法器46,来作为接收单元40的检测电路44。相反地,根据第二实施例, 采用要求本地信号的正交解调类型的正交解调器51,来作为接收单元40的 才全测电3各44。
正交解调类型的所述正交解调器51的使用要求在频率中等于接收信号 的本地信号,并且可以将从发送单元21的振荡器25输出的突发载波U用作 为所述本地信号。
然而,如上所述,不能很大地延长突发载波U的输出周期Tc,以便抑制 载波泄漏的平均功率。
然而,除非近程雷达的探测范围不是非常长的,仍然可以使用正交解调 类型的检测方法,而所述检测方法使用从发送单元21的振荡器25输出的突 发载波U作为本地信号。
为此,第二实施例为可应用于其中近程雷达的探测范围不是非常长的情 况,并具有以简单的配置可以实现的特征。
附带地,由于可以在诸如省略在稍后描述的第三实施例内的、在图20B 和20C中展示的可变延迟单元50,并且将从发送单元21的振荡器25输出的 突发载波U作为本地信号直接地输入到正交解调器51的方式中,实现所述第 二实施例的配置,因此在这里不解释所述第二实施例的配置。(第三实施例)
图20B为展示使用根据本发明的近程雷达及其控制方法的第三实施例的 一般配置的框图。
附带地,在图20B中,由相同的参考数字来分别指定与根据上面描述的、
在图1中展示的第一实施例的近程雷达的部分相似地配置的部分,并不再描 述。
上面描述的第二实施例为可应用于其中近程雷达的探测范围不是非常长 的情况,而在近程雷达的探测范围为长的情况下使用第三实施例。
在其中近程雷达的探测范围为长的情况下,延长从发送单元21的振荡器 2 5输出的突发载波U的输出周期Tc,由此引起增大载波泄漏的问题。
为了消除所述问题,根据第三实施例,如在图20B中展示的近程雷达20 一样,由可变延迟单元50来适当地延迟从发送单元21的振荡器25输出的突 发载波U,并且将突发载波U作为本地信号Ur应用到正交解调器51 。
明确地说,在根据第三实施例的近程雷达中,可以考虑通过控制可变延 迟单元5G的延迟量来移动近程雷达的探测范围。
附带地,在图20A和20B内的一个系统中,共同地展示包括来自正交解 调器51的基波分量I和Q的、两个系统的输出。
然而,事实上,如图20C中所示,在LPF47、采样保持电路"和A/D 转换器60中的每一个后面的单元中,由两个系统来处理包括来自正交解调器 51的基波分量I和Q的两个系统的输出。
所述正交解调器51为具有在图20C中展示的内部结构的、所谓的正交传 感器。
明确地说,将来自BRF 43的接收信号R, 由移相器51a分成具有90度 的相位差的两个信号,并将所述信号分别输入到两个混频器51b和51c。
被供应相同相位的本地信号的所述两个混频器51b和51c (在该情况下, 可变延迟单元50延迟本地信号Ur )分别输出包括基波分量I和Q的信号。
将两个混频器51b和51c的输出分别输入到两个LPF 47a和47b。
两个LPF 47a和47b提取基波分量I和Q,并将其输出到两个采样保持 电路48a和48b。
由两个A/D转换器60a和60b,分别将由采样保持电路48a和48b积分 并保持的基波分量工和Q转换为数字信号,并将所述基波分量I和Q供应到
信号处理单元61。
附带地,还可以用其中在图20A、 B和C内将接收信号R,与本地信号Ur 相互替换的配置来使用正交解调器51。
在具有在图20B内展示的配置的近程雷达20中,以图21的(a)至(e) 内展示的方式、在发送端处实行与在图2中展示的那个操作相似的操作,以 致于将短脉沖波Pt发射到空间中。
从存在于空间中的物体la接收反射波Pr,并且例如,在图21的(f) 中展示的定时,将接收信号R'输入到正交解调器51。
