用于与物理层信息一起使用的互联网络设备的制作方法

文档序号:7910704阅读:215来源:国知局
专利名称:用于与物理层信息一起使用的互联网络设备的制作方法
技术领域
本发明涉及用于与物理层信息一起使用的互联网络设备。
背景技术
通信网络典型地包括各项设备之间的众多逻辑通信链路。往往使用若干件物理通信媒体来实施单个逻辑通信链路。例如,计算机与互联网络(inter-networking)设备诸如集线器或路由器之间的逻辑通信链路可以如下实施。第一电缆把计算机连接到墙壁中安装的插孔(jack)。第二电缆把壁装式插孔连接到接插板(patch panel)的端口,而第三电缆把互联网络设备连接到接插板的另一个端口。“接插线”把两者交叉连接在一起。换言之, 往往使用若干段(segment)物理通信媒体来实施单个逻辑通信链路。网络或企业管理系统(通常在这里被称为“网络管理系统”或“匪S”)典型地知道在网络中存在的逻辑通信链路但是典型地没有关于用来实施逻辑通信链路的具体物理层媒体的信息。事实上,匪S系统典型地没有能力来显示或者以其他方式提供关于如何在物理层级处实施逻辑通信链路的信息。物理层管理(PLM)系统确实存在。然而,现有的PLM系统被典型地设计成便于在给定位置处的特定接插板或一组接插板处的交叉连接的添加、改变和去除。通常,这样的 PLM系统包括如下功能性(functionality)跟踪什么连接到接插板的每个端口,追踪使用接插板建立的连接,并且向接插板处的用户提供视觉指示。然而,这样的PLM系统典型地是以“接插板”为中心的,因为它们集中于帮助技术员正确地添加、改变或去除接插板处的交叉连接。在接插板中包括的或者耦合到接插板的任何“智能”典型地仅设计成便于在接插板处进行准确的交叉连接并且对相关问题进行检修(例如,通过检测接插线是否插入到给定端口中和/或通过确定使用接插线来彼此耦合哪些端口)。此外,这样的PLM系统收集的任何信息典型地仅用在PLM系统内。换言之,这样的 PLM系统维持的信息收集是未在应用层级处被其他系统使用的逻辑“岛”。尽管这样的PLM 系统有时连接到其他网络(例如,连接到局域网或因特网),但是这样的网络连接典型地仅用来使得用户能够远程地访问PLM系统。也就是说,用户使用外部网络连接来远程地访问驻留在PLM系统自身中的PML相关应用层功能性,但是外部系统或网络它们自身通常不包括利用驻留在PLM系统中的任何物理层相关信息的任何应用层功能性。

发明内容
一个示例性实施例针对一种互联网络设备,其包括多个端口 ;以及互联网络功能性,用于为在端口上接收的分组执行互联网络功能。互联网络设备也包括用于接收物理层信息的功能性,其中物理层信息的至少一部分存储在物理通信媒体中或物理通信媒体上并且从其读取并传达给互联网络设备。互联网络功能性使用物理层信息的至少一部分来执行互联网络功能。另一个示例性实施例针对一种互联网络设备,其包括多个端口 ;以及互联网络功能性,为在端口上接收的分组执行至少一个互联网络功能。所述互联网络设备被配置成读取存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息。所述互联网络设备也被配置成向聚合点发送从附连到互联网络设备的物理通信媒体读取的信息的至少一些。聚合点耦合到互联网络设备也耦合到的网络。另一个示例性实施例针对一种系统,其包括经由构成网络的多个网络段而彼此耦合的多个交换机。中央网桥功能被配置成接收与网络有关的物理层信息。物理层信息包括使网络上的设备的媒体访问控制(MAC)地址与交换机的端口进行关联的信息。所述中央网桥功能被配置成确定网络的生成树。中央网桥功能被配置成向多个交换机传达关于生成树的信息。交换机被配置成使用关于由中央网桥功能确定的生成树的信息来配置交换机以实行由多个交换机执行的桥接功能。另一个示例性实施例针对一种方法,其包括在中央网桥功能处接收与网络有关的物理层信息。该方法还包括在中央网桥功能处使网络上的设备的媒体访问控制(MAC)地址与多个交换机的端口进行关联,所述多个交换机经由构成网络的多个网络段而彼此耦合。 该方法还包括在中央网桥功能处为所述多个交换机中的每个确定应当如何配置相应交换机中的相应转发数据库;以及从中央网桥功能向所述多个交换机中的每个传达指示应当如何配置相应转发数据库的信息。该方法还包括如由中央网桥功能传达给相应交换机的信息所指示的那样配置所述多个交换机中的每个中的转发数据库。另一个示例性实施例针对一种以太网物理层设备,其包括物理媒体相关子层,用于耦合该物理层设备到插孔;物理媒体附连子层;以及物理编码子层。以太网物理层设备还包括媒体独立接口功能性,用于通过媒体独立接口把该物理层设备耦合到媒体访问控制设备;以及管理功能性,用于通过管理接口把该物理层设备耦合到媒体访问控制设备。以太网物理层设备还包括多个寄存器。所述管理功能性被配置成经由管理接口把存储在多个寄存器中的信息输出到媒体访问控制设备。以太网物理层设备还包括物理层信息功能,被配置成确定插头是否插入到插孔中并且如果插头插入到插孔中则读取存储在与插头关联的相应存储器设备中的信息并且把信息存储在至少一个寄存器中。下面在附图和说明书中阐述要求保护的发明的各种实施例的细节。其它特征和优点将根据说明书、附图和权利要求而变得显而易见。


图1是包括物理层信息(PLI)功能性以及物理层管理(PLM)功能性的系统的一个示例性实施例的框图。图2是适合于用在图1的系统中的端口和媒体读取接口的一个高级实施例的框图。图3示出了包括物理层信息(PLI)功能性以及物理层管理(PLM)功能性的系统的一个示例性实施例。
图4是图3中示出的每个从(slave)处理器模块的一个示例性实施例的框图。图5是图3的主(master)处理器单元的一个实施例的框图。图6是示出适合于用在图3的系统中的接插线的一个实施例的图示。图7是示出适合于用在图3的系统中的接插线的另一个示例性实施例的图示。图8是聚合(aggregation)点的一个实施例的框图。图9是尤其被配置为使用物理层信息的网络管理系统(匪S)的一个实施例的框图,所述物理层信息是使用在这里描述的技术而捕获和聚合的。图10是在包括物理层信息功能性的网络中的符合性跟踪(compliance tracking)方法的一个示例性实施例的流程图。图11是尤其被配置为使用物理层信息的互联网络设备的一个实施例的框图,所述物理层信息是使用在这里描述的技术而捕获和聚合的。图12示出了使用在这里描述的技术而捕获和聚合的物理层信息如何可以用来改进在网络中使用的互联网络设备的效率的示例。图13示出了包括物理层信息功能性以及物理层管理功能性的系统的另一个示例性实施例。图14-16示出了包括物理层信息功能性以及物理层管理功能性的系统的另一个示例性实施例。图17是包括用于获取物理层信息的功能性的墙壁插座的一个实施例的框图。图18是包括用于获取物理层信息的功能性的计算机的一个实施例。图19是使用包括用于读取媒体信息的集成功能性的物理层设备的交换机的一个示例性实施例的框图。图20是使用包括用于读取媒体信息的集成功能性的物理层设备的计算机的一个示例性实施例的框图。图21是可以装配在RJ-45插头周围以便把存储器设备附连到RJ-45插头的外罩 (jacket)的一个实施例的图示。图22示出了部署无源光纤线路的网络。图23是示出用于图23的光纤分配集线器的示例电缆路由(routing)方案的示意图。各幅图中的相似参考数字和标号指示相似元件。
具体实施例方式图1是包括物理层信息(PLI)功能性以及物理层管理(PLM)功能性的系统100的一个实施例的框图。系统100包括多个连接器组件102,其中每个连接器组件102包括一个或多个端口 104。通常,连接器组件102用来将物理通信媒体段彼此附连。每个物理通信媒体段附连到相应端口 104。每个端口 104用来将两个或更多物理通信媒体段彼此连接(例如以实施逻辑通信链路的一部分)。连接器组件102的示例包括例如机架安装式连接器组件(诸如接插板、分配单元以及用于光纤和铜物理通信媒体的媒体转换器)、壁装式连接器组件(诸如盒子、插孔、插座以及用于光纤和铜物理通信媒体的媒体转换器)、以及互联网络设备(诸如交换机、路由器、集线器、中继器、网关和接入点)。
至少一些连接器组件102被设计用于与具有存储在它们中或它们上的标识符和属性信息的物理通信媒体段一起使用。标识符和属性信息以如下方式存储在物理通信媒体段中或物理通信媒体段上使得所存储的信息能够在该段附连到端口 104时由与该连接器组件102关联的可编程处理器106读取。可以在物理通信媒体段中或物理通信媒体段上存储的信息的示例包括(而不限制)唯一标识该特定物理通信媒体段(类似于以太网媒体访问控制(MAC)地址但与物理通信媒体和/或附连到物理通信媒体的连接器关联)的标识符、部件号、插头或其他连接器类型、电缆或光纤类型和长度、序列号、电缆极性、制造日期、 制造批号、关于物理通信媒体或附连到物理通信媒体的连接器的一个或多个视觉属性的信息(诸如关于物理通信媒体或连接器的颜色或形状或者物理通信媒体或连接器的图像的信息)、以及其他由企业资源计划(ERP)系统或库存控制系统使用的信息。在其他实施例中, 备选或附加数据存储在媒体段中或媒体段上。例如,测试或媒体质量或性能信息可以存储在物理通信媒体段中或物理通信媒体段上。测试或媒体质量或性能信息例如可以是在制造特定媒体段时执行的测试的结果。也如下面所指出的,在一些实施例中,可以更新存储在物理通信媒体段中或物理通信媒体段上的信息。例如,可以更新存储在物理通信媒体段中或物理通信媒体段上的信息以包括在安设或以其他方式校验物理媒体段时执行的测试的结果。在另一示例中,这样的测试信息被供应给聚合点120并且存储在由聚合点120维持的数据存储器中(下面描述其两者)。在另一示例中,存储在物理通信媒体段中或物理通信媒体段上的信息包括对附连到物理通信媒体段的连接器(未示出)插入到端口 104中的次数的计数。在这样的示例中, 每次连接器插入到端口 104中时就更新存储在物理通信媒体段中或物理通信媒体段上的计数。该插入计数值例如可以用于保修(warranty)目的(例如以确定连接器是否插入了多于保修书中指定的次数)或者用于安全目的(例如以检测物理通信媒体的未经授权插入)。在图1中所示的特定实施例中,连接器组件102的每个端口 104包括相应媒体读取接口 108,经由该媒体读取接口 108相应可编程处理器106能够确定物理通信媒体段是否附连到该端口 104并且如果一个物理通信媒体段附连到该端口 104则读取存储在所附连段中或所附连段上的标识符和属性信息(如果这样的信息存储在其中或其上)。与每个连接器组件102关联的可编程处理器106使用适合的总线或其他互连(未示出)而通信地耦合到每个媒体读取接口 108。在图1中所示的特定实施例中,示出了四种示例性类型的连接器组件配置。在图1 中所示的第一连接器组件配置110中,每个连接器组件102包括其自己的相应可编程处理器106以及其自己的相应网络接口 116,该相应网络接口 116用来把该连接器组件102通信地耦合到因特网协议(IP)网络118。在第二类型的连接器组件配置112中,一群连接器组件102物理上位于彼此附近 (例如,在隔间或装备柜中)。该群中的每个连接器组件102包括其自己的相应可编程处理器106。然而在第二连接器组件配置112中,一些连接器组件102 (在这里称为“对接连接器组件”)包括它们自己的相应网络接口 116,而一些连接器组件102 (在这里称为“未对接连接器组件”)未包括它们自己的相应网络接口 116。未对接连接器组件102经由本地连接而通信地耦合到该群中的一个或多个对接连接器组件102。以此方式,未对接连接器组件 102经由包括在该群中的一个或多个对接连接器组件102中的网络接口 116而通信地耦合到IP网络118。在第二类型的连接器组件配置112中,可以减少用来把连接器组件102耦合到IP网络118的网络接口 116的总数。此外,在图1中所示的特定实施例中,使用菊花链拓扑(尽管在其他实施方式和实施例中可以使用其它拓扑)把未对接连接器组件102连接到对接连接器组件102。在第三类型的连接器组件配置114中,一群连接器组件102物理上位于彼此附近 (例如,在隔间或装备柜内)。该群中的一些连接器组件102 (在这里也称为“主”连接器组件102)包括它们自己的可编程处理器106和网络接口 116,而一些连接器组件102 (在这里也称为“从”连接器组件102)未包括它们自己的可编程处理器106或网络接口 116。每个从连接器组件102经由一个或多个本地连接而通信地耦合到该群中的一个或多个主连接器组件102。每个主连接器组件102中的可编程处理器106能够为它是其一部分的主连接器组件102以及主连接器组件102经由本地连接而连接到的任何从连接器组件102实行下面描述的处理。结果,可以减少与从连接器组件102关联的成本。在图1中所示的特定实施例中,从连接器组件102连接到星型拓扑中的主连接器组件102(尽管在其他实施方式和实施例中可以使用其它拓扑)。每个可编程处理器106被配置成执行使可编程处理器106实行下面描述的各种功能的软件或固件。每个可编程处理器106也包括适合的存储器(未示出),其耦合到可编程处理器106用于存储程序指令和数据。通常,可编程处理器106确定物理通信媒体段是否附连到该处理器106与之关联的端口 104并且如果一个物理通信媒体段附连到该端口 104 则使用关联的媒体读取接口 108来读取存储在所附连物理通信媒体段中或所附连物理通信媒体段上的标识符和属性信息⑶口果该段包括存储在其中或其上的这样的信息)。在第一、第二和第三配置110、112和114中,每个可编程处理器106也被配置成把物理层信息传达给耦合到IP网络118的设备。物理层信息(PLI)包括关于与该可编程处理器106关联的连接器组件102的信息(在这里也称为“设备信息”)以及关于附连到那些连接器组件102的端口 104的任何物理媒体段的信息(在这里也称为“媒体信息”)。设备信息例如包括针对每个连接器组件的标识符、标识连接器组件类型的类型标识符、以及把优先级与每个端口关联的端口优先信息。媒体信息包括可编程处理器106从具有存储在其中或其上的标识符和属性信息的所附连物理媒体段读取的标识和属性信息。媒体信息也可以包括关于没有存储在其中或其上的标识符或属性信息的物理通信媒体的信息。这后一类型的媒体信息可以在所关联的物理媒体段附连到连接器组件102 (例如使用使得用户能够配置和监视连接器组件102的可编程处理器106上执行的管理应用)时被手动输入。在第四类型的连接器组件配置115中,一群连接器组件102容纳在共同机箱或其他机壳内。该配置115中的每个连接器组件102包括它们自己的可编程处理器106。在这个配置115的背景下,每个连接器组件中的可编程处理器106是“从”处理器106。每个从处理器106也通信地耦合到共同“主”可编程处理器117 (例如,在包括在机箱或机壳中的背板上)。主可编程处理器117耦合到网络接口 116,该网络接口 116用来通信地耦合主可编程处理器117到IP网络118。在这个配置115中,每个从可编程处理器106被配置成确定物理通信媒体段是否附连到其端口 104并且使用所关联的媒体读取接口 108来读取存储在所附连物理通信媒体段中或所附连物理通信媒体段上的标识符和属性信息(如果所附连段具有存储在其中或其上的这样的信息)。该信息从机箱中的每个连接器组件102中的从可编程处理器106传达到主处理器117。主处理器117被配置处置与把所读取的物理层信息自从处理器106传达到耦合至IP网络118的设备相关联的处理。系统100包括使得连接器组件102捕获的物理层信息能够由传统物理层管理应用域之外的应用层功能性使用的功能性。即,物理层信息不是保留在仅用于PLM目的的 PLM “岛”中而是相反使其可用于其它应用。在图1中所示的特定实施例中,系统100包括经由IP网络118通信地耦合到连接器组件102的聚合点120。聚合点120包括从连接器组件102 (以及其它设备)获取物理层信息并且把物理层信息存储在数据存储器中的功能性。聚合点120可以用来从各种类型的连接器组件106接收物理层信息,所述连接器组件具有用于自动读取存储在物理通信媒体段中或物理通信媒体段上的信息的功能性。上面指出了这样的连接器组件106的示例。此外,聚合点120和聚合功能性IM也可以用来从其它类型的具有用于自动读取存储在物理通信媒体段中或物理通信媒体段上的信息的功能性的设备接收物理层信息。这样的设备的示例包括终端用户设备一诸如计算机、外围设备(诸如打印机、复印机、存储器设备和扫描仪)以及IP电话一其包括用于自动读取存储在物理通信媒体段中或物理通信媒体段上的信息的功能性。聚合点120也可以用来获取其它类型的物理层信息。例如,在这个实施例中,聚合点120也获取关于物理通信媒体段的否则不会自动传达给聚合点120的信息。这样的信息的一个示例是关于不带有连接器(non-cormectorized)的物理通信媒体段的信息,所述物理通信媒体段否则没有在附连到连接器组件的它们中或它们上存储的信息(例如包括指示设备的哪些端口连接到网络中的其它设备的哪些端口的信息以及关于该段的媒体信息)。 这样的信息的另一示例是关于物理通信媒体段的信息,所述物理通信媒体段连接到不能读取存储在附连到它们端口的媒体段中或该媒体段上的媒体信息和/或不能把这样的信息传达给聚合点120的设备(例如,因为这样的设备不包括这样的功能,因为这样的设备与没有存储在它们中或它们上的媒体信息的媒体段一起使用,和/或因为带宽不可用于把这样的信息传达给聚合点120)。在这个示例中,信息可以例如包括关于设备它们自身的信息(诸如设备的MAC地址以及IP地址,如果指派给这样的设备的话)、指示设备的哪些端口连接到网络中的其它设备(例如其它连接器组件)的哪些端口的信息、以及关于附连到设备端口的物理媒体的信息。这个信息可以例如通过结合各项中的每项的初始安设(installation) (例如使用web浏览器)把这样的信息手动输入到文件(诸如电子表格)中并且然后把该文件上传到聚合点120而提供给聚合点120。这样的信息也可以例如使用由聚合点120提供的用户接口(例如使用web浏览器)而直接输入。聚合点120也可以获取关于网络部署于其中的一个或多个建筑物的布局的信息以及指示每个连接器组件102、物理媒体段和互联网络设备位于建筑物内何处的信息。这个信息可以例如结合各项中的每项的初始安设(例如使用web浏览器)来手动输入和验证。在一种实施方式中,这样的位置信息包括针对每个端口或针对每个物理通信媒体段的其它端接点的X、Y和Z位置(例如,在ANSI/TIA/EIA 606-A标准(商业电信基础设施的管理标准) 中指定的类型的X、Y和Z位置信息)。聚合点120可以获取和维持与网络中存在的各种物理通信媒体段有关的测试、媒体质量或性能信息。测试、媒体质量或性能信息例如可以是在制造特定媒体段时和/或在当安设或以其它方式校验特定媒体段时执行测试时执行的测试的结果。聚合点120也包括为外部设备或实体提供接口以访问由聚合点120维持的物理层信息的功能。这个访问可以包括从聚合点120取得信息以及向聚合点120供应信息。在这个实施例中,聚合点120被实施为“中间件”,其能够向这样的外部设备和实体提供对由接入点120维持的PLI的透明和便利访问。因为聚合点120聚合来自IP网络118上的相关设备的PLI并且向外部设备和实体提供对这样的PLI的访问,所以外部设备和实体不需要与IP网络118中的提供PLI的所有设备单独交互,这样的设备也不需要具有对来自这样的外部设备和实体的请求做出响应的能力。聚合点120在图1中所示的实施例中实施应用编程接口(API),应用层功能性通过该应用编程接口可以使用描述和记载API的软件开发套件(software development kit, SDK)来获得对由聚合点120维持的物理层信息的访问。例如,如图1所示,网络管理系统(匪S) 130包括物理层信息(PLI)功能性132,其被配置成从聚合点120取得物理层信息并且把它提供给匪S 130的其它部件从而进行使用。NMS 130使用所取得的物理层信息来执行一个或多个网络管理功能(例如,如下面所描述的)。在图1中所示的实施例的一种实施方式中,匪S 130的PLI功能性132使用由聚合点120实施的API从聚合点120取得物理层信息。匪S 130通过IP网络118与聚合点120
ififn。如图1中所示,在计算机136上执行的应用134也可以使用由聚合点120实施的 API来访问由聚合点120维持的PLI信息(例如,从聚合点120取得这样的信息和/或把这样的信息供应给聚合点120)。计算机136耦合到IP网络118并且通过IP网络118访问聚合点120。在图1中所示的实施例中,用来实施IP网络118的一个或多个互联网络设备138 包括物理层信息(PLI)功能性140。互联网络设备138的PLI功能性140被配置成从聚合点120取得物理层信息并且使用所取得的物理层信息来执行一个或多个互联网络功能。互联网络功能的示例包括(0SI模型的)层1、层2和层3互联网络功能,诸如在互联网络设备处接收的通信业务的路由、交换、中继、桥接和整理(groom)。在这样的实施例的一种实施方式中,PLI功能性140使用由聚合点120实施的API来与聚合点120通信。包括在互联网络设备138中的PLI功能性140也可以用来捕获与互联网络设备 138以及附连到它的物理通信媒体关联的物理层信息并且把所捕获的物理层信息传达给聚合点120。这样的信息可以使用API或者通过使用用来与连接器组件102通信的协议而提供给聚合点120。聚合点120可以实施在独立网络节点(例如,运行适当软件的独立计算机)或者可以与其它网络功能性一起集成(例如,与元件管理系统或网络管理系统或者其它网络服务器或网络元件集成)。此外,聚合点120的功能性可以是分布在网络中的许多节点和设备上和/或例如以层次方式(例如,用多级聚合点)实施。此外,聚合点120和连接器组件102被配置成使得聚合点120可以自动发现位于网络118上的向聚合点120提供PLI的设备(诸如连接器组件102和互联网络设备138)并且与该设备连接。以此方式,当能够向聚合点120提供PLI的设备(诸如连接器组件102或互联网络设备138)耦合到IP网络118时,聚合点120能够自动发现连接器组件102并且开始为该连接器组件102聚合物理层信息而不要求个人安设连接器组件102以获悉位于网络118上的聚合点120。类似地,当聚合点120耦合到IP网络118时,聚合点120能够自动发现能够向聚合点提供PLI的设备并且与该设备交互而不要求个人安设聚合点120以获悉位于IP网络118上的设备。因而,在这里描述的物理层信息资源可以容易地集成到IP网络118中。IP网络118可以包括一个或多个局域网和/或广域网(例如包括因特网)。结果, 聚合点120、匪S 130和计算机136不需要位于与彼此相同的地点或者位于与连接器组件 102或互联网络设备138相同的地点。各种常规的IP联网技术可以用于部署图1的系统100。例如,常规的安全协议可以用来保障通信,如果它们通过公共或在其它方面不安全的通信信道(诸如因特网或者通过无线通信链路)进行传达的话。在图1中所示的实施例的一种实施方式中,每个连接器组件102、每个连接器组件 102的每个端口 104以及每个媒体段可单独寻址。在IP地址用来单独寻址每个连接器组件 102的情况下,专用于与各种连接器组件102 —起使用的虚拟私人网络(VPN)可以用来把用于连接器组件102的IP地址与在IP网络118中使用的主要IP地址空间分离。此外,电力可以使用IEEE 802. 3af标准中指定的常规“以太网供电”技术而供应给连接器组件102,所述IEEE 802. 3af标准由此通过引用合并到本文中。在这样的实施方式中,电力枢纽142或其它电力供应设备(位于耦合到每个连接器组件102的互联网络设备附近或者合并到该互联网络设备中)把DC电力注入到在用来把每个连接器组件102连接到关联的互联网络设备的铜双绞线电缆中包括的一个或多个导线(在这里也称为“电力线”) 上。连接器组件102中的接口 116从电力线中拾取注入的DC电力并且使用所拾取的电力来给该连接器组件102的有源部件供电。在第二和第三连接器组件配置112和114中,一些连接器组件102未直接连接到IP网络118并且因此不能直接从电力线接收电力。这些连接器组件102经由本地连接从直接连接到IP网络118的连接器组件102接收电力,所述本地连接使这样的连接器组件102彼此通信。在第四配置115中,接口 116从电力线中拾取所注入的DC电力并且通过背板把电力供应给主处理器117和每个从处理器106。在图1中所示的特定实施例中,系统100也支持常规的物理层管理(PLM)操作,诸如跟踪附连到连接器组件102的端口 104的物理媒体段的移动、添加和改变以及为实行移动、添加和改变提供辅助。由聚合点120提供的PLI可以用来改进常规的“引导MAC”过程。 例如,关于端口 104的位置和相关物理媒体段(或附连到其上的连接器)的视觉外观(例如, 颜色或形状)的信息可以被传达给技术员以辅助技术员实行移动、添加或改变。这个信息可以被传达给技术员使用的计算机或智能电话。此外,驻留在系统100中的PLI功能性也可以用来验证通过校验预期的物理媒体段位于预期的端口 104中而正确地实行了特定MAC。 如果情况不是如此,则可以向技术员发送警报,使得技术员可以纠正问题。包括在系统100中的PLM功能也可以支持用于(例如,通过照亮一个或多个发光二极管(LED)以给技术员指引特定连接器组件102和/或特定端口 104或者通过在包括在连接器组件102上或连接器组件102附近的液晶显示器(IXD)上显示消息)引导技术员实行 MAC的常规技术。其它PLM功能包括保持关于连接到连接器组件的媒体的历史日志。在图1中所示的实施例中,聚合点120包括实施这样的PLM功能的PLM功能性144。PLM功能性144使用在聚合点120处维持的物理层信息来这样做。IP网络118典型地使用一个或多个互联网络设备来实施。如上面所指出的,互联网络设备是一种类型的连接器组件(并且仅为方便解释起见在图1中单独参考互联网络设备138的特定实施方式)。通常,互联网络设备可以被配置成读取存储在附连到其端口的物理媒体段中或该物理媒体段上的媒体信息并且把它从所附连的媒体段读取的媒体信息(以及关于互联网络设备自身的信息)传达给聚合点120,比如在这里描述的任何其它连接器组件。除了连接器组件102之外,在这里描述的用于读取存储在物理媒体段中或物理媒体段上的媒体信息的技术可以用于网络的一个或多个终端节点。例如,计算机(诸如膝上型电脑、服务器、台式计算机或者专用计算设备诸如IP电话、IP多媒体装置和存储器设备)可以被配置成读取存储在附连到其端口的物理媒体段中或该物理媒体段上的媒体信息并且把从所附连的媒体段读取的媒体信息(以及关于设备它们自身的信息)传达给聚合点120, 如在这里所描述的。图2是适合于用在图1的系统中的端口 104和媒体读取接口 106的一个高级实施例的框图。每个端口 104包括第一附连点206和第二附连点208。第一附连点206用来把第一物理通信媒体段210附连到端口 104,而第二附连点208用来把第二物理通信媒体段212 附连到端口 104。在图2中所示的特定实施例中,第一附连点206位于连接器组件的后部。因此,第一附连点206和附连到其上的第一物理媒体段210在这里分别也称为“后附连点” 206和 “后媒体段” 210。此外在这个实施例中,后附连点206被配置成以半永久的方式把后媒体段210附连到端口 104。如在本文中使用的,半永久的附连是被设计成相对不频繁地改变 (如果有的话)的附连。这有时也称为“一次”连接。适合的后连接器206的示例包括打线 (punch-down)块(在铜物理媒体的情况下)以及光纤适配器、光纤接续点和光纤端接点(在光学物理媒体的情况下)。在图2中所示的实施例中,第二附连点208位于连接器组件102的前部。因此,第二附连点208和第二物理媒体段212在这里分别也称为“前附连点”208和“前媒体段”212。 在图2中所示的实施例中,每个端口 104的前附连点208被设计成与具有存储在它们中或它们上的标识符和属性信息的“带有连接器的”前媒体段212 —起使用。如在本文中使用的,“带有连接器的”媒体段是在该段的至少一个末端包括连接器214的物理通信媒体段。 前附连点208使用与在前媒体段212的末端上的对应连接器214紧密配合的适合连接器或适配器来实施。连接器214用来便于前媒体段212到端口 104的容易且反复的附连和拆离。带有连接器的媒体段的示例包括具有附连到两个末端的模块化连接器或插头的CAT-5、 6和7双绞线电缆(在该情况下,使用兼容模块化插孔来实施前连接器)或者具有SC、LC、FC、 LX. 5、MTP或MPO连接器的光缆(在该情况下,使用兼容SC、LC、FC、LX. 5、MTP或MPO连接器或适配器来实施前连接器)。在这里描述的技术可以与其它类型的连接器一起使用,例如包括BNC连接器、F连接器、DSX插孔和插头、小型(bantam)插孔和插头、以及MPO和MTP多光纤连接器和适配器。
每个端口 104把相应的后附连点206通信地耦合到相应的前附连点208。结果, 附连到相应的后附连点206的后媒体段210通信地耦合到附连到相应的前附连点208的任何前媒体段212。在一种实施方式中,每个端口 104被设计用于与包括相同类型的物理通信媒体的后媒体段210和前媒体段212 —起使用,在该情况下每个端口 104在物理层级把附连到相应的后附连点206的任何后媒体段210通信地耦合到附连到相应的前附连点208 的任何前媒体段212而没有任何媒体转换。在其它实施方式中,每个端口 104以其它方式 (例如,使用媒体转换器,如果后媒体段210和前媒体段212包括不同类型的物理通信媒体的话)把附连到相应的后附连点206的任何后媒体段210通信地耦合到附连到相应的前附连点208的任何前媒体段212。如图2中所示,端口 104被配置用于与包括存储器设备216的前媒体段212—起使用,在该存储器设备216中存储针对该媒体段212的媒体信息。存储器设备216包括如下存储器设备接口 当对应的连接器214插入到(或者以其它方式附连到)端口 104的前附连点208中时,该存储器设备接口把存储器设备216通信地耦合到对应的媒体读取接口 108, 使得关联的可编程处理器106可以读取存储在存储器设备216中的信息。在图2中所示的实施例的一种实施方式中,每个连接器214自身容纳存储器设备216。在这样的实施例的另一实施方式中,存储器设备216容纳在与连接器214分开的外壳内。在这样的实施方式中, 该外壳被配置成使得它可以扣接(snap)到媒体段212或连接器214上,其中存储器设备接口相对于连接器214定位成使得当连接器214插入到(或者以其它方式附连到)前附连点 208时存储器设备接口将与媒体读取接口 108正确地紧密配合。在一些实施方式中,存储在存储器设备216中的至少一些信息可以在现场进行更新(例如,通过让关联的可编程处理器106使附加信息写入到存储器设备216或者改变或删除先前存储在存储器设备216中的信息)。例如,在一些实施方式中,存储在存储器设备 216中的一些信息不能在现场被改变(例如,标识符信息或者制造信息),而存储在存储器设备216中的一些其它信息可以在现场被改变(例如,测试、媒体质量或者性能信息)。在其它实施方式中,存储在存储器设备216中的任何信息都不能在现场被更新。此外除了用于媒体信息的存储器之外,存储器设备216也可以包括处理器或微控制器。在该情况下,包括在存储器设备216中的微控制器可以用来执行软件或固件,其例如控制附连到存储器设备216的一个或多个LED。在另一示例中,微控制器执行软件或固件, 其对前媒体段212执行完整性测试(例如,通过对包围前物理通信媒体段212的护套或绝缘体执行电容或阻抗测试(出于这样的目的,其可以包括金属箔或金属填充物))。倘若检测到前媒体段212完整性的问题,微控制器可以使用存储器设备接口(例如,通过产生中断)把该事实传达给与端口 104关联的可编程处理器106。微控制器也可以用于其它功能。图3示出了包括物理层信息(PLI)功能性以及物理层管理(PLM)功能性的系统300 的一个实施例。系统300包括多个容纳在共同机箱301内的接插板302。例如,在一个共同配置中,机箱301安设在通信柜或房间中并且安装在机架中。在一些较大安设中,存在若干机架的机箱301和接插板302 (例如布置成若干隔间)。接插板302可以封装为滑入机箱 301中的刀片。每个接插板302包括一组端口 304(例如16、32、48或512个端口 304)。端口 304 的数目可以随着接插板302而变化。