在所述情况下,如图21的(g)中所示,假设在不与接收信号R,重叠 的定时,将在控制单元62的控制下延迟时间Tr的本地信号Ur输入到正交解 调器51,检测电路44的输出W (=1, Q)实质上为零。
另一方面,在将本地信号Ur的延迟时间Tr进一步地增加,并且在与接 收信号R,重叠的定时将本地信号Ur输入到正交解调器51的情况下,在重 叠的周期期间输出相应于接收信号R'的振幅和相位的信号W (=1, Q)。
如图21的(h)中所示,假设在当本地信号Ur的频率和振幅为稳定的时 的定时,在与接收信号R,的输入周期的重叠中,将脉沖P3施加于采样保持 电路48。如图21的(i)中所示,获得相应于接收信号R,的、保持的输出 H(=Hi, Hq),并由A/D转换器60 (60a和60b)将其转换为数字信号。
基于所述数字信号,信号处理单元61执行分析物体la的过程。
如上面描述的,以根据第三实施例(其中延迟在发送端处使用的突发载 波U,并在接收端处将其用作为正交解调器51的本地信号)的近程雷达,如 在发送中这样,只对短时间、只在要求接收的定时输出载波信号。为此,与 其中连续地输出接收载波信号的情况比较,还可以充分地减少来自接收端的 载波信号泄漏的发射强度。
还有,在根据第三实施例的近程雷达中,作为系统配置,可变延迟单元 50配备以正交解调器51。为此,可以由比较简单的配置来实现高灵敏的检测 过程。
(第四实施例)
图22为展示使用根据本发明的近程雷达及其控制方法的第四实施例的 一般配置的框图。
附带地,在图22中,由相同的参考数字来分别指定与根据上面描述的、
在图1中展示的第一实施例的近程雷达的部分相似地配置的部分,并不再描 述。
根据在图22中展示的第四实施例的近程雷达20采用如下配置,其中由 突发载波U来锁定从VCO 56连续地输出到正交解调器51的本地信号Lvco的
送器(VCO) 56、相位比较器57和保持电路58的锁相环(PLL )配置,来使 所述频率稳定。
附带地,可以省略分频器54和55。
在所述情况下,当接收第二脉冲P2时,保持电路58将相位比较器57 的输出信号应用到VCO 56,并当输入突发载波U时,经由突发载波U将本地 信号Lvco的相位和频率锁定预定的时间(例如,从第二脉沖P2的上升到下 降)并稳定其频率。当经过预定的时间,通过为VCO 56供应紧接在特定的预 定的周期的结束之前保持的、相位比较器57的输出信号,来最小化在自激状 态中的本地信号Lvco的频移。
在所述情况下,本地信号Lvco为连续的波,并且为此,由采样保持电路 48来完成在探测范围中的信号提取。
附带地,在图22中,如一个系统这样,来共同地展示将包括来自正交解 调器51的基波分量I和Q的、两个系统的输出。
然而,事实上,如图20C中所示,随后还由在LPF"a、 4化、采样保持 电路48a、 48b和A/D转换器60a和60b中的每一个内的两个系统,来处理包 括来自正交解调器51的基波分量I和Q的、两个系统的输出。
明确地说,还以根据如上面描述的这样配置的第四实施例的近程雷达 20,在如图23的(a)至(e)中所示的发送端处,实行与在图2中展示的操 作相似的操作,以致于将短脉冲波Pt发射到空间1中,接收来自存在于空间 1中的物体la的反射波Pr,并且例如,在如图23的(f )中所示的定时,将 反射信号R,输入到正交解调器51。
如图23的(g)中所示,在当输入第二脉冲P2时的周期期间,锁定从 VCO 56输入到正交解调器51的本地信号Lvco的频率,并且在所述周期的结 束之后,通过将控制信号保持到VCO 56来保持所述频率,以致于将本地信号 Lvco的频率保持在实质上稳定的状态中。