如图2中所示的那样实施每个端口 304。通常,在图3中所示的实施例的背景下, 每个前媒体段312包括“接插线”312,其用来选择性地交叉连接来自相同或不同接插板302 的两个端口 304。在这个实施例中,每个接插线312具有附连到每个末端的模块化插头314, 其可以插入到接插板302的端口 304之一的前媒体连接器中。以此方式,耦合到两个交叉连接端口 304的相应后媒体段(在图3中未示出)可以彼此通信地耦合以便实施耦合到相应后媒体段的装备之间的逻辑通信链路。例如,在一个示例性应用中,壁装式插孔使用适合的后媒体段诸如铜或光纤电缆而通信地耦合到端口 304的后连接器。该电缆典型地路由经过建筑物(例如,在墙壁、天花板、地板等等之上、之下、周围和/或经过墙壁、天花板、地板等等)并且不被容易或频繁地移动。如果连接到一个这样的壁装式插孔的第一件装备需要通信地耦合到连接到另一这样的壁装式插孔的第二件装备,则接插线312可以用来建立该连接。如图3中所示,主处理器单元(MPU)330也容纳在机箱301内。主处理器单元(MPU) 330通过背板315与包括在每个接插板304中的从处理器模块318通信。图4是图3中示出的每个从处理器模块318的一个实施例的框图。每个从处理器模块318包括执行软件322 的从可编程处理器320。软件322的执行使从处理器320实行下面描述的各种功能。每个从处理器模块318也包括存储器324,其耦合到从处理器320用于存储程序指令和数据。每个从处理器模块318中的从处理器320使用适合的接口而耦合到背板315。系统300被设计成与接插线312 (或者其它前媒体段)一起使用,所述接插线312 具有存储在它们中或它们上的上面结合图2所描述的类型的标识符和属性信息。每个接插板302的每个端口 304包括相应媒体读取接口(在图3中未示出)。每个接插板302中的从可编程处理器320使用总线或其它互连(未示出)而通信地耦合到该接插板302中的每个媒体读取接口。从可编程处理器320被配置成确定端口 304的状态是否改变。例如当接插线插入到先前空的前连接器时或者当接插线312从前连接器去除时,或者当不同的接插线插入到先前占用的前连接器时,端口 304的状态改变。在这样的实施例的一种实施方式中,每个媒体读取接口被配置成使得从可编程处理器320可以检测每个端口 304的状态改变。例如,媒体读取接口的电接触结构可以被配置成使得当接触线插入到端口 304中或从端口 304去除(例如通过闭合或断开电路)时电信号改变状态。从处理器320检测这样的状态改变以检测接插线何时已插入到每个端口 304 的前连接器中或从该前连接器去除。这样的接触结构的示例是2009年10月16日提交的题为 “MANAGED CONNECTIVITY IN ELECTRICAL SYSTEMS AND METHODS THEREOF” 的美国临时专利申请序列号61/252,395 (在这里也称为“‘395申请”)、2009年10月20日提交的题为 “ELECTRICAL PLUG FOR MANAGED CONNECTIVITY SYSTEMS” 的美国临时专利申请序列号 61/253, 208 (在这里也称为“‘208申请”)以及2009年10月19日提交的题为“ELECTRICAL PLUG FOR MANAGED CONNECTIVITY SYSTEMS” 的美国临时专利申请序列号 61/253,964 (在这里也称为“‘964申请”)。‘395申请、‘208申请以及‘964申请由此通过引用合并到本文中。备选地,从处理器320可以被配置成周期性地扫描包括在该接插板302中的所有媒体读取接口以确定任何关联的端口 304的状态是否已改变。此外,当在每个接插板302中的从可编程处理器320上执行的软件322确定接插线已插入到先前空的前连接器中或者不同的接插线已插入到先前连接的前连接器中时,软件322读取存储在所插入的接插线中或其上的信息。从接插线读取的信息以及接插板端口 304的状态的任何改变通过背板315而传达给MPU 330。端口状态信息以及从接插线读取的信息在这里统称为“端口信息”。在每个接插板302中的从可编程处理器320上执行的软件322也通过背板315把关于相应接插板302的信息传达给MPU 330(这样的信息在这里也称为“接插板信息”)。接插板软件322例如在以下情形中把接插板信息传达给MPU 330 响应于来自MPU 330的请求,或者当接插板302首次上电时,或者当任何接插板的信息改变时,或者在自从上次把接插板信息传达给MPU 330以来已过去了预定时间量之后。如图3中所示,每个接插板302的每个端口 304包括通过内部总线或其它互连(未示出)而耦合到从可编程处理器318的相应视觉指示器316 (诸如发光二极管(LED))。视觉指示器316位于视觉指示器316与之关联的端口 304附近。从可编程处理器332可以致动每个视觉指示器316 (例如,通过照亮LED)以便识别关联的端口 304。如图3中所示,MPU 330被配置成与从处理器模块318通信并且控制从处理器模块318。此外,MPU 330被配置成通过IP网络350 (诸如LAN 352)与其它设备通信。更具体地,MPU 330被配置成通过LAN 352与聚合点353通信。图5是图3的主处理器单元330 的一个实施例的框图。MPU 330包括执行软件334的主可编程处理器332。软件334的执行使MPU 330的主可编程处理器332实行下面描述的各种功能。MPU 330也包括存储器 336,其耦合到主处理器332用于存储程序指令和数据。主处理器332耦合到机箱301的背板315。每个接插板302中的从处理器320通过背板315与MPU 330中的主可编程处理器 332通信。在图3中所示的特定实施例中,在系统300中执行的大多数处理由MPU 330中的主可编程处理器332执行。结果,相对低功率的从可编程处理器318可以用于每个接插板302,诸如8位或16位微控制器。MPU 330中的主可编程处理器332在这样的实施例中使用16位或32位微控制器或微处理器来实施。MPU 330还包括以太网接口;340,其用来通信地耦合MPU 330 (以及其中包括的主可编程处理器332)到一个或多个因特网协议(IP)网络350 (在图3中示出)。在图3中所示的特定实施例中,以太网接口 340耦合到局域网(LAN)352。到LAN 352的这个连接可以例如通过使用电缆把MPU 330的以太网接口 340连接到接插板302的一个端口 304 (通过把电缆附连到该端口 304的后附连点306)来实施。互联网络设备(诸如集线器、路由器或交换机)(在图3中未示出)的多个端口中的每个也连接到接插板302的相应端口 304 (通过把相应电缆连接到端口 304的相应后附连点306)。通过把接插线312的一个末端314插入到连接至以太网接口 340的端口 304的前连接器308中并且通过把接插线312的另一个末端314插入到连接至互联网络设备的端口之一的端口 306的前连接器308中,MPU 330 的以太网接口 340交叉连接到互联网络设备的端口。互联网络设备的其它端口(经由接插板302)连接到其它件终端用户装备356 (在图3中示出)(诸如计算机)以及其它互联网络设备(诸如把LAN 352连接到广域网诸如因特网358 (在图3中示出)的网关或网络接口设 如图5中所示,在这个特定实施例中,MPU软件334包括使得MPU处理器332能够通过一个或多个IP网络350与其它设备通信的TCP/IP栈342。
在图3中所示的实施例中,电力通过用来连接MPU 330到LAN 352的双绞线铜布线而供应给MPU 330和从处理器模块318。使用在IEEE 802. 3af标准中指定的以太网供电技术来供应电力。在这样的实施例中,MPU 330耦合到的互通设备包括电力枢纽邪4或其它电力供应设备(位于它附近或者合并到它中),其把DC电力注入到包括在用来连接MPU 330到互联网络设备的铜双绞线电缆中的一个或多个导线进这里也称为“电力线”)上。MPU 330中的以太网接口 340从电力线中拾取注入的DC电力并且使用所拾取的电力来给MPU 330中的有源部件供电。此外,电力从MPU 330通过背板315供应到插接板302以便给插接板302中的有源部件供电。在图4中所示的特定实施例中,MPU 330也包括用于其中机箱301中的设备不是使用以太网供电进行供电的情形的电源单元(PSUW44。PSU 344可以连接到一个或多个外部电源346 (在图3中示出)(诸如交流(AC)电网和/或电信/数据中心直流(DC)电源)并且把从外部电源346接收的外部电力转换成适合于供MPU 330和接插板302的有源部件使用的电力。在MPU可编程处理器332上执行的MPU软件334从所有接插板302接收端口和接插板信息并且维持数据存储器362 (在图5中示出),在数据存储器362中存储和组织信息。 在MPU可编程处理器332上执行的MPU软件334也被配置成与一个或多个聚合点353通信。 在图5中所示的特定实施例中,MPU软件334包括由MPU 330和聚合点353用来发现彼此并且彼此连接的发现协议软件364。MPU软件334也包括用来向和从聚合端口 353传达端口和插接板信息(以及其它PLI)的通信协议软件366。MPU软件334也包括使得用户、系统和设备能够通过IP网络350与MPU 330直接交互的功能。在图3-11中所示的特定实施例中,MPU软件334被配置成使用web浏览器与用户交互。在这个实施例中,MPU软件334包括web服务器370 (在图5中示出),其使得 MPU 330能够使用超文本标记语言(HTML)协议(以及相关协议诸如异步Javakript及XML (AJAX)协议)通过IP网络350与用户的web浏览器交互。在图3_11中所示的特定实施例中,MPU软件334也被配置成以其它方式与用户、系统和设备直接交互。例如,MPU软件334 包括远程登录(TELNET)软件372,其使得其它用户、系统和设备能够远程登录到MPU 330和电子邮件服务器374 (例如实施简单邮件传输协议(SMTP))中,这使得MPU软件334能够向其它用户、系统和设备发送电子邮件消息。MPU软件334也包括安全及加密软件376以使得MPU软件334能够以安全的方式(例如,使用安全套接字层(SSL)会话或虚拟私人网络 (VPN))通信。在图3-11中所示的实施例中,系统300被配置成让用户针对具有附连到其后附连点的相应后媒体段310的每个端口 304手动输入关于用来实施该后媒体段的物理媒体的信息。在这个实施例中,后媒体段以半永久的方式连接到后附连点,并且典型地这些连接往往不会改变(如果有的话)。结果,关于用来实施后媒体段的物理媒体的信息可以结合媒体的初始安设而被手动输入和验证并且此后将典型地保持有效。这个信息可以包括与存储在接插线中或其上的端口信息类似的信息并且在这里也被称为“后媒体信息”。倘若对附连到端口 304的后附连点的媒体进行改变,将需要手动更新针对该端口 304的对应物理媒体信息。 这个读取媒体信息例如可以输入到电子表格或其它文件中。该电子表格然后上传到聚合点 353。聚合点353把包括在电子表格中的读取媒体信息与它从MPU 330获取的关于接插板302和端口 304的信息进行关联。此外,当互联网络设备(诸如交换机或路由器)连接到接插板302的端口 304的后附连点时,关于互联网络设备的信息(诸如设备的MAC地址和指派的IP地址)以及指示互联网络设备的哪个端口连接到接插板302的哪个端口 304的信息可以结合互联网络设备的初始安设而被手动输入并提供给聚合点353。这个信息在这里也被称为“互联网络设备信息”。此外如上面所指出的,如果互联网络设备包括PLI功能性,则这样的互联网络设备信息可以由互联网络设备自动捕获并传达给聚合点353。另外,在图3-11中所示的实施例中,系统300被配置成让用户输入关于网络所部署的一个或多个建筑物的布局的信息以及指示每个接插板302、后媒体段、互联网络设备和墙壁插座位于建筑物内何处的信息。这个信息在这里也被称为“位置信息”。例如,这个位置信息可以输入到电子表格中并且上传到聚合点353,其把位置信息与它所获取的关于系统300的其它PLI进行关联。在图3-11中所示的实施例中,聚合点353可以访问(have access to)许多类型的物理层信息,包括例如设备信息(即,端口信息、接插板信息、互联网络设备信息以及任何墙壁插座和终端用户设备的信息)、媒体信息(即,前媒体信息(包括存储在接插线上的媒体信息)和后媒体信息)以及位置信息。在图3-11中所示的实施例中,MPU 330也包括附加接口 382用于通信地耦合MPU 330 (以及MPU可编程处理器332)到一个或多个外部传感器(例如,外部温度传感器)和警报器384 (在图1中示出)。MPU 330可以使用有线和/或无线通信链路而通信地耦合到这样的外部传感器和警报器384。在一个应用中,可以根据温度读数来产生网络的热图,这对于HVAC用途可能是有用的。此外如图5中所示,MPU 330包括接口 378,通过该接口 378技术员可以把设备诸如计算机、个人数字助理(PDA)或智能电话直接连接到MPU 330并且与执行主处理器332的软件334交互。在图3-11中所示的实施例的一种实施方式中,MPU 330和从处理器模块318、媒体读取接口以及关联的视觉指示器316与其它部件一起集成到接插板302中。在另一实施方式中,MPU 330和从处理器模块318、媒体读取接口以及关联的视觉指示器316容纳在与相应接插板302分开的一个或多个模块内。在这样的实施方式中,单独的模块附连到相应接插板302的前面,使得每个视觉指示器316和媒体读取接口位于其对应端口 304附近。在一些实施例中,显示器(诸如液晶显示器)合并到MPU 330、从处理器模块318或接插板302中以在接插板302处显示消息。此外在一些实施例中,用户输入机构(诸如一个或多个按钮)合并到MPU 330、从处理器模块318或接插板302中以从位于接插板302附近的用户接收输入。图6是示出适合于用在图3的系统300中的接插线312的一个实施例的图示。图 6中所示的接插线312适合于与图3的接插板302的实施方式一起使用,其中端口 304的前连接器使用模块化RJ-45插孔来实施。图6中所示的接插线312包括铜未屏蔽双绞线 (UTP)电缆386。UTP电缆386包括布置成四个导体对的八个导体。接插线312也包括两个 RJ-45插头314——在电缆386的每个末端有一个(在图6中仅示出其中之一)。RJ-45插头 314被设计成插入到用作前连接器的RJ-45模块化插孔中。每个RJ-45插头314包括接触部分388,在接触部分388中定位八个大体平行的电接触390 (contact).八个电接触390 的每个电连接到UTP电缆386中的八个导体之一。每个插头314也包括(或附连到)存储器设备392 (例如,电可擦除可编程只读存储器(EERPOM)或其它非易失性存储器设备)。上面针对接插线312所描述的媒体信息存储在存储器设备392中。存储器设备392包括用于存储这样的信息的足够存储器容量。每个存储器设备392也包括存储器设备接口 394,其在对应的插头314插入到端口 304的前连接器中时通信地耦合存储器设备392到对应的媒体读取接口,使得对应的接插板302中的可编程处理器320可以读取存储在存储器设备392中的信息。在‘395申请、‘208申请和‘964申请中描述这样的接插线312和插头314的示例。图3-11中所示的实施例在这里通常描述为使用图6中所示的接插线312来实施。 然而,可以使用其它类型的接插线,其中之一在图7中示出。图7是示出适合于用在图3的系统300中的接插线312’的另一个实施例的图示。 图7中所示的接插线312’适合于与图3的接插板302的实施方式一起使用,其中端口 304 的前连接器使用光纤LC适配器或连接器来实施。图7中所示的接插线312’包括光缆386’。 光缆386’包括装入适合的护套内的光纤。接插线312’也包括两个LC连接器314’——在光缆386’的每个末端有一个。每个LC连接器314’被设计成插入到用作端口 304的前连接器的LC适配器中。每个LC连接器314’包括末端部分388’,当LC连接器314’插入到端口 304的LC适配器中时在该末端部分388’处可以建立与光缆386’中的光纤的光学连接。每个LC连接器314’也包括(或附连到)存储器设备392’(例如,电可擦除可编程只读存储器(EERPOM)或其它非易失性存储器设备)。上面针对接插线312所描述的媒体信息存储在存储器设备392’中。存储器设备392’包括用于存储这样的信息的足够存储器容量。每个存储器设备392’也包括存储器设备接口 394’,其在对应的LC连接器314’插入到端口 304的前连接器中时通信地耦合存储器设备392’到对应的媒体读取接口,使得对应的接插板302中的从可编程处理器320可以读取存储在存储器设备392’中的信息。在接插线312和312’的一些实施方式中,使用表面安装EEPROM或其它非易失性存储器设备来实施存储器设备392和392’。在这样的实施方式中,存储器设备接口和媒体读取接口每个包括四个引线一电源引线、接地引线、数据引线以及保留用于将来使用的额外引线。当对应插头或连接器插入于端口 304的对应前连接器时,存储器设备接口的四个弓丨线与媒体读取接口的四个对应弓丨线达到电接触。每个存储器设备接口和媒体读取接口被布置和配置成使得它们不干扰通过接插线传达的数据。在其它实施例中,使用其他类型的接口。例如,在一个这样的备选实施例中,两线接口与简单电荷泵(charge pump)—起使用。在其它实施例中,(例如,为潜在的将来应用)提供附加线。这样的光纤接插线312’和连接器314’的示例被描述在2009年10月16日提交的题为“MANAGED CONNECTIVITY IN FIBER OPTIC SYSTEMS AND METHODS THEREOF”的美国临时专利申请序列号61/252,386 (在这里也称为“‘386申请”)中、2010年2月12日提交的题为“FIBER PLUGS AND ADAPTERS FOR MANAGED CONNECTIVITY”的美国临时专利申请序列号61/303,961 (在这里也称为“‘961申请”)中以及2010年2月12日提交的题为“BLADED COMMUNICATIONS SYSTEM”的美国临时专利申请序列号61/303,948 (在这里也称为“ ‘948申请”)中。‘386申请、‘961申请以及‘948申请由此通过引用合并到本文中。