与第一脉冲Pl的宽度Tc比较,假设所述稳定保持时间为充分地长的,并比相应于最长的探测范围的时间更长。
为此,如图23的(h)中所示,在将把脉沖信号P3输入到采样保持电路 48的定时与接收信号R'的输入定时重叠的情况下,获得相应于接收信号R, 的振幅和相位的基波的输出W (=1, Q),并且如图23的(i)中所示,将保 持输出H(二Hi, Hg)经由A/D转换器60输出到信号处理单元61,由此来实 行分析物体la的过程。
如上面描述的,在对使用本地信号(其以由PLL使用作为参考信号的突 发载波U稳定的频率)的正交检测的配置中,可以对短脉冲波Pt的发射定时 的长时间(即是,长的范围)连续地完成探测。
附带地,虽然只将第二脉沖P2的输出周期设置为锁定的周期,但是不意 味限制本发明,只是对于在其振荡器25的输出信号的频率为稳定的期间的任 何周期,不管第二脉沖的输出周期来设置锁定的周期。
在所述的情况下,从控制单元62分离地产生指定锁定的周期的脉沖信
在如在图20A、 B和C与图22内展示的近程雷达20中将正交解调器51 用作为检测电路44的情况下,不利于要求本地信号。
然而,在使用正交解调器51的情况下,就值dB而言,其动态范围为平 方检测方法的两倍宽,以致于甚至对于输入信号的、低电平,检测也为可能 的。对于要求高灵敏的接收操作的近程雷达,这是有效的。
如上面描述的,根据本发明,可以提供近程雷达及其控制方法,其中在 以便宜的配置遵照指定的频谱屏蔽的时候,不干扰RR禁止的波段和SRD波段。
权利要求
1.一种近程雷达,其特征在于包含:发送单元,其将预定的短脉冲波从发送天线发射到空间中;接收单元,其执行接收从存在于所述空间中的物体反射的波的过程;和信号处理单元,其执行基于来自所述接收单元的输出信号,来分析所述物体的过程,其中所述发送单元包括:第一脉冲产生单元,其在预定的周期中输出具有比所述短脉冲波的宽度更长的宽度的第一脉冲;第二脉冲产生单元,在输出周期期间从当所述第一脉冲产生单元开始输出所述第一脉冲时的时间点经过预定的时间的时刻,输出具有相应于所述短脉冲波的宽度的宽度的第二脉冲;振荡器,只在当所述第一脉冲产生单元输出所述第一脉冲时的周期期间振荡,并输出在所述短脉冲波的频波段中的信号;和开关,从所述振荡器接收输出信号,并只在当由所述第二脉冲产生单元输出所述第二脉冲时的所述周期期间导通来从所述振荡器传递所述输出信号,而将来自所述开关的输出信号作为所述预定的短脉冲波发射到所述空间中。
2、 根据权利要求1的所述近程雷达,其特征在于将所述第一脉沖的宽度 Tc、所述第二脉沖的宽度Tp和所述开关的隔离I设置来满足下列关系<formula>formula see original document page 2</formula>
3、 根据权利要求1的所述近程雷达,其特征在于在实质上将被发射到所 述空间中的所述短脉沖波的频谱的、整个的主瓣包括在24. 0至29. OGHz的范 围中的方式中,来设置所述振荡器的振荡频率和所述第二脉冲的宽度Tp。
4、 根据权利要求3的所述近程雷达,其特征在于所述发送天线具有以空 腔围绕天线元件的结构,并且将所述空腔的谐振频率设置在23. 6至24, OGHz 的波段中,由此来减少所述特定的波段的增益。
5、 根据权利要求1的所述近程雷达,其特征在于所述接收单元包括 接收天线,其接收从存在于所述空间中的所述物体反射的所述波; 检测电路,其检测由所述接收天线接收的所述反射波的接收信号;和 采样保持电路,其求由所述检测电路检测的所述信号的积分,并保持所 述积分结果,并且所述检测电路包括发散电路,其将所述接收信号分成为相同的相位的信号的对,并输出信号的所述对;线性乘法器,其将来自所述发散电路的信号的所述对线性地相乘;和 低通滤波器,其从由所述线性乘法器线性地相乘的所述输出信号提取基 波分量。