23
在接插线312和312’的一些实施方式中,每个插头314或连接器314’自身容纳相应的存储器设备和存储器设备接口。在实施方式中,每个存储器设备以及对应的存储器设备接口容纳在与对应的插头或连接器分开的外壳内。在这样的实施方式中,该外壳被配置成使得它可以扣接(或者以其它方式附连到)到电缆或者插头或连接器上,其中存储器设备接口相对于插头或连接器定位成使得当插头或连接器插入到对应端口 304的前连接器时存储器设备接口将与相关媒体读取接口正确地紧密配合。可以提供包括端口的手持式测试装置,接插线312或312’的插头314或连接器 314’可以插入到该端口中以便读取存储在存储器设备中的媒体。手持式测试装置也包括某种类型的显示器以显示从存储器设备读取的媒体信息。在其它实施例中,存储器设备也包括用于在对应的接插线312或312’连接到一个或多个接插板302时读取存储在存储器设备中的媒体信息的光学或红外线接口。这使得技术员能够读取存储在存储器设备中的媒体信息而不必去除接插线312或312’以便使用上面描述的手持式测试器。图3-11中所示的实施例的描述的其余部分通常指的是图6中所示的接插线312。 然而,要理解的是,可以使用其它接插线(诸如图7中所示的接插线312’)。图8是聚合点353的一个实施例的框图。图8中所示的聚合点353的特定实施例在这里被描述为实施用在图3的系统300中,尽管可以以其它方式实施其它实施例。聚合点353典型地实施为在工作站或其它计算机802上执行的软件800。工作站 802包括软件800在其上执行的至少一个可编程处理器804。软件800包括存储(或以其它方式体现)在一种或多种适当存储器媒体上的程序指令,可编程处理器804从所述适当存储器媒体读取至少一部分程序指令从而用于执行。工作站802也包括用于在软件800的执行期间存储程序指令和任何相关数据的存储器806。聚合点软件800在其上执行的工作站802也包括一个或多个接口 808,其通信地耦合聚合点353到它与之通信的设备或实体。更具体地,一个或多个接口 808通过一个或多个IP网络350而通信地耦合聚合点353到这些设备或实体。在这样的实施例的一种实施方式中,至少一个接口 808包括用于耦合聚合点353到一个或多个IP网络350的以太网网
络接口。聚合点软件800包括PLI聚合软件810,其使得聚合点353能够自动发现能够向聚合点353 (诸如接插板302)提供PLI以及其它信息的设备并且与该设备连接。聚合点353 和PLI聚合软件810可以用来从各种类型的连接器组件接收物理层信息,所述连接器组件具有用于自动读取存储在物理通信媒体段中或物理通信媒体段上的信息的功能性。这样的设备的示例上面被指出并且包括例如接插板302和互联网络设备。此外,聚合点353和 PLI聚合软件810也可以用来从其它类型的具有用于自动读取存储在物理通信媒体段中或物理通信媒体段上的信息的功能性的设备接收物理层信息。这样的设备的示例包括终端用户设备一诸如计算机、外围设备(诸如打印机、复印机、存储器设备和扫描仪)以及IP电话一其包括用于自动读取存储在物理通信媒体段中或物理通信媒体段上的信息的功能性。在图8中所示的特定实施例中,PLI聚合软件810包括软件812,其使用一个或多个发现协议来发现能够向聚合点353提供PLI信息的设备并且与该设备连接(假设那些设备也支持那些发现协议)。发现协议的示例包括但不限于多DNS (mDNS)、基于DNS的服务发现(DNS-SD)、通用即插即用(UPnP)、简单设备发现协议(SDDP)和服务定位协议(SLP)以及专有协议和其它协议的扩展(诸如动态主机配置协议(DHCP))。在这个实施例中,当接插板302 (或者能够向聚合点353提供PLI信息的其它设备)首先耦合到LAN 352时,接插板 302的MPU 330首先(典型地从LAN 352的DHCP服务器)获取IP地址。接插板302中的MPU 330然后使用发现协议来向LAN 353上的其它节点广播信息消息。该信息消息包括关于接插板302提供的服务的信息,所示服务在这种情况下包括与向接插板302和耦合到接插板 302的接插线312提供PLI信息有关的服务。聚合点353监听这样的信息消息。当聚合点 353从它可以管理的接插板302接收信息消息时,聚合点353使用发现协议来(使用包括在所接收的信息消息中的地址信息)向接插板302发送对应消息以请求关于接插板302的更多信息。响应于这个请求,接插板302中的MPU 330提供所1请求的信息。在这一点上,聚合点353能够控制和接收来自接插板302中的MPU 330的通知。当向聚合点353提供PLI 的其它设备(诸如互联网络设备)加入LAN 352时,可以执行类似的处理。同样,当聚合点353连接到LAN352时,发现协议软件812使用发现协议来向LAN 352上的所有节点广播信息消息。这个消息指示聚合点353正在搜索包括在这里描述的PLI 功能性的设备和/或服务。能够向聚合点提供PLI的设备(诸如接插板320和互联网络设备之类的设备)监听这样的信息。如果那些设备满足消息中所阐述的搜索准则,则设备以适当的消息做出响应以广告它们提供的服务。当聚合点353从它可以管理的设备接收这样的消息时,软件812 (使用包括在所接收的消息中的地址信息)向该设备发送消息以请求关于该设备的更多信息。响应于该请求,设备向聚合点353提供所请求的信息。在这一点上,聚合点353能够控制和接收来自设备的通知。以此方式,当能够向聚合点提供PLI的设备耦合到LAN 352时,聚合点353能够自动发现该设备并且开始为该设备聚合物理层信息而不要求技术员安设设备以获悉在LAN 352上的聚合点。类似地,当聚合点353耦合到LAN 352时,聚合点353能够自动发现能够向聚合点353提供PLI的设备并且与该设备交互而不要求技术员安设聚合点353以获悉在 LAN 352上的这样的设备。因而,在这里描述的物理层信息资源可以容易地集成到LAN 352 中。在图8中所示的实施例中,PLI聚合软件810也包括软件814,其被配置成从它使用发现协议软件812而已发现且连接到的设备(例如,诸如接插板302和互联网络设备之类的设备)获取物理层信息。数据库管理器816用来把聚合软件810获取的PLI信息存储在数据库中。在图8中所示的特定实施例中,软件814使用一个或多个适当的协议来向和从这样的设备传达物理层信息。可以使用的协议的示例包括但不限于文件传输协议(FTP)、简易文件传输协议(TFTP)、超文本传输协议(HTTP)、简单网络管理协议(SNMP)、公共网关接口 (CGI)协议、表示状态传输(REST)协议、简单对象访问协议(SOAP)。聚合点353从其接收信息的设备也实施由聚合点353实施的至少一些协议以组织、跟踪、存储和传达物理层信息。聚合点353以及聚合软件810也可以用来获取其它类型的物理层信息。例如,在这个实施例中,聚合软件810也获取关于物理通信媒体段的信息,其否则不会自动传达给聚合点。这样的信息的一个示例是关于不带有连接器的电缆的信息,所述电缆否则没有在附连到接插板302的它们中或它们上存储的信息(例如包括指示接插板302的哪些端口通过该电缆连接到网络350中的其它设备的哪些端口的信息以及关于该电缆的媒体信息)。
这样的信息的另一示例是关于接插线的信息,所述接插线连接到不能读取存储在附连到它们端口的接插线中或该接插线上的媒体信息和/或不能把这样的信息传达给聚合点353的设备(例如,因为这样的设备不包括这样的功能,因为这样的设备与没有存储在它们中或它们上的媒体信息的接插线一起使用,和/或因为带宽不可用于把这样的信息传达给聚合点353)。在这个示例中,该信息可以例如包括关于设备它们自身的信息(诸如设备的MAC地址以及IP地址,如果指派给这样的设备的话)、指示设备的哪些端口连接到网络中的其它设备的哪些端口的信息、以及关于附连到设备端口的物理媒体的信息。这个信息可以例如通过结合各项中的每项的初始安设把这样的信息手动输入到文件(诸如电子表格) 中并且然后把该文件上传到聚合点353而提供给聚合点353。这样的信息也可以例如使用由聚合点353提供的用户接口(例如使用web浏览器)而直接输入。在图8中所示的实施例中,聚合点软件810包括用于便于文件的上传和/或这样的手动输入信息的直接输入的web 服务器818。聚合软件810也可以获取关于网络350部署于其中的一个或多个建筑物的布局的信息以及指示每个接插板302设备、接插线(或其它项物理通信媒体)和互联网络设备位于建筑物内何处的信息。这个信息可以例如结合各项中的每项的初始安设来手动输入和上传到聚合点353。在一种实施方式中,这样的位置信息包括针对每个端口或网络350中端接的每个物理通信媒体段的其它端接点的X、Y和Z位置(例如,在ANSI/TIA/EIA 606-A标准 (商业电信基础设施的管理标准)中指定的类型的X、Y和Z位置信息)。聚合软件810也可以获取和维持与网络中存在的各项物理通信媒体有关的测试、 媒体质量或性能信息。测试、媒体质量或性能信息例如可以是在制造特定媒体段时和/或在当安设或以其它方式校验特定媒体段时执行测试时执行的测试的结果。聚合软件810也为外部设备或实体提供接口以访问由聚合点353维持的物理层信息。这个访问可以包括从聚合点353取得信息以及向聚合点353供应信息。在这个实施例中,聚合点353被实施为“中间件”,其能够向这样的外部设备和实体提供对由接入点353维持的PLI的透明和便利访问。因为聚合点353聚合来自IP网络350上的相关设备的PLI并且向外部设备和实体提供对这样的PLI的访问,所以外部设备和实体不需要与IP网络350 中的提供PLI的所有设备单独交互,这样的设备也不需要具有对来自这样的外部设备和实体的请求做出响应的能力。聚合点软件810在图8中所示的实施例中实施应用编程接口(API)820,这样的其它设备中的应用层功能性通过该应用编程接口可以使用描述和记载API 820的软件开发套件(SDK)来获得对由聚合点353维持的物理层信息的访问。在这样的实施例的一种实施方式中,API 820被配置成使用简单对象访问协议(SOAP)协议进行聚合点353与这样的外部设备或实体之间的通信。在其它实施方式中,可以使用其它协议(例如,SNMP或CGI协议)。例如,在计算机356上执行的应用370 (图3中所示)可以使用由聚合点353提供的API 820来访问由聚合点353维持的PLI信息(例如,从聚合点353取得这样的信息和/ 或把信息供应给聚合点353)。计算机356耦合到LAN 352并且通过LAN 352访问聚合点 353。图9是尤其被配置为使用物理层信息的网络管理系统(匪S) 380的一个实施例的框图,所述物理层信息通过图3的系统300而使之可获得。图9中所示的匪S 380的特定实施例在这里被描述为实施用在图3的系统300中,尽管可以以其它方式实施其它实施例。匪S 380典型地实施为在工作站或其它计算机902上执行的软件900。工作站902 包括软件900在其上执行的至少一个可编程处理器904。软件900包括存储(或以其它方式体现)在一种或多种适当存储器媒体上的程序指令,可编程处理器904从所述适当存储器媒体读取至少一部分程序指令从而用于执行。工作站902也包括用于在软件900的执行期间存储程序指令和任何相关数据的存储器906。NMS软件900在其上执行的工作站902也包括一个或多个接口 908,其通信地耦合匪S 380到匪S 380管理且以其它方式与之交互的网络元件。更具体地,一个或多个接口 908通过一个或多个IP网络350而通信地耦合NMS 380到这些网络元件。在这样的实施例的一种实施方式中,至少一个接口 908包括用于耦合NMS 380到一个或多个IP网络350的以太网网络接口。匪S软件900包括网络管理功能性910,其实施各种常规匪S功能,诸如显示关于所管理网络中的各种元件的状态和警报信息。在这里描述的特定实施例中,NMS功能性910 包括用于显示匪S 380的用户接口的功能和用于组织、跟踪和存储它从所管理的网络元件接收的信息的数据管理功能。匪S软件900也包括物理层信息(PLI)功能性914。PLI功能性914被配置成从聚合点353取得物理层信息并且将其提供给WS功能性910从而用于使用。WS功能性910 使用取得的物理层信息来执行一个或多个网络管理功能。在图9中所示的实施例中,PLI功能性914使用由聚合点353实施的API 820 (在图8中示出)而从聚合点353取得物理层信息。为完成此,PLI功能性914支持由API 820使用的协议。匪S软件900通过IP网络 350与聚合点353通信。在聚合点353上执行的聚合点软件800处理来自匪S 380的API 调用并对其做出响应。所取得的物理层信息可以由匪S 380用来提供它显示的信息中的(0SI模型的)层 1分辨。例如,在图9中所示的实施例的一种实施方式中,匪S软件900显示所管理网络的图形表示,其示出各种网络元件之间的逻辑通信链路。当用户点击逻辑通信链路之一时, 匪S软件900使用PLI功能性914来显示实施该逻辑通信链路的各种物理层项(例如,物理通信媒体、接插板以及墙壁插座)以及从聚合点353取得的关于那些物理层项的信息(例如, 它们的位置、产品名称、类型、颜色、长度、温度等)。在图9中所示的特定实施例中,匪S软件900也包括物理层管理功能性912,其使用从聚合点353接收的物理层信息来实行各种PLM功能。例如,PLM功能912使得匪S 380 能够管理接插板302的接插线移动、添加或改变(MAC)。这可以通过使用网络350让PLM功能912把关于MAC的信息传达给计算机或由技术员使用的其它设备来完成。这个信息可以包括从聚合点353接收的物理层信息(例如,MAC中涉及的识别特定端口 304、接插板302和接插线312及其位置的信息以及关于MAC中涉及的项的视觉属性的信息)。此外,PLM功能 912使得匪S 380能够从聚合点353接收警报和警告消息,其与移动、添加或者改变有关(例如,在已进行了未经请求的移动、添加或改变时或者在不正确地进行所请求的移动、添加或改变的情况下)。换言之,WS 380中的PLM功能912可以用来验证特定请求的MAC被正确地实施并且如果它不被正确地实施则告知技术员该事实。另外,NMS 380中的PLM功能912可以被配置成执行“引导的”MAC,其中PLM功能912促使接插板302上的适当LED 316照亮或闪烁以便帮助技术员识别MAC中涉及的端口 304。PLM功能912可以通过使用适当的 API调用来请求照亮LED 316来完成此。聚合点353响应于这样的API调用而向适当的MPU 330发送让适当的从处理器模块318促使照亮LED 316的请求。这个MAC功能可以实施为不是匪S 380的一部分的独立应用。匪S 380可以使用物理层信息来执行的功能的其它示例包括如果预定具体接插线(或特定类型的接插线)未用来实施特定交叉连接则产生警报或警告;实施其它策略;和 /或使用包括在物理层信息中的位置信息来辅助匪S 380支持的E911或基于位置的服务 (LBS)处理(例如,以确定IP电话位于何处)。在图10中示出了可以添加到NMS 380的PLI使能(PLI_enabled)功能的另一示例。图10是在包括在这里描述的PLI功能性的网络中的符合性跟踪方法的一个示例性实施例的流程图。图10中所示的方法1000的特定示例性实施例在这里被描述为作为图9中所示的匪S 380的PLI功能性914的一部分被实施用在图3中所示的系统300中(尽管可以以其它方式实施其它实施例)。在这样的示例性实施例中,在聚合点353处跟踪和聚合的物理层信息包括关于系统300的各个部分与各种标准的符合性的信息。诸如TIA/EIA-568-B标准族之类的标准定义对用来实施网络的各种物理层接缆部件的性能要求、对包括在给定信道内的“永久链路” 的性能要求、以及对总体信道的性能要求。针对被安设的每个信道,关于在信道中使用的每个接插线312和插头314与相关标准要求的符合性的信息被存储在相关非易失性存储器392中(框1002)。这个信息可以通过由制造者和/或安设者执行的测试来确定。这个信息可以包括对与该接插线312关联的每个部件是否符合相关性能规范的指示以及用来确定符合性的底层性能信息。换言之,用于每个这样的部件的性能裕度(margin)或包络面(envelope)可以存储在相关EEPROM 392 中。这个部件符合性数据在接插线312连接到接插板302的端口 304时被自动读取并且传达给相关聚合点352 (框1004)。当安设特定永久链路(例如,墙壁插座与接插板302的打线块之间的链路)时,安设者测试永久链路的性能并且证明其符合相关标准的要求(框1006)。关于永久链路与相关标准要求的符合性的信息被传达给聚合点353 (例如,通过上传如上面所描述的这样的信息) (框1008)。这个信息可以包括对永久链路是否符合相关性能要求的指示以及用来确定符合性的底层性能信息。换言之,除了符合性的指示之外,用于永久链路的性能裕度或包络面可以提供给聚合点353。在图10中所示的实施例中,安设者也测试总体信道并且证明总体信道与相关标准要求的符合性(框1010)。与总体信道的符合性有关的信息被传达给聚合点353(例如,通过上传如上面所描述的这样的信息)。聚合点353然后识别当证明了信道时在信道中使用的特定部件(框1012)。例如,聚合点353获悉当信道得到证明时哪些接插线312和接插板端口 304用于信道。如果将来那些接插线312之一要被更换,则聚合点353能够自动确定用于证明信道符合性的原始基础不再存在(框1014)。当这样的接插线312被更换时,聚合点 353也可以通过校验更换路径线是否已证明满足信道符合性所需的部件规范并且验证信道的永久链接链路保持不受扰动且接插线连接到与之前相同的端口来自动确定总体信道是
28否可能保持符合相关标准(框1016)。这样的信息可以用于检修网络中的性能问题。方法1000是如何可以使用这样的符合性信息的一个示例。此外,图10中所示的方法1000的实施例在这里被描述为实施在图8的NMS 380中,尽管要理解可以在系统300 的其它部分中(例如,在聚合点353中或者作为独立应用)实施类似的功能性。此外,其它类型的符合性信息可以由聚合点接收和存储并且用于符合性跟踪。这样的符合性信息的示例包括但不限于关于符合通信、规范性或军事规则、规章、法律、规范或标准的信息。图11是尤其被配置为使用物理层信息的互联网络设备邪4的一个实施例的框图, 所述物理层信息通过图3的系统300而使之可获得。图11中所示的互联网络设备354的特定实施例在这里被描述为实施用在图3的系统300中,尽管可以以其它方式实施其它实施例。在图11中所示的实施例中,互联网络设备3M包括执行软件1102(在一些实施例中称为“固件”)的至少一个可编程处理器1100,所述软件1102促使互联网络设备3M实行下面描述的各种功能。软件1102包括存储(或以其它方式体现)在一种或多种适当存储器媒体(例如闪速存储器)上的程序指令,可编程处理器1100从所述适当存储器媒体读取至少一部分程序指令从而用于执行。互联网络设备3M也包括存储器1104,其耦合到可编程处理器1100用于存储程序指令和数据。互联网络设备邪4包括多个端口 1106。每个端口 1106包括用于耦合物理通信媒体到互联网络设备1106的适合接口。每个这样的接口包括例如用于附连物理通信媒体到互联网络设备3M和物理层设备(PHY)以通过所附连的通信媒体发送和接收信号的机械结构。在一个这样的实施例中,端口 1106是以太网端口。软件1102包括互联网络功能性1108,其促使互联网络设备邪4执行它被设计用于的一个或多个互联网络功能。互联网络功能的示例包括(0SI模型的)层1、层2和层3互联网络功能,诸如在互联网络设备邪4处经由多个端口 1106接收的通信业务的路由、交换、 中继、桥接和整理。软件1102也包括使得能够配置和管理互联网络设备354的管理功能性1110。在图11中所示的特定实施例中,管理功能性1110包括web服务器(以及相关的web内容和应用),其使得用户能够使用web浏览器与互联网络设备3M直接交互。在这个实施例中,管理功能性1110也包括用于使用SNMP协议与NMS (诸如NMS 380)交互的SNMP功能。SNMP 命令和响应经由互联网络设备354的一个或多个端口 1106通过一个或多个IP网络350进行传达。软件1102也包括物理层信息(PLI)功能性1112。PLI功能性1112被配置成从聚合点353取得物理层信息并且将其提供给互联网络功能性1108。互联网络功能性1108使用取得的物理层信息来执行一个或多个互联网络功能。在图11中所示的实施例中,PLI功能性1112使用由聚合点353实施的API 820 (在图8中示出)而从聚合点353取得物理层信息。为完成此,PLI功能性1112支持由API 820使用的协议。互联网络设备354中的软件1102通过IP网络350与聚合点353通信。在聚合点353上执行的聚合点软件800处理来自互联网络设备354的API调用并对其做出响应。互联网络设备邪4也可以从匪S或其它网络元件取得至少一些物理层信息。一些通信协议(例如,以太网标准的IEEE 802. 3族)包括用于自动确定给定通信链路的适合通信速率的功能(例如,IEEE 802.3自动协商、自动感测以及自动撤退特征)。这种类型的功能执行测试以做出这样的确定。换言之,物理通信媒体从这样的互联网络设备角度来看仍然是“黑盒”。由PLI功能性1112提供给互联网络功能性1108的物理层信息使得互联网络功能性1108能够把物理层视为“白盒”,它具有该白盒的准确信息以用于实行其互联网络功能(例如,以用于进行桥接、路由或交换决策)。在这样的实施例的一种实施方式中,从聚合点353接收的物理层信息被提供给互联网络功能性1108以辅助它执行这样的自动速率选择规程。此外,在这样的常规速率确定功能用于做出互联网络决策(诸如,关于哪个端口路由数据的决策)的情况下,这样的常规功能典型地仅能够表征直接连接到互联网络设备的通信链路。这意味着如果存在远离互联网络设备一个或多个“跳”的物理通信媒体段,其比用来实施直接附连到互联网络设备的链路的物理通信媒体有更较低质量(例如,因为它支持较低通信速率),则互联网络设备将不知道该事实并且将在做出路由或其它互联网络策略决策中不考虑该事实。在图11中所示的实施例中,从聚合点353(以及从其它源诸如匪S 380)接收的物理层信息可以用来识别这样的情形并且相应地做出响应。从聚合点3583接收的物理层信息可以以其它方式被使用。例如,互联网络功能性 1108可以被配置成由规定在一些端口 1106上接收的通信业务可以仅通过一个或多个建筑物的某些区域(例如,仅通过建筑物的“安全”区域)进行传达的策略来约束该业务的路由。 为了强制实施这样的策略,互联网络功能性1108需要获悉在每个其端口 1106上输出的业务将通过何处。从聚合点353接收的物理层信息可以用来做出这样的确定。在另一示例中,互联网络功能性1108被配置成强制实施仅要求某些类型的物理通信媒体与它一起使用(例如,要求使用某些品牌或类型或长度的接插线)的策略。从聚合点353接收的物理层信息可以由互联网络功能性1108用来强制实施这样的策略(例如,通过不转发在具有连接其的不符合媒体的端口 1106上接收的数据和/或通过在不符合媒体连接到端口 1106时产生警报或警告)。换言之,互联网络功能性1108可以被配置成充当强制实施“虚拟键控”方案的“总线监控器”,其中存储在接插线312中或接插线312上的至少一些媒体信息用来“键控”接插线312。如上面结合图1所指出的,互联网络设备也可以包括用于读取存储在附连到其端口的物理媒体段中或该物理媒体段上的媒体信息且用于把它从所附连的媒体段读取的媒体信息(以及关于互联网络设备自身的信息)传达给聚合点的媒体读取接口。例如,如图11 中所示,每个端口 1106具有关联的媒体读取接口 1120,可编程处理器1100使用该媒体读取接口 1120来读取存储在附连到其端口 1106的物理媒体段中或该物理媒体段上的媒体信息。可编程处理器1100在这个示例中使用经由其端口 1106之一建立的一个或多个通信链路而把它已读取的媒体信息传达给适合的聚合点。在其它实施方式中,互联网络设备邪4不包括媒体读取接口,并且与附连到其端口的物理媒体有关的物理层信息以其它方式(例如,通过手动输入和上传信息)被提供给聚
合点ο图12示出了使用在这里描述的技术而捕获和聚合的物理层信息如何可以用来改进在网络中使用的互联网络设备的效率的另一示例。在图12中所示的示例中,网络1200 实施为把各种以太网LAN段1204桥接在一起的层2设备1202 (典型地为以太网交换机)的网状网络。在这样的以太网网络1200中,最小生成树被构造并且不是生成树的一部分的那些链路通过禁用交换机1202的对应端口而被禁用。结果,在网络1200中的任何两个节点之间存在单个活动路径。也可以定义一个或多个冗余链路以提供备份路径,其可以在活动路径中的链路故障的情况下被使用。构造生成树以便避免循环。在常规以太网网络中,符合IEEE 802. ID MAC网桥标准的生成树协议用来构造网络的生成树。然而,在常规以太网网络中使用的生成树算法是“分布式”算法,其中相关交换机必须知晓哪些设备连接到它、与其它交换机交换消息、参与选择根网桥并且维持转发数据库。此外,当把新的交换机添加到网络时,根网桥必须告知网络中的所有交换机源自添加新的交换机的任何拓扑改变,在这种情况下其它网桥设备必须更新它们维持的转发数据库。因为在常规以太网网络中使用分布式生成树协议,所以每个交换机必须包括足够的处理能力以实施生成树协议并且在做出关于如何转发它接收的分组的决策时执行数据库查找。另外,对生成树拓扑的改变可能花大量时间来传播通过网络,这可能导致退化的网络性能或者在一些情况下导致循环。此外,常规交换机可以知晓网络的程度受限,这也可能导致退化的网络性能。此外,每个这样的常规交换机典型地使用透明桥接以使用转发数据库来转发分组。转发数据库初始为空并且随着交换机接收分组把条目添加到数据库。当交换机接收分组时,它检查分组的源MAC地址并且向该源MAC地址的转发数据库添加条目(如果它尚未存在的话),其把该MAC地址与在其上接收分组的端口进行关联。交换机也检查分组的目的地 MAC地址并且针对该目的地MAC地址搜索转发数据库中的条目。如果在转发数据库中没有发现针对该目的地MAC地址的条目,则分组泛洪(flood)到交换机的所有其它端口。将来, 当交换机从把该MAC地址作为其源MAC地址的设备接收分组时,交换机向其转发数据库添加条目,其把该MAC地址与在其上接收分组的端口进行关联。以此方式,交换机能够随时间积累转发数据库。在(例如,由于接插线被移动或去除、链路故障、交换机的添加或删除、或者终端用户设备的移动)网络的拓扑改变时,需要更新该转发数据库。因为转发数据库单独地维持在常规以太网网络中的每个交换机中,所以每个这样的交换机必须具有足够的处理能力以执行这样的处理。此外,当网络拓扑改变发生时,网络的性能可能退化,因为交换机泛洪网络以便知晓网络的新拓扑。在图12中所示的示例中,集中网桥(centralized bridge)功能性1206被部署在网络1200中以减少上面指出的一些问题。集中网桥功能性1206与对网络1200的物理层信息进行聚合的一个或多个聚合点1208交互。在图12中所示的特定示例中,中央网桥功能性1206被部署在匪S 1210中。聚合点1208收集在网络1200上的终端设备1212的MAC 地址以及关于交换机1202的信息。在图12中所示的示例中,对于一些终端设备1212而言,针对连接每个这样的终端设备1212到交换机1212的每个物理媒体段的媒体信息被自动读取并且传达给聚合点 1208。S卩,终端设备1212包括适当的媒体读取接口和驱动器软件以读取存储在连接到该终端设备1212的以太网电缆上的媒体信息并且把以太网电缆的媒体信息以及终端设备1212 的MAC地址及其当前IP地址提供给聚合点1208。如果终端设备1212经由一个或多个中间设备(诸如墙壁插座和一个或多个接插板)连接到交换机1202,则每个这样的中间设备将包
31括用于读取媒体信息并向聚合点1208提供的适当的媒体读取接口功能性。以此方式,聚合点1208将能够把每个这样的终端设备1212的MAC地址与交换机1202的端口关联。此外,在图12中所示的示例中,对于一些终端设备1212而言,针对连接每个这样的终端设备1212到交换机1212的至少一个物理通信媒体段的媒体信息未被自动读取并且传达给聚合点1208。对于这些终端设备1212而言,针对连接终端设备1212到交换机1212 端口的每个物理通信媒体段的物理层信息以及针对终端设备1212的MAC地址可以手动输入并上传到聚合点1208 (如上面所描述的)。备选地,中央网桥功能性1206和/或聚合点 1208可以以其它方式获取这样的信息。例如,终端设备1212的MAC地址与交换机1202的端口之间的关联可以从匪S 1210知晓。中央网桥功能性1206使用它已接收的MAC地址信息和物理层信息来使每个终端设备1212的MAC地址与终端设备1212连接到的特定交换机1202的端口关联。然后,中央网桥功能性1206使用该信息来确定网络1200的最小生成树并且确定每个交换机1202的每个端口的对应STP状态(典型地为“阻挡”、“转发”或“禁用”)。中央网桥功能性1206然后确定基于中央网桥功能性1206具有的生成树和MAC地址信息应当如何配置每个交换机 1202的转发数据库。端口状态信息和转发数据库信息然后传达给每个交换机1202。每个交换机1202包括用于从中央网桥功能性1206接收端口状态信息和转发数据库信息的对应网桥功能性1214。每个交换机1202中的网桥功能性1214配置交换机1202 使得每个端口处于由中央网桥功能性1206为它指定的特定STP状态。此外,每个交换机 1202中的网桥功能性1214使用它从中央网桥功能性1206接收的转发数据库信息来配置其转发数据库1216。当网络1200发生改变时,聚合点1208(和/或其它MAC地址信息源诸如匪S 1210) 将看到所述改变并且向中央网桥功能性1206提供更新的信息。中央网桥功能性1206可以修改生成树拓扑(如果需要的话)并且确定响应于网络1200中的改变需要对每个交换机的端口状态和转发数据库1216做出什么改变(如果有的话)。通过让中央网桥功能性1206确定网络1200的生成树并且配置交换机1202中的转发数据库1216,交换机1202不需要执行这样的处理并且相反,交换机1202中的资源可以专用于转发分组。此外,中央网桥功能性1206能够从聚合点1208直接知晓网络1200的改变并且对这样的改变迅速做出响应并向交换机1202传达任何需要的改变。所有这一切应当改进网络1200的性能。此外,中央网桥功能性1206因为它可以访问关于网络1200的更多信息所以可以更有效地创建生成树(例如,通过基于用来实施网络1200中的各种逻辑通信链路的物理通信媒体的类型、数目、位置、长度等来汇编生成树)。图13示出了包括物理层信息功能性以及物理层管理功能性的系统300’的备选实施例。系统300’类似于图3的系统300,除了如下面所描述的之外。系统300’的与系统 300的对应元件相同的那些元件在图13中使用相同的参考数字来参考,并且下面结合图13 不重复这样的元件的描述。