6、 根据权利要求1的所述近程雷达,其特征在于所述接收单元包括 接收天线,其接收从存在于所述空间中的所述物体反射的所述波; 检测电路,其检测由所述接收天线接收的所述反射波的接收信号;和 采样保持电路,其求由所述检测电路检测的所述信号的积分,并保持所述积分结果,并且所述检测电路包括正交解调器,其以来自所述振荡器的所述输出信号作为本地信号来正交 检测所述接收信号;和低通滤波器,其从由所述正交解调器正交检测的所述输出信号提取基波 分量。
7、 根据权利要求1的所述近程雷达,其特征在于所述接收单元包括 接收天线,其接收从存在于所述空间中的所述物体反射的所述波; 检测电路,其检测由所述接收天线接收的所述反射波的接收信号;和 采样保持电路,其求由所述检测电路检测的所述信号的积分,并保持所述积分结果,并且所述检测电路包括可变延迟单元,其延迟来自所述振荡器的所述输出信号;正交解调器,其以来自所述可变延迟单元的所述输出信号作为本地信号来正交检测所述接收信号;和低通滤波器,其从由所述正交解调器正交检测的所述输出信号提取基波分量。
8、 根据权利要求1的所述近程雷达,其特征在于所述接收单元包括 接收天线,其接收从存在于所述空间中的所述物体反射的所述波; 检测电路,其检测由所述接收天线接收的所述反射波的接收信号;和采样保持电路,其求由所述检测电路检测的所述信号的积分,并保持所 述积分结果,并且所述检测电路包括锁相环电路,其具有在当所述参考信号的频率为稳定的时的所述周期期 间,接收来自所述振荡器的所述输出信号作为参考信号,并输出在频率中与 所述参考信号同步的信号的电压控制振荡器,并且当经过所述参考信号的频 率为稳定的周期时,将所述电压控制振荡器保持在即将在当所述参考信号的 频率为稳定的所述周期的结束之前的状态中;正交解调器,其以所述锁相环电路的电压控制振荡器的输出信号作为本 地信号,来正交检测所述接收信号;和低通滤波器,其从由所述正交解调器正交检测的所述输出信号提取基波 分量。
9、 根据权利要求5的所述近程雷达,其特征在于线性乘法器包括 第一差分放大器,将信号的所述对的第一信号差分地输入到所述第一差分放大器;第二和第三差分放大器,将其连接到所述第一差分放大器的负载侧,并 将信号的所述对的第二信号差分地输入到所述第二和第三差分放大器;和Gilbert混频器,将其连接到所述第二和第三差分放大器的负载侧,并 包括具有只输出等于所述第一信号和所述第二信号的乘积的信号分量的第一 和第二负载电阻器的单片微波集成电路。
10、 根据权利要求1的所述近程雷达,其特征在于进一步地包含模/数转 换器,其将来自所述接收单元的所述输出信号转换为数字信号,并将所述数 字信号输入到所述信号处理单元。
11、 根据权利要求1的所述近程雷达,其特征在于进一步地包含控制单 元,其与预定的进度表或来自所述信号处理单元的处理结果相一致,控制所 述发送单元和所述接收单元中的至少 一个。