图3的系统300与图13的系统300’之间的主要差别是在图13的系统300’中主处理器单元和从处理器单元被一起组合成单个组合的主/从处理器单元330/318,其被包括在每个接插板302’中。即,每个接插板302’包括图6中所示的主处理器单元330功能性(例如,每个接插板302’包括主处理器332和以太网接口 340)。此外,每个接插板302’与适当的聚合点535直接通信。结果,不需要背板来在主处理器单元功能性与从处理器单元功能性之间进行通信。图14-16示出了包括物理层信息功能性以及物理层管理功能性的系统300”的另一个备选实施例。系统300”类似于图3的系统300,除了如下面所描述的之外。系统300” 的与系统300的对应元件相同的那些元件在图14-16中使用相同的参考数字来参考,并且下面结合图13不重复这样的元件的描述。图3的系统300与图14-16的系统300”之间的主要差别是接插板302”和MPU 330”使用在电气与电子工程师协会(IEEE)802. 14. 5标准中指定的协议通过主总线3 进行通信。尽管IEEE 802. 14. 5协议典型地用于无线通信,但是在图14-16中所示的实施例中接插板302”和MPU 330”使用IEEE 802. 14. 5协议来通过一个或多个有线电视(CATV)同轴电缆进行通信。在这样的实施例中,主总线3 物理上使用一个或多个同轴电缆来实施,其中以适合的无线电频带沿着同轴电缆传达数据通信并且其中MPU 330”通过同轴电缆供应DC电力以供每个接插板302”的有源部件使用。每个接插板302”中的从处理器模块318”包括适合的总线接口 3 (在图15中示出)以耦合从处理器320到主处理器模块330”,并且主处理器单元330”包括适合的总线接口 338 (在图16中示出)。在这样的实施例中,每个接插板302”的接插板软件322和主总线接口 326以及 MPU 330”的MPU软件334和主总线接口 338包括适合的功能性,用于使得每个接插板302” 中的可编程处理器320和MPU 330”中的可编程处理器332能够使用IEEE 802. 14. 5协议来发送和接收数据;以及连接器(诸如“F”连接器),用于(经由例如抽头或分路器)连接每个接插板302”和MPU 330”到用来实施主总线328的同轴电缆。IEEE 802. 14. 5协议的寻址方案支持高达127个接插板(每个接插板302’支持高达48个端口,总计为6096个端口 )和一个MPU 330”。IEEE 802. 14. 5协议被设计用于低功率应用,这尤其非常适合用在图14-16 中所示的实施例中。此外,在图14-16中所示的实施例中,电力通过主总线3 供应给每个接插板302” (更具体地,给每个接插板302”的有源部件)。MPU 330”中的PSU 344把从外部电源346接收的外部电力转换成适合于供MPU 330”的部件使用且供应给接插板302”的电力。图17是包括用于获取物理层信息的功能性的墙壁插座1700的一个实施例的框图。图17中所示的墙壁插座1700的实施例在这里被描述为实施用于与图1的系统100 — 起使用,尽管可以以其它方式实施其它实施例。墙壁插座1700被配置成安设在墙壁或类似结构中或其上。墙壁插座1700包括与上面结合图1-16所描述的端口类似的一组端口 1702。端口 1702在这里也被称为“下游” 端口 1702。通常,每个下游端口 1702包括相应前连接器(或者其它附连点),其中可以附连带有连接器的电缆(或者其它物理媒体段)。这样的带有连接器的电缆的示例是在每个末端具有RJ-45插头的双绞线电缆。每个下游端口 1702也包括连接到交换机1708的对应端口的后附连点。交换机1708用来通过单个电缆通信地耦合每个下游端口 1702到接插板(在图17中未示出),该单个电缆经由上游端口 1712附连到墙壁插座1700。在这样的实施例的一种实施方式中,上游端口 1712被配置成与不带有连接器的电缆一起使用。这个电缆典型地路由经过建筑物(例如,在墙壁、天花板、地板等等之上、之下、周围和/或经过墙壁、天花板、地板等等)并且典型地不被容易或频繁地移动。交换机1708包括在下游端口 1702和上游端口 1712之间交换数据分组的交换功能1710。该交换功能1710例如以软件、硬件或其组合来实施。墙壁插座1700的下游端口 1702被配置成与具有存储在它们中或它们上的媒体信息的带有连接器的电缆一起使用(例如,如上面结合图1-16所描述的)。墙壁插座1700包括用于每个下游端口 1702的媒体读取接口 1704。在这个实施例中,媒体读取接口 1704以与上面结合图1-16所描述的媒体读取接口相同的方式来实施。每个媒体读取接口 1704用来读取存储在插入到对应下游端口 1702中的带有连接器的电缆中或其上的媒体信息。从插入到下游端口 1702中的带有连接器的电缆读取的媒体信息从媒体读取接口 1704传达给可编程处理器1706。在图17中所示的实施例中,可编程处理器1706是交换机1708的一部分。可编程处理器1706执行与由上面结合图1-16所描述的可编程处理器执行的软件类似的软件(例如包括web服务器或者其它使得用户能够与处理器1706交互的软件)。主要差别是可编程处理器1706在图17中所示的实施例中使用逻辑通信链路而与适合的聚合点通信,所述逻辑通信链路是使用上游端口 1712提供的。墙壁插座1700可以用来捕获与墙壁插座1700自身、插入到下游端口 1702中的带有连接器的电缆、以及附连到上游端口 1712 的不带有连接器的电缆有关的物理层信息并且将该物理层信息传达给适合的聚合点。如上面所指出的,在这里描述的用于读取存储在物理媒体段中或物理媒体段上的媒体信息的技术可以用于网络的一个或多个终端节点。例如,计算机(诸如膝上型电脑、服务器、台式计算机或者专用计算设备诸如IP电话、IP多媒体装置或者存储器设备)可以被配置成读取存储在附连到其端口的物理通信媒体段中或该物理通信媒体段上的媒体信息并且把其从所附连的媒体段读取的媒体信息(以及关于设备自身的信息)传达给聚合点。图 18是这样的计算机1800的一个实施例。计算机1800包括用来连接计算机1800到IP网络 (例如,以太网局域网)的网络接口卡(NIC) 1802。NIC 1802包括用来物理地附连适合的电缆(例如,CAT-5/6/7电缆)到NIC 1802的端口 1804。NIC 1804也包括用于通过IP网络进行通信的标准NIC功能性1806 (例如,适合的物理层设备(PHY)和媒体访问控制(MAC)设备)。NIC 1802使得包括在计算机1800中的一个或多个处理器1808 (以及在其上执行的软件1810)能够与IP网络通信。在这个实施例中,NIC 1802包括媒体读取接口 1812,一个或多个处理器1808使用该媒体读取接口 1812来读取存储在附连到计算机1800的电缆上或电缆中的媒体信息。从电缆读取的媒体信息以及关于NIC 1802以及计算机1800的信息 (例如任何指派的MAC地址或IP地址)可以传达给适合的聚合点,如上面所描述的。在这样的实施例的一种实施方式中,与NIC 1802 一起使用的NIC软件驱动器1814包括物理层信息(PLI)功能性1816,其促使处理器1808读取和传达这样的物理层信息。NIC 1802和MRI 1812使用适合的总线或其它互连(未示出)而耦合到处理器1808。以此方式,关于计算机 1800的信息可以被自动获取并且用于描述的各种应用中。用于读取存储在物理通信媒体中或物理通信媒体上的媒体信息的功能性可以集成到通过通信媒体进行通信的一个或多个集成电路(或者其它电路或设备)中。例如,用于读取这样的媒体信息的功能性可以集成到在交换机中使用的以太网物理层设备。在图19 中示出一个这样的示例。
图19是使用包括用于读取媒体信息的集成功能性的物理层设备(PHY) 1902的以太网交换机1900的一个示例性实施例的框图。在图19中所示的特定示例性实施例中,PHY 1902在包括八个以太网端口的以太网物理层功能性的八脚(octal)以太网PHY中(尽管要理解,在这里结合图19所描述的技术可以与具有不同数目的端口的物理层设备一起使用)。 在这个实施例中,八个RJ-45插孔1904耦合到PHY 1902。每个RJ-45插孔1904被配置成容纳附连到CAT-5、6或7双绞线电缆的RJ-45插头。对于每个RJ-45插孔1904,该RJ-45 插孔1904的发射导体(TX+和TX-)以及接收导体(RX+和RX-)使用适当的隔离变压器(未示出)而分别耦合到PHY 1902的发射管脚(TX+和TX-)以及接收管脚(RX+和RX-),所述隔离变压器集成到插孔1904自身中或在它外部。PHY 1902包括所需的以太网物理子层——包括物理媒体相关(PMD)子层1908 (其包括用于与交换机1900 —起使用的物理通信媒体的适当收发器)、物理媒体附连(PMA)子层1910 (其执行PMA成帧、八位组同步/检测、以及扰频/解扰)、以及物理编码子层(PCS) 1912 (其执行自动协商和编码/解码)。PHY 1902也包括适当的媒体独立接口(MII) 1914 (例如,媒体独立接口、精简媒体独立接口(RMII)、千兆比特媒体独立接口(GMII)和/或串行媒体独立接口(SMII))以连接PHY 1902到以太网媒体访问控制(MAC)设备1916。如上面所指出的,在图19中所示的特定示例性实施例中,PHY 1902被设计用于以太网交换机1900 并且结果,MAC 1916是包括用于实施以太网交换机的适当功能的交换机MAC设备。PHY 1902典型地也包括其它标准以太网物理层功能性。例如,PHY 1902包括用于控制和管理PHY 1902的管理功能性1920以及用于在PHY 1902和MAC 1916之间传达管理信息的管理数据输入/输出(MDIO)接口。其它标准以太网物理功能性包括媒体相关接口交叉(MDIX)功能性以及时钟功能性(其两者在图19中未示出)。在图19中所示的示例性实施例中,每个RJ-45插孔1904包括媒体读取接口 1906, 其可以用来确定RJ-45插头是否插入到该RJ-45插孔1904中并且如果它插入则读取存储在附连到RJ-45插头(如果存在一个的话)的EEPROM中的媒体信息。上面以及在‘395申请、‘208申请和‘964申请中描述了这样的媒体接口 1906和适合的RJ-45插头的示例配置。在这个实施例中,使用四线媒体读取接口 1906。一线用于传达数据(使用串行数据协议),一线用于电力,而一线用于接地。在这个特定实施例中,第四线也被提供用于潜在的将来可能使用或升级。PHY 1902包括用于连接到八个媒体读取接口 1906的每个的适当管脚(或其它输入)。PHY 1902也包括耦合到八个媒体读取接口 1906的物理层信息(PLI)功能性1918。在图19中所示的特定示例性实施例中,PLI功能性1918被配置成在每个媒体读取接口 1906的电力线和接地线上提供电力信号和接地信号。例如,PLI功能性1918在一种实施方式中连接到PHY 1902的主电力输入以便在每个媒体读取接口 1906的电力线上提供适合的电力信号。此外,PLI功能性1918连接到PHY 1902的主接地输入以便为媒体读取接口 1906的每个接地线提供到接地的连接。在图19中所示的特定示例性实施例中,PLI功能性1918被配置成监视八个媒体读取接口 1906并且确定RJ-45插头何时插入到每个RJ-45插孔1904中。这可以使用在‘395 申请、‘208申请和‘964申请中描述的方案来完成。PHY设备1902包括PLI功能性1918把 PLI相关信息存储在其中的一个或多个寄存器1922 (在这里也被称为“PLI寄存器” 1922)。PLI寄存器1922的一个字节(在这里也被称为“状态字节”)用来存储关于八个插孔1904的每个的状态的信息,其中状态字节的每位表示插孔1904的相应一个的状态。当特定插孔 1904的状态改变时(即,当插头插入到先前空的插孔1904或者插头从插孔1904去除时), PLI功能性1918能够检测这样的改变并且改变PLI寄存器1922存储的状态字节中的对应位的状态。PHY设备1902中的PLI功能性1918也被配置成当指令这样做时读取存储在附连到插入到插孔1904中的RJ-45插头的EEPROM (如果存在一个的话)中的媒体信息。从 EEPROM读取的数据存储在PHY设备1902的PLI寄存器1922中。此外,PLI功能性1918被配置成当指令这样做时把存储在PLI寄存器1922中的数据写入到附连到插入到插孔1904 中的RJ-45插头的EEPR0M。在图19中所示的特定示例性实施例中,主机处理器1930经由适当的主机接口耦合到MAC设备1916。主机处理器1930执行软件1932 (在这里也被称为“主机软件”)。主机软件1932包括存储(或以其它方式体现)在一种或多种适当存储器媒体上的程序指令,主机处理器1930从所述适当存储器媒体读取至少一部分程序指令从而用于执行。在这个示例性实施例中,主机处理器1930包括TCP/IP栈1934以及实施各种管理和配置相关功能性(例如,简单网络管理协议(SNMP)代理以及web和/或远程登录服务器, 用户通过其可以与在交换机1900上运行的管理软件1936交互)的管理软件1936。在图19中所示的示例性实施例中,主机软件1932也包括PLI软件1938,其被配置成通过交换机1900连接到的网络而把与交换机1900和连接到它的电缆关联的物理层信息传达给聚合点。在交换机1900的一种实施方式中,PLI软件1938实施上面描述的协议以参与由聚合点支持的发现处理并且向聚合点发送PLI。此外,在其它实施方式中,PLI软件 1938仅仅使用聚合点为与应用层功能性交互而向应用层功能性提供的API (或者其它外部接口技术)来与聚合点交互。在另一实施方式中,PLI软件1938经由匪S或其它中间设备或系统(例如,使用由匪S诸如SNMP支持的协议)与聚合点交互。在主机处理器1930上执行的PLI软件1938通过(经由主机处理器1930和MAC设备1916之间的主机接口)指令MAC设备1916 (经由MAC设备1916和PHY设备1902之间的 MDIO接口)读取状态字节的内容来周期性地读取存储在PHY 1902的PLI寄存器1922中的状态字节。当RJ-45插头插入到插孔1904中时,在主机处理器1930上执行的PLI软件1938 将在它读取存储在PHY设备1902的PLI寄存器1922中的状态字节时知晓该事实。然后, PLI软件1938(经由主机处理器1930和MAC设备1916之间的主机接口)促使MAC设备1916 (经由MAC设备1916和PHY设备1902之间的MDIO接口)指令PHY设备1902中的PLI功能性1918读取存储在附连到新近插入的RJ-45插头的EEPROM (如果有的话)中的媒体信息。 PHY设备1902中的PLI功能性1918把它从EEPROM读取的媒体信息存储在PLI寄存器1922 中。一旦这完成,PLI软件1938可以通过(经由主机处理器1930和MAC设备1916之间的主机接口)促使MAC设备1916 (经由MAC设备1916和PHY设备1902之间的MDIO接口)读取PHY设备1902中的对应PLI寄存器1922来获取该媒体信息。MAC设备1916读取的媒体信息然后经由主机接口提供给PLI软件1938。PLI软件1938然后可以把该信息传达给聚合点,如上面所描述的。
除了传达关于交换机1900以及连接到交换机1900的插孔1904的任何电缆的PLI 之外,交换机1900也可以实施上面结合图11-12描述的互联网络特征中的一个或多个。在图20中示出了具有用于读取存储在物理通信媒体中或物理通信媒体上的媒体信息的集成功能性的以太网物理层设备的另一示例。图20是使用包括用于读取媒体信息的集成功能性的物理层设备(PHY) 2002的计算机2000的一个示例性实施例的框图。用于读取存储在CAT 5、6或7电缆中或其上的媒体信息的功能性以与上面结合图19所描述的相同方式集成到PHY 2002中。相应地,计算机2000的与上面结合图19描述的对应元件基本上类似的元件在图20中使用与图19中使用的相同文本标记和带有与图19中使用的那些相同的最后两个数字的参考数字来参考。图20的PHY 2002和图19的PHY 1902之间的一个差别在于所支持的以太网端口数目。图20的PHY 2002支持单个以太网端口。此外,图20的MAC设备2016是适合于用在终端节点设备诸如计算机2000中的MAC设备。同样,在主机处理器2030上执行的软件 2032是典型地由终端用户计算机2000执行的软件。尽管图19和20示出了用于读取存储在物理通信媒体上或物理通信媒体中的媒体信息的功能如何可以集成到通过通信媒体进行通信的一个或多个集成电路(或其它电路或设备)中的特定示例,但是要理解,这样的媒体读取功能性可以以其它方式进行集成。在其它实施例中,媒体信息存储在不带有连接器的电缆或其它物理通信媒体中或其上。例如,在一个这样的实施例中,存储器设备附连在不带有连接器的电缆的每个末端附近,使得当电缆的每个末端附连到相应附连点时,用于存储器设备的相应一个的接口与位于附连点上或其附近的对应媒体读取接口紧密配合,因此存储在存储器设备中的信息可以以与上面描述的类似方式从存储器设备进行读取。这样的实施例可以包括用于连接铜双绞线电缆到RJ插孔的后侧或者到包括绝缘位移连接器(IDC)的Krone型块的打线连接。图21是可以装配在RJ-45插头周围以便把存储器设备附连到RJ-45插头的外罩 2100的一个实施例的图示。外罩2100形成为模制的柔性电路2102,其具有两个侧壁2104 和顶壁2106。柔性电路2102由一个或多个柔性膜(例如一个或多个聚合物膜)形成并且被配置成紧贴地装配在RJ-45插头周围使得外罩2100 —旦放置在插头周围就将牢固地保持附着到RJ-45插头。在图21中所示的实施例中,存储器设备2108 (例如,EEPROM或其它非易失性存储器设备)安装在模制的柔性电路2102的顶壁2106的外表面上。用于与媒体读取接口紧密配合的存储器设备接口包括一组导电引线2110,其形成在顶壁2106的外表面上并且沿着两个侧壁2104的外表面延伸。至少一部分引线2110被暴露(即,没有在它们上形成绝缘体),使得来自媒体读取接口的对应接触可以在外罩2100附连在其周围的插头插入到端口中时与引线2110达到接触。在这样的实施例中,媒体读取接口的接触可以被弹性加载以便挤压引线2110从而形成良好的电接触。媒体读取接口然后可以用来以上面描述的方式读取存储在存储器设备1508中的信息。此外,在这个实施例中,红外线发射器2112安装在顶壁2106的外表面上。红外线发射器2112被配置成发射红外线信号,在该红外线信号上编码存储在存储器设备2108中的信息的至少一部分。在一种实施方式中,红外线发射器2112被配置成每当使用媒体读取接口来读取存储器设备2108时输出其上编码有信息的这个红外线信号。外罩2100被配置成使得技术员可以把红外线检测器定位在红外线发射器2112附近以便接收所发射的红外线信号。红外线检测器可以例如耦合到手持式单元,其解码所接收的红外线信号并且显示在红外线信号上编码的信息。以此方式,技术员可以查看存储在存储器设备2108中的信息而不要求RJ-45插头从端口去除。这个实施例可以适于其它连接器类型,包括光纤连接器。使用在这里描述的技术而捕获、维持且使之可获得的PLI信息可以用于许多不同类型的应用。例如,PLI信息可以用于管理与系统中的每个媒体段关联的空隙(slack)量。 当新的接插线(或其它媒体段)需要安设在网络中时,已捕获的物理层信息可以用来基于企业或运营商使用的特定空隙管理策略和PLI而确定接插线的精确且适当的长度。此外,这样的PLI可以用来辅助公共安全应用(例如,帮助定位在网络电话(VOIP)电话系统中使用的设备)。如何可以使用这样的物理层信息的示例包括以下。例如,匪S (或者与聚合点120 或者任何连接器组件102诸如接插板302或302’关联的其它用户接口)在显示关于特定物理媒体段的信息时也可以被配置成自动向网站发送用户,用户经由该网站可以命令对该特定媒体段的更换。例如,基于web浏览器的用户接口可以被配置成显示按钮(或其它用户接口元件),用户可以点击该按钮(或其它用户接口元件)以便自动提出经由其可以命令更换段的网站。类似的功能性可以包括在由聚合点120和连接器组件104(例如,由在聚合点 120和连接器组件104 (例如,接插板302或302,)上执行的web服务器)显示的用户接口中。在另一示例中,当特定一批物理通信媒体段被召回(例如,由于安全或性能顾虑) 时,以在这里描述的方式获取的物理层信息可以用来确定是否任何召回的物理媒体段部署在网络中以及部署在网络中何处。这个信息可以用于确定是否更换该段和/或可以用于实际更换该段。在另一示例中,在这里描述的物理层信息用于入侵检测。例如,对于网络上的特定安全资源(例如,特定服务器或服务)而言,可以建立安全策略,其指定安全资源应当仅由使用特定互联网络设备或其它连接器组件的特定端口和特定物理通信媒体段而耦合到安全资源的具体计算机访问。如果某人企图以不符合安全策略的方式访问安全资源,则不准许他或她访问安全资源。例如,如果入侵者能够哄骗授权计算机的身份但是使用未授权逻辑通信链路来访问安全资源,则入侵者仍将被拒绝访问安全资源直到入侵者能够哄骗在策略中识别的所有其它元件的身份(例如,实施计算机和安全资源之间的逻辑通信链路的所有物理通信媒体的身份)。在另一示例中,聚合点接收并存储关于在其中部署物理通信媒体的各种位置中存在的某些条件的信息。例如,聚合点可以被配置成接收并存储对每个位置唯一的信息(诸如,关于电池备份使用的本地要求、从外部传感器和外部系统(诸如外部温度传感器、HVAC 系统或者提供天气相关信息的计算机服务器)获取的环境条件)。然后可以至少部分地基于这样局部唯一的条件来做出网络内的路由决策。在另一示例中,特定接插板302附近的技术员可能想要换出特定接插线(例如,因为接插线的视觉检查识别接插线有某个潜在问题)。用于清除以使接插线与关联的端口 304 断开的请求将被路由到聚合点或NMS。聚合点或NMS将发送消息到一个或多个相关互联网络设备354以指示用来实施特定逻辑通信链路的接插线将在不久的将来断开。互联网络设备354响应于这样的信号而将把某些种类的业务(例如,实时业务诸如电话或多媒体业务) 路由远离该逻辑通信链路。此外,互联网络设备3M可以被配置成把“全清”信号传达回到聚合点或NMS,其指示从每个这样的设备角度来看可以断开相关接插线。当聚合点或NMS从所有通知的互联网络设备接收全清信号时,聚合点或匪S (使用显示器315)告知技术员可以断开该接插线。在另一示例中,使用在这里描述的技术而获取的物理层信息用来校验是否安设了特定类型的物理通信媒体。例如,在企业或运营商希望部署用于给定逻辑通信链路的特定类型的物理通信媒体(例如,用于实施千兆比特以太网通信链路的CAT-6兼容物理通信媒体)的情况下,如上面描述的那样获取的物理层信息可以用来确认逻辑通信链路的每个物理通信媒体段已使用适当类型的物理通信媒体来实施。另一示例是确认分别代替单模光纤或未屏蔽双绞线接缆而部署了多模光纤或屏蔽双绞线接缆,这可能不容易通过在安设时通信媒体的视觉检查而显而易见。在另一示例中,使用在这里描述的技术而获取的物理层信息用于盗窃监视。例如, 在IP电话的情况下,IP电话服务器可以被配置成只有每个IP电话与使用特定物理层元件 (例如,部署在给定建筑物内的段)而实施的特定逻辑通信链路一起使用时向该IP电话递送电话服务。如果IP电话被偷或者移动到任何授权区域之外,则IP电话服务器不向IP电话提供服务,既便它能够访问IP电话服务器。在这里描述的技术可以用于各种应用,包括企业应用和运营商应用。图22和23示出运营商应用的一个示例。图22示出了部署无源光纤线路的网络2200。如所示,网络2200可以包括中央局 2201,其连接网络中的许多终端订户2205(在本文中也被称为终端用户2205)。中央局2201 可以另外连接到较大网络诸如因特网(未示出)和公共交互电话网络(PSTN)。网络2200也可以包括具有一个或多个光学分路器(例如,1到8分路器、1到16分路器或者1到32分路器)的光纤分配集线器(FDH) 2203,所述分路器生成许多可以通向终端用户2205的房屋的单独光纤。网络2200的各线可以是空中的或者容纳在地下管道内。网络2200的最靠近中央局2201的部分通常称为Fl区域,其中Fl是来自中央局 2201的“馈线光纤”。网络2200的最靠近终端用户2205的部分可以称为网络2200的F2部分。网络2200包括多个分接(break-out)位置2202,在该分接位置2202处分支电缆从主电缆线中分出。分支电缆往往连接到投落(drop)终端2204,其包括用于便于耦合分支电缆的光纤到多个不同订户位置2205的连接器接口。在FDH 2203中使用的分路器可以接受具有许多光纤的馈线电缆Fl并且可以把那些传入光纤分路为例如216到432个单独分配光纤,其可以与相同数目的终端用户位置关联。在典型的应用中,提供光学分路器,其预先封装在光学分路器模块外壳中并且提供有从模块延伸的引出端(pigtail)中的分路器输出。分路器输出引出端典型地带有例如SC、LC 或LX. 5连接器。光学分路器模块为外壳中的光学分路器部件提供保护封装并且因而提供对否则易碎分路器部件的容易处置。这个模块化方法允许根据需要向FDH 2203递增地添加光学分路器模块。图23是示出用于FDH 2203的示例电缆路由方案的示意图。FDH 2203通常在外部设施(OSP)环境中管理传入光纤和传出光纤之间的端接板
39处的连接。如在本文中使用术语,光纤之间的“连接”包括直接和间接连接。传入光纤的示例包括进入机柜的馈线电缆(feeder cable)光纤以及把馈线电缆光纤连接到端接板的中间光纤(例如,从分路器延伸的带有连接器的引出端和接插光纤/跳线)。传出光纤的示例包括离开机柜的订户电缆光纤以及任何连接订户电缆光纤到端接板的中间光纤。FDH 2203 在网络中的其中期望操作访问和重配置的位置处为光传输信号提供互连接口。例如,如上面所指出的,FDH 2203可以用来使馈线电缆分路并且端接分路的馈线电缆到路由至订户位置的分配电路。另外,FDH 2203被设计成适应各种备选大小和光纤计数并且支持引出端、 扇出和分路器的工厂安设。如在图23所示,馈线电缆2320初始经过机柜2302路由到FDH 2203中。在某些实施例中,馈线电缆2320的光纤可以包括带状光纤。示例馈线电缆2320可以包括连接到服务提供商中央局2201的十二到四十八个单独光纤。在某些实施例中,在进入机柜2302 之后,馈线电缆2320的光纤路由到馈线电缆接口 2338 (例如,光纤适配器模块、接续盘等)。 在馈线电缆接口 2338处,馈线电缆2320的一个或多个光纤单独地连接到单独的分路器输入光纤2324。分路器输入光纤23 从馈线电缆接口 2338路由到分路器模块外壳2308。在分路器模块外壳2308处,分路器输入光纤23M连接到单独分路器模块2316,其中输入光纤23M每个分路为多个引出端23 ,每个具有带有连接器的末端23观。然而在其它实施例中,馈线电缆2320的光纤可以带有连接器并且可以直接路由到分路器模块2316从而忽视或消除对中间馈线电缆接口 2338的需要。当引出端23 不处于服务时,带有连接器的末端23 可以被暂时存储在安装在机柜2302的存储器区域2306处的存储器模块2318上。当引出端2326需要用于服务时, 引出端23 从分路器模块2316路由到在机柜2302的端接区域2304处提供的端接模块 2310。在端接模块2310处,引出端23 连接到分配电缆2330的光纤。端接板是传入光纤和传出光纤之间的划分线。典型的分配电缆2330形成网络的F2部分(参见图22)并且典型地包括从FDH 2203路由到订户位置2205的多个光纤(例如,144、216或432个光纤)。具有带有连接器的末端2332的电缆2330在光纤适配器2312处连接到引出端23 的带有连接器的末端23 。在一些实施例中,馈线电缆2320的一个或多个光纤不连接到任何分路器模块 2316。相反,馈线电缆2320的这些光纤连接到具有带有连接器的末端2336的直通光纤 2334。直通光纤2334连接到端接模块2310,而不首先连接到分路器模块2316。通过制止使光纤2334分路,可以把较强信号发送到订户之一。直通光纤2334的带有连接器的末端 2336可以在不处于使用时存储在存储器区域2306处。具有带有连接器的末端2332的电缆 2330在光纤适配器2312处连接到直通光纤2334的带有连接器的末端2336。馈线接口设备 2338包括用于连接诸如具有接续部或带有连接器的末端和适配器(比如上面指出的带有连接器的末端23 和2336和适配器2312)的各种电缆的连接2322。在图22-23的网络2200中使用的各种物理通信媒体段可以在它们上或其中存储标识符和属性信息。例如,上面结合图22-23所描述的各种带有连接器的光纤可以配备有存储器设备并且对应的端接模块(以及其它附连点)可以包括对应的媒体读取接口以读取存储在每个存储器设备中的标识符和属性信息的至少一部分。从存储器设备读取的标识符和属性信息可以传达给聚合点进行使用,如本文中所描述的(使用适合的通信链路,诸如无线或有线通信链路)。其它物理层信息(例如,关于端接模块、分路器、机柜和网络中的其它设备的信息以及关于它们所部署的位置的信息)也可以提供给这样的聚合点从而进行使用。在另一示例中,使用在这里描述的技术而获取的物理层信息由电信运营商用来辅助履行服务级协定。例如,如上面所指出的,物理层信息可以用来确定是否已使用适当的物理通信媒体(例如,第一英里以太网(EFM)应用中的CAT-6接缆或者适当类型的光纤)来实施给定的逻辑通信链路。这可能在电信运营商的装备和顾客的装备之间的分界点处尤其重要。此外,物理层信息可以用来确定是否在分界点处进行了未授权的改变。在另一示例中,使用在这里描述的技术而获取的物理层信息由电信运营商用来实施区别的服务级。例如,在某些顾客要求其通信业务行进通过某些地理区域(例如以符合出口管制法律)的情况下,运营商可以使用利用在这里描述的技术而获取的物理层信息以按照顾客的要求来路由顾客的业务。在另一示例中,每个路由点、地点、建筑物等被指派安全评分,并且某些通信业务仅路由经过具有在特定水平或其之上的安全评分的路由点、地点、 建筑物等。描述了由所附权利要求定义的本发明的许多实施例。不过,将理解,可以对所描述的实施例进行各种修改而不偏离要求保护的发明的精神和范围。相应地,其它实施例在所附权利要求的范围内。
4权利要求
1.一种互联网络设备,包括多个端口 ;互联网络功能性,用于为在端口上接收的分组执行互联网络功能;以及用于接收物理层信息的功能性,其中物理层信息的至少一部分存储在物理通信媒体中或物理通信媒体上并且从其读取并传达给互联网络设备;其中互联网络功能性使用物理层信息的至少一部分来执行互联网络功能。
2.权利要求1的互联网络设备,其中所述互联网络设备包括交换机、路由器、集线器、 中继器、网桥、网关和接入点中的一个。
3.权利要求1的互联网络设备,其中所述互联网络功能包括层1、层2和层3互联网络功能中的至少一个。
4.权利要求1的互联网络设备,其中所述互联网络功能包括对在所述互联网络设备处接收的通信业务进行路由、交换、中继、桥接和整理中的至少一个。
5.权利要求1的互联网络设备,其中物理层信息的至少一部分用于执行带宽选择。
6.权利要求1的互联网络设备,其中物理层信息的至少一部分用于表征远离互联网络设备不止一跳的通信链路。
7.权利要求1的互联网络设备,其中物理层信息的至少一部分用来根据指定在互联网络设备的一些端口上接收的业务只能经过某些区域进行传达的策略来约束通信业务的路
8.权利要求7的互联网络设备,其中物理层信息的至少一部分用来确定通信业务将通过哪些区域。
9.权利要求1的互联网络设备,其中所述互联网络设备充当强制实施依据物理层信息的至少一个策略的总线监控器。
10.权利要求1的互联网络设备,其中所述互联网络设备强制实施虚拟键控方案,其中从物理通信媒体读取的信息的至少一些用来键控物理通信媒体。
11.权利要求1的互联网络设备,其中所述互联网络设备被配置成读取附连到所述互联网络设备的物理通信媒体中或物理通信媒体上的信息。
12.权利要求11的互联网络设备,其中存储在附连到所述互联网络设备的物理通信媒体中或物理通信媒体上的信息被存储在存储器设备中。
13.权利要求12的互联网络设备,其中所述存储器设备包括非易失性存储器设备。
14.权利要求12的互联网络设备,还包括至少一个物理层设备,其中所述至少一个物理层设备被配置成读取存储在附连到所述互联网络设备的物理通信媒体中或物理通信媒体上的信息。
15.权利要求11的互联网络设备,其中所述互联网络设备被配置成向聚合点发送从附连到所述互联网络设备的物理通信媒体读取的信息的至少一些,其中聚合点耦合到互联网络设备也耦合到的网络。