12、 一种控制近程雷达的方法,其特征在于包含 准备具有发送天线的发送单元、接收单元和信号处理单元的步骤;骤; 执行使用所述接收单元,来接收来自存在于所述空间中的物体的反射波的过程的步骤;以及执行使用所述信号处理单元,基于来自所述接收单元的输出信号,来分 析所述物体的过程的步骤,其中将所述预定的短脉沖波发射到所述空间中的所述步骤包括准备第一脉冲产生单元、第二脉沖产生单元、振荡器和开关的步骤;在预定的周期中使用所述第一脉沖产生单元,来输出具有比所述短脉冲 波的宽度更长的宽度的第 一脉冲的步骤;在从当所述第 一脉沖产生单元开始输出所述第 一脉冲时的时间点经过预 定的时间的时刻并在当所述第 一脉冲产生单元输出所述第 一脉沖时的周期期 间,使用所述第二脉沖产生单元,来输出具有相应于所述短脉沖波的宽度的 宽度的第二脉冲的步骤;导致所述振荡器振荡,并只在当所述第一脉冲产生单元输出所述第一脉 沖时的周期期间,输出在所述短脉冲波的频波段中的信号的步骤;只在当所述第二脉冲产生单元输出所述第二脉冲时的周期期间,导通所 述开关,由此接收并传递来自所述振荡器的所述输出信号的步骤;以及将来自所述开关的所述输出信号作为所述预定的短脉冲波发射到所述空 间的步骤。
13、 根据权利要求12的控制近程雷达的所述方法,其特征在于设置所述 第一脉沖的宽度Tc、所述第二脉沖的宽度Tp和所述开关的隔离I来满足下 列关系(Tc/Tp) 2 <1
14、 根据权利要求12的控制近程雷达的所述方法,其特征在于在实质上 将被发射到所述空间中的所述短脉沖波的频谱的、整个的主瓣包括在24. 0至 29. OGHz的范围中的方式中,设置所述振荡器的振荡频率和所述第二脉冲的 宽度Tp。
15、 根据权利要求14的控制近程雷达的所述方法,其特征在于所述发送 天线具有以空腔围绕天线元件的结构,并且将所述空腔的谐振频率设置在 23. 6至24. OGHz的波段中,由此来减少所述特定的波段的增益。
16、 根据权利要求12的控制近程雷达的所述方法,其特征在于执行接收 所述反射波的所述过程的所述步骤包括 准备接收天线、检测电路和采样保持电路的步骤; 使用所述接收天线,来接收从存在于所述空间中的所述物体反射的所述 波的步骤;号的步骤;以及使用所述采样保持电路,来求由所述检测电路检测的所述信号的积分, 并保持所述积分结果的步骤,并且检测所述接收信号的所述步骤包括准备发散电路、线性乘法器和低通滤波器的步骤;使用所述发散电路来将所述接收信号发散为相同相位的信号的对,并输 出信号的所述对的步骤;使用所述线性乘法器,将来自所述发散电路的信号的所述对线性地相乘 的步骤;以及使用低通滤波器,来从由所述线性乘法器线性地相乘的所述输出信号提 取基波分量的步骤。
17、 根据权利要求12的控制近程雷达的所述方法,其特征在于执行接收 所述反射波的所述过程的所述步骤包括准备接收天线、检测电路和采样保持电路的步骤;使用所述接收天线,来接收从存在于所述空间中的所述物体反射的所述 波的步骤;使用所述检测电路,来检测由所述接收天线接收的所述反射波的接收信 号的步骤;以及使用所述采样保持电路,来求由所述检测电路检测的所述信号的积分并 保持所述积分结果的步骤,并且检测所述接收信号的所述步骤包括 准备正交解调器和低通滤波器的步骤;使用所述正交解调器,以来自所述振荡器的所述输出信号作为本地信号, 来正交检测所述接收信号的步骤;以及使用所述低通滤波器,来从由正交解调器正交检测的所述输出信号提取 基波分量的步骤。
18、 根据权利要求12的控制近程雷达的所述方法,其特征在于执行接收所述反射波的所述过程的所述步骤包括准备接收天线、检测电路和采样保持电路的步骤;使用所述接收天线,来接收从存在于所述空间中的所述物体反射的所述波的步骤;使用所述检测电路,来检测由所述接收天线接收的所述反射波的接收信 号的步骤;以及使用所述采样保持电路,来求由所述检测电路检测的所述信号的积分并保持所述积分结果的步骤,并且检测所述接收信号的所述步骤包括准备可变延迟单元、正交解调器和低通滤波器的步骤;使用所述可变延迟单元,来延迟来自所述振荡器的所述输出信号的步骤;使用所述正交解调器,以来自所述可变延迟单元的所述输出信号作为本地信号,来正交检测所述接收信号的步骤;以及提取基波分量的步骤。