16.权利要求15的互联网络设备,其中所述互联网络设备被配置成由耦合到网络的聚合点自动发现。
17.权利要求15的互联网络设备,其中所述互联网络设备还被配置成向聚合点发送关于互联网络设备的信息。
18.权利要求11的互联网络设备,其中存储在附连到所述互联网络设备的物理通信媒体中或物理通信媒体上的信息包括关于物理通信媒体的信息。
19.权利要求18的互联网络设备,其中关于物理通信媒体的信息包括关于附连到物理通信媒体的连接器的信息。
20.权利要求11的互联网络设备,其中存储在附连到所述互联网络设备的物理通信媒体中或物理通信媒体上的信息包括与以下中的至少一个有关的信息唯一识别物理通信媒体的标识符,与物理通信媒体关联的部件号,与物理通信媒体关联的连接器类型,与物理通信媒体关联的媒体类型,与物理通信媒体关联的长度,与物理通信媒体关联的序列号,电缆极性,与物理通信媒体关联的制造日期,与物理通信媒体关联的制造批号,与物理通信媒体关联的视觉属性,与附连到物理通信媒体的连接器关联的视觉属性,与物理通信媒体关联的插入计数、企业资源计划系统、与物理通信媒体关联的测试数据、与物理通信媒体关联的媒体质量数据、以及与物理通信媒体关联的性能数据。
21.—种系统,包括耦合到网络的多个连接器组件,每个所述连接器组件包括多个端口,其中每个所述连接器组件被配置成读取存储在连接到相应连接器组件的端口的物理通信媒体上或物理通信媒体中的物理层信息;以及耦合到网络的互联网络设备,其中所述互联网络设备被配置成接收由连接器组件读取的物理层信息的至少一部分;以及其中互联网络功能性使用由互联网络设备接收的物理层信息的至少一部分来执行至少一个互联网络功能。
22.权利要求21的系统,还包括通信地耦合到网络的聚合点,其中所述聚合点被配置成接收由连接器组件读取的物理层信息的至少一部分;且其中所述聚合点被配置成向互联网络设备发送由互联网络设备接收的物理层信息的至少一部分。
23.权利要求22的系统,其中所述互联网络设备被配置成由耦合到网络的聚合点自动发现。
24.权利要求21的系统,其中所述互联网络设备包括交换机、路由器、集线器、中继器、 网桥和网关中的一个。
25.权利要求21的系统,其中所述互联网络功能包括层1、层2和层3互联网络功能中的至少一个。
26.权利要求21的系统,其中所述互联网络功能包括对在所述互联网络设备处接收的通信业务进行路由、交换、中继、桥接和整理中的至少一个。
27.一种互联网络设备,包括多个端口 ;互联网络功能性,用于为在端口上接收的分组执行至少一个互联网络功能;以及其中所述互联网络设备被配置成读取存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息;且其中所述互联网络设备被配置成向聚合点发送从附连到互联网络设备的物理通信媒体读取的信息的至少一些,其中聚合点耦合到互联网络设备也耦合到的网络。
28.权利要求27的互联网络设备,其中所述互联网络设备包括交换机、路由器、集线器、中继器、网桥、网关和接入点中的一个。
29.权利要求27的互联网络设备,其中所述互联网络功能包括层1、层2和层3互联网络功能中的至少一个。
30.权利要求27的互联网络设备,其中存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息被存储在存储器设备中。
31.权利要求30的互联网络设备,其中所述存储器设备包括非易失性存储器设备。
32.权利要求30的互联网络设备,还包括至少一个物理层设备,其中所述至少一个物理层设备被配置成读取存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息。
33.权利要求27的互联网络设备,其中所述互联网络设备被配置成由耦合到网络的聚合点自动发现。
34.权利要求33的互联网络设备,其中所述互联网络设备还被配置成向聚合点发送关于互联网络设备的信息。
35.权利要求27的互联网络设备,其中存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息包括关于物理通信媒体的信息。
36.权利要求35的互联网络设备,其中关于物理通信媒体的信息包括关于附连到物理通信媒体的连接器的信息。
37.权利要求27的互联网络设备,其中存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息包括与以下中的至少一个有关的信息唯一识别物理通信媒体的标识符,与物理通信媒体关联的部件号,与物理通信媒体关联的连接器类型,与物理通信媒体关联的媒体类型,与物理通信媒体关联的长度,与物理通信媒体关联的序列号,电缆极性,与物理通信媒体关联的制造日期,与物理通信媒体关联的制造批号,与物理通信媒体关联的视觉属性,与附连到物理通信媒体的连接器关联的视觉属性,与物理通信媒体关联的插入计数、企业资源计划系统、与物理通信媒体关联的测试数据、与物理通信媒体关联的媒体质量数据、以及与物理通信媒体关联的性能数据。
38.权利要求27的互联网络设备,其中所述互联网络设备被配置成接收物理层信息, 其中物理层信息的至少一部分存储在物理通信媒体中或物理通信媒体上并且从其读取并传达给互联网络设备;其中互联网络功能性被配置为使用物理层信息的至少一部分来执行至少一个互联网络功能。
39.一种系统,包括互联网络设备,包括多个端口以及执行至少一个互联网络功能的互联网络功能性,其中互联网络设备被配置成读取存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息;以及聚合点,通信地耦合到聚合点;其中所述互联网络设备被配置成把从附连到互联网络设备的物理通信媒体读取的信息的至少一些发送到聚合点;且其中所述聚合点被配置成存储由连接器组件发送到聚合点的信息的至少一些。
40.权利要求39的系统,其中所述互联网络设备包括交换机、路由器、集线器、中继器、 网桥、网关和接入点中的一个。
41.权利要求39的系统,其中所述互联网络功能包括层1、层2和层3互联网络功能中的至少一个。
42.权利要求39的系统,其中存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息被存储在存储器设备中。
43.权利要求42的系统,其中所述存储器设备包括非易失性存储器设备。
44.权利要求39的系统,其中所述互联网络设备还包括至少一个物理层设备,其中所述至少一个物理层设备被配置成读取存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息。
45.权利要求39的系统,其中所述互联网络设备被配置成由聚合点自动发现。
46.权利要求39的系统,其中所述互联网络设备还被配置成向聚合点发送关于互联网络设备的信息。
47.权利要求39的系统,其中存储在附连到互联网络设备的物理通信媒体中或物理通信媒体上的信息包括关于物理通信媒体的信息。
48.权利要求47的互联网络设备,其中关于物理通信媒体的信息包括关于附连到物理通信媒体的连接器的信息。
49.权利要求39的互联网络设备,其中存储在附连到所述互联网络设备的物理通信媒体中或物理通信媒体上的信息包括与以下中的至少一个有关的信息唯一识别物理通信媒体的标识符,与物理通信媒体关联的部件号,与物理通信媒体关联的连接器类型,与物理通信媒体关联的媒体类型,与物理通信媒体关联的长度,与物理通信媒体关联的序列号,电缆极性,与物理通信媒体关联的制造日期,与物理通信媒体关联的制造批号,与物理通信媒体关联的视觉属性,与附连到物理通信媒体的连接器关联的视觉属性,与物理通信媒体关联的插入计数、企业资源计划系统、与物理通信媒体关联的测试数据、与物理通信媒体关联的媒体质量数据、以及与物理通信媒体关联的性能数据。
50.权利要求39的互联网络设备,其中互联网络设备被配置成接收物理层信息,其中物理层信息的至少一部分存储在物理通信媒体中或物理通信媒体上并且从其读取并传达给互联网络设备;其中互联网络功能性被配置为使用物理层信息的至少一部分来执行至少一个互联网络功能。
51.一种系统,包括多个交换机,经由构成网络的多个网络段而彼此耦合;中央网桥功能,被配置成接收与网络有关的物理层信息,所述物理层信息包括使网络上的设备的媒体访问控制(MAC)地址与交换机的端口进行关联的信息;其中所述中央网桥功能被配置成确定网络的生成树;且其中所述中央网桥功能被配置成向多个交换机传达关于生成树的信息;其中交换机被配置成使用关于由中央网桥功能确定的生成树的信息来配置交换机以实行由多个交换机执行的桥接功能。
52.权利要求51的系统,其中所述中央网桥功能被实施在网络的网络管理系统中。
53.权利要求51的系统,其中所述多个交换机中的每个使用相应转发数据库来实行相应交换机处的桥接功能;其中所述中央网桥功能还被配置成确定应当如何配置每个交换机中的转发数据库;其中所述中央网桥功能被配置成向每个交换机传达指示应当如何配置该相应交换机中的转发数据库的信息;且其中每个交换机如由中央网桥功能传达给该交换机的信息所指示的那样配置该相应交换机的相应转发数据库。
54.权利要求51的系统,其中每个交换机包括以太网层2桥接设备。
55.权利要求51的系统,其中所述中央网桥功能被配置成从网络管理系统获取关于网络上的设备的MAC地址的信息。
56.权利要求51的系统,其中所述中央网桥功能被配置成从聚合点接收关于网络的物理层{曰息。
57.权利要求56的系统,其中所述聚合点获取关于网络中的连接器组件和网络中的终端设备的物理层信息;其中所述中央网桥功能被配置成使用关于网络中的连接器组件和网络中的终端设备的物理层信息的至少一些来使网络上的设备的MAC地址与交换机的端口进行关联。
58.权利要求56的系统,其中网络上的至少一些设备被配置成向聚合点自动传达关于设备以及耦合到设备的物理通信媒体中的至少一个的物理层信息;且其中所述中央网桥功能被配置成使用向聚合点传达的物理层信息的至少一些来使网络上的设备的MAC地址与交换机的端口进行关联。
59.权利要求56的系统,其中包括在网络中的连接器组件被配置成向聚合点自动传达关于连接器组件以及耦合到连接器组件的物理通信媒体中的至少一个的物理层信息;且其中所述中央网桥功能被配置成使用向聚合点传达的物理层信息的至少一些来使网络上的设备的MAC地址与交换机的端口进行关联。
60.一种交换机,包括多个端口 ;以及功能性,被配置成接收关于由中央网桥功能产生的生成树的信息;其中所述交换机被配置成基于关于由中央网桥功能产生的生成树的信息来执行桥接功能;其中所述中央网桥功能被配置成使用与网络有关的物理层信息来产生网络的生成树, 所述物理层信息包括使网络上的设备的媒体访问控制(MAC)地址与交换机的端口进行关联的信息。
61.权利要求60的交换机,其中所述中央网桥功能被实施在网络的网络管理系统中。
62.权利要求60的交换机,其中交换机使用转发数据库来实行交换机处的桥接功能;其中所述中央网桥功能还被配置成确定应当如何配置交换机中的转发数据库;其中所述中央网桥功能被配置成向交换机传达指示应当如何配置转发数据库的信息;且其中交换机如由中央网桥功能传达给该相应交换机的信息所指示的那样配置所述转发数据库。
63.权利要求60的交换机,其中交换机包括以太网层2桥接设备。
64.权利要求60的交换机,其中所述中央网桥功能被配置成从网络管理系统获取关于网络上的设备的MAC地址的信息。
65.权利要求60的交换机,其中所述中央网桥功能是网络管理系统的一部分。
66.权利要求60的交换机,其中所述中央网桥功能被配置成从聚合点接收关于网络的物理层信息。
67.权利要求66的交换机,其中所述聚合点获取关于网络中的连接器组件和网络中的终端设备的物理层信息;其中所述中央网桥功能被配置成使用关于网络中的连接器组件和网络中的终端设备的物理层信息的至少一些来使网络上的设备的MAC地址与交换机的端口进行关联。
68.权利要求66的交换机,其中网络上的至少一些设备被配置成向聚合点自动传达关于设备以及耦合到设备的物理通信媒体中的至少一个的物理层信息;且其中所述中央网桥功能被配置成使用向聚合点传达的物理层信息的至少一些来使网络上的设备的MAC地址与交换机的端口进行关联。
69.权利要求66的交换机,其中包括在网络中的连接器组件被配置成向聚合点自动传达关于连接器组件以及耦合到连接器组件的物理通信媒体中的至少一个的物理层信息;且其中所述中央网桥功能被配置成使用向聚合点传达的物理层信息的至少一些来使网络上的设备的MAC地址与交换机的端口进行关联。
70.一种方法,包括在中央网桥功能处接收与网络有关的物理层信息;在中央网桥功能处使网络上的设备的媒体访问控制(MAC)地址与多个交换机的端口进行关联,所述多个交换机经由构成网络的多个网络段而彼此耦合;在中央网桥功能处确定网络的生成树;向多个交换机传达关于生成树的信息;以及配置多个交换机以使用关于生成树的信息来实行由多个交换机执行的桥接功能。
71.权利要求70的方法,还包括在中央网桥功能处为所述多个交换机中的每个确定应当如何配置相应交换机中的相应转发数据库;从中央网桥功能向所述多个交换机中的每个传达指示应当如何配置相应转发数据库的信息;以及如由中央网桥功能传达给相应交换机的信息所指示的那样配置所述多个交换机中的每个中的转发数据库。
72.一种方法,包括在中央网桥功能处接收与网络有关的物理层信息;在中央网桥功能处使网络上的设备的媒体访问控制(MAC)地址与多个交换机的端口进行关联,所述多个交换机经由构成网络的多个网络段而彼此耦合;在中央网桥功能处为所述多个交换机中的每个确定应当如何配置相应交换机中的相应转发数据库;从中央网桥功能向所述多个交换机中的每个传达指示应当如何配置相应转发数据库的信息;以及如由中央网桥功能传达给相应交换机的信息所指示的那样配置所述多个交换机中的每个中的转发数据库。
73.权利要求72的方法,还包括在中央网桥功能处确定网络的生成树; 向多个交换机传达关于生成树的信息;以及配置多个交换机以使用关于生成树的信息来实行由多个交换机执行的桥接功能。
74.一种以太网物理层设备,包括物理媒体相关子层,用于耦合该物理层设备到插孔; 物理媒体附连子层;以及物理编码子层;媒体独立接口功能性,用于通过媒体独立接口把该物理层设备耦合到媒体访问控制设备;管理功能性,用于通过管理接口把该物理层设备耦合到媒体访问控制设备; 多个寄存器,其中所述管理功能性被配置成经由管理接口把存储在多个寄存器中的信息输出到媒体访问控制设备;以及物理层信息功能,被配置成确定插头是否插入到插孔中并且如果插头插入到插孔中则读取存储在与插头关联的相应存储器设备中的信息并且把信息存储在至少一个寄存器中。
75.权利要求74的以太网物理层设备,其中所述管理功能性被配置成把从媒体访问控制设备接收的信息存储在多个寄存器中;且其中所述物理层信息功能性被配置成把存储在至少一个寄存器中的信息写入到与插入到插孔中的插头关联的存储器设备中。
76.权利要求74的以太网物理层设备,其中所述物理媒体相关子层能操作用于把物理层设备耦合到多个插孔;且其中所述物理层信息功能性被配置成确定插头是否插入到每个插孔中并且如果插头插入到相应插孔中则读取存储在与插头关联的相应存储器设备中的信息并且把信息存储在至少一个寄存器中。
77.权利要求76的以太网物理层设备,其中所述物理层信息功能性被配置成把存储在至少一个寄存器中的信息写入到与插入到多个插孔之一中的插头关联的存储器设备中。
全文摘要
一个示例性实施例针对一种互联网络设备,其使用关于设备是其一部分的网络的物理层信息来执行至少一个互联网络功能。另一示例性实施例针对捕获关于附连到互联网络设备的物理通信媒体的物理层信息。另一示例性实施例针对一种用于在中央位置处为网络中的多个交换机产生生成树和/或转发数据库信息的技术。生成树和/或转发数据库信息是使用包括关于网络中的设备和物理通信媒体的物理层信息的信息而在中央位置处产生的。另一示例性实施例针对以太网物理层设备,其集成了用于捕获关于连接到以太网物理层设备的物理通信媒体的物理层信息的支持。
文档编号H04L12/28GK102396191SQ201080016490
公开日2012年3月28日 申请日期2010年2月12日 优先权日2009年2月13日
发明者斯通 D., 科伯恩 H., 安德森 J., 科菲 J., 佩特尔 K., 戴 M., 拉扎 M. 申请人:Adc长途电讯有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1