19、根据权利要求12的控制近程雷达的所述方法,其特征在于执行接收 所述反射波的所述过程的所述步骤包括准备接收天线、检测电路和釆样保持电路的步骤;使用所述接收天线,来接收从存在于所述空间中的所述物体反射的所述 波的步骤;使用所述检测电路,来检测由所述接收天线接收的所述反射波的接收信 号的步骤;以及使用所述采样保持电路,来求由所述检测电路检测的所述信号的积分并 保持所述积分结果的步骤,并且检测所述接收信号的所述步骤包括准备包括电压控制振荡器的锁相环电路、正交解调器和低通滤波器的步骤;在当所述参考信号的频率为稳定的时的周期期间,使用所述电压控制振 荡器,来接收来自所述振荡器的所述输出信号作为参考信号,并输出在频率 中与所述参考信号同步的信号的步骤;在经过当所述参考信号的频率为稳定的时的所述周期之后,使用所述锁 相环电路,来将所述电压控制振荡器保持在即将在当所述参考信号的频率为稳定的时的所述周期的结束之前的状态中的步骤;使用所述正交解调器,以所述锁相环电路的电压控制振荡器的输出信号 作为本地信号,来正交检测由所述接收天线接收的所述反射波的接收信号的步骤;以及使用所述低通滤波器,来从由所述正交解调器正交检测的所述输出信号 提取基波分量的步骤。
20、 根据权利要求16的控制近程雷达的所述方法,其特征在于使用所述 线性乘法器,来将来自所述发散电路的信号的所述对线性地相乘的所述步骤 包括准备由第一差分放大器、第二与第三差分放大器和第一与第二负载电阻 器的单片微波集成电路配置的Gilbert混频器的步骤;使用所述第 一差分放大器,来差分地输入信号的所述对的第 一信号的步骤;使用连接到所述第一差分放大器的负载侧的所述第二和第三差分放大 器,来差分地输入信号的所述对的第二信号的步骤;以及使用连接到所述第二和第三差分放大器的负载侧的所述第 一和第二负载 电阻器,来只输出等于所述第一信号和第二信号的乘积的信号分量的步骤。
21、 根据权利要求12的控制近程雷达的所述方法,其特征在于进一步包含准备模/数转换器的步骤;以及使用所述模/数转换器来将来自所述接收单元的所述输出信号转换为数 字信号,并将所述数字信号输入到所述信号处理单元的步骤。
22、 根据权利要求12的控制近程雷达的所述方法,其特征在于进一步包含准备控制单元的步骤;以及与预定的进度表或来自所述信号处理单元的处理结果相一致,使用控制 单元,来控制所述发送单元和所述接收单元中的至少 一个的步骤。
全文摘要
包括第一脉冲产生单元、第二脉冲产生单元、振荡器和开关的短脉冲雷达的发送单元,在作为UWB短脉冲雷达遵照指定的频谱屏蔽的时候,将不与RR无线电波发射禁止波段或SDR波段干扰的、预定的短脉冲波发射到空间中。在预定的周期中,第一脉冲产生单元输出具有比短脉冲波的宽度更大的宽度的第一脉冲。当第一脉冲产生单元输出第一脉冲时,第二脉冲产生单元输出具有相应于短脉冲波的宽度的宽度的第二脉冲。振荡器只在当第一脉冲产生单元输出第一脉冲时振荡。只在当第二脉冲产生单元输出第二脉冲时导通开关。由此来将来自开关的输出信号作为预定的短脉冲波发射到空间中。
文档编号H04B1/69GK101375177SQ200780000840
公开日2009年2月25日 申请日期2007年3月2日 优先权日2006年4月20日
发明者手代木扶, 江岛正宪 申请人:安立股份有限公司;松